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Abstract

A key goal of developmental biology is to understand how a single cell transforms into a full-

grown organism comprising many different cell types. Single-cell RNA-sequencing (scRNA-seq) 

is commonly used to identify cell types in a tissue or organ1. However, organizing the resulting 

taxonomy of cell types into lineage trees to understand developmental origin of cells remains 

challenging. Here we present LINNAEUS (LINeage tracing by Nuclease-Activated Editing of 

Ubiquitous Sequences)—a strategy for simultaneous lineage tracing and transcriptome profiling in 

thousands of single cells. By combining scRNA-seq with computational analysis of lineage 

barcodes, generated by genome editing of transgenic reporter genes, we reconstruct developmental 

lineage trees in zebrafish larvae, and in heart, liver, pancreas and telencephalon of adult fish. 

LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known 

cell types under different conditions.
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Main text

Measuring lineage relationships between cell types is important for understanding 

fundamental mechanisms of cell differentiation in development and disease2,3. In early 

development and in adult systems with a constant turnover of cells, short-term lineage 

predictions can be computed directly on scRNA-seq data by ordering cells along pseudo-

temporal trajectories according to transcriptome similarity4–6. However, the developmental 

origin of cells in the adult body cannot be identified using these approaches alone. Several 

approaches for lineage tracing exist. Genetically encoded fluorescent proteins are widely 

used as lineage markers7,8, but due to limited spectral resolution, optical lineage tracing 

methods have mostly been restricted to relatively small numbers of cells. Pioneering studies 

based on viral barcoding9,10, transposon integration sites11, microsatellite repeats12, 

somatic mutations13,14, Cre-mediated recombination15, and genome editing of reporter 

constructs16,17 have used sequence information to increase the diversity of lineage labels. 

However, these methods have not been coupled with single-cell transcriptome sequencing 

and therefore do not provide any information on cell type.

Here we present LINNAEUS for simultaneous measurement of single-cell transcriptomes 

and lineage markers in vivo. The approach is based on the observation that, in the absence of 

a template for homologous repair, Cas9 produces short insertions or deletions at its target 

sites, which are variable in their length and position16,18,19. We reasoned that these 

insertions or deletions (hereafter referred to as genetic “scars”) constitute heritable cellular 

barcodes that can be used for lineage analysis and read out by scRNA-seq (Fig. 1a). To 

ensure that genetic scarring does not interfere with normal development, we targeted an RFP 

transgene in the existing zebrafish line zebrabow M, which has 16-32 independent 

integrations of the transgenic construct20. Since these integrations are in different genomic 

loci (as opposed to being in tandem), we could make sure that scars cannot be removed or 

overwritten by Cas9-mediated excision. We injected Cas9 and an sgRNA for RFP into 1-cell 

stage embryos in order to mark individual cells with genetic scars at an early time point in 

development (Fig. 1b). Loss of RFP fluorescence in injected embryos served as a direct 

visual confirmation of efficient scar formation (Supplementary Fig. 1). At a later stage, we 

dissociated the animals into a single cell suspension and analyzed the scars by targeted 

sequencing of RFP transcripts (Online Methods). Simultaneously, we sequenced the 

transcriptome of the same cells by conventional scRNA-seq using droplet microfluidics21 

(Fig. 1c and Supplementary Fig. 2, 3).

We analyzed single cell transcriptomes of >70,000 single cells from dissociated larvae at 5 

days post fertilization (dpf). On average, we detected ~3000 unique transcripts from ~700 

detected genes per cell (Supplementary Data 1). Unsupervised clustering of single cell 

transcriptomes22 revealed 70 groups of cells with distinct gene expression programs (Fig. 

1d, Supplementary Fig. 4). We assigned these clusters to cell types based on differentially 

expressed genes (Supplementary Fig. 5, Supplementary Data 2, Online Methods). We found 

that Cas9 generated hundreds of unique scars per animal when targeting a single site in RFP 

(Fig. 1e, f, Supplementary Fig. 6), suggesting that analysis of genetic scars constitutes a 

powerful approach for whole-organism lineage analysis. Bulk analysis of 32 individual 

larvae revealed that some scar sequences are more likely to be created than others, probably 
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through mechanisms like microhomology-mediated repair23 (Fig. 1e). The scars with the 

highest intrinsic probabilities may be created multiple times per embryo and are therefore 

uninformative for lineage reconstruction. We therefore excluded the most frequent scars 

(p>0.01) from further analysis. We found that scarring continued until around 10 hours post 

fertilization, a stage at which zebrafish already have thousands of cells (Fig. 1g). Thus, our 

injection-based approach for Cas9 induction allowed us to label cells in an important 

developmental period during which the germ layers are formed and precursor cells for most 

organs are specified.

We detected variable numbers of scars in single cells, with the average number of scars per 

cell ranging from ~2 for erythrocytes to ~5 for epidermal cells. (Supplementary Data 3). 

This indicated that some lineage information was lost due to the sparsity of scRNA-seq data. 

To investigate this issue in more detail, we analyzed single cells from the offspring of Cas9-

injected fish (Supplementary Fig. 7). In these fish, all cells (independent of the cell type) 

have the same scar profile, as they are derived from the same pair of germ cells. This 

analysis confirmed that scar detection efficiencies are cell type dependent, which probably 

reflects differences in cell size or promoter strength. Furthermore, we observed some 

variance in scar detection efficiency between the different transgenic integrations, which 

may be linked to genomic features of the integration sites. Notably, we did not find any 

highly expressed scars that were undetectable in specific cell types, suggesting that 

developmental silencing of specific integrations is no major concern.

To validate that genetic scars contain useful information about lineage relationships, we 

calculated enrichment or depletion of scar connections between pairs of cell types 

(Supplementary Fig. 8; Online Methods). Clustering cell types by scar connection strength 

revealed three groups, each of which contains either mostly ectodermal or mesendodermal 

cell types (Supplementary Fig. 9). We suggest this pattern was caused by a small number of 

scars that were created during the first cell divisions and then expanded locally. These 

groups of cell types form contiguous domains on the zebrafish fate map24, but do not 

strictly correspond to germ layers, since the domain boundaries of scar clones do not 

necessarily align with the boundaries between germ layers.

Next, we set out to analyze the data at higher resolution and reconstruct lineage trees on the 

level of single cells instead of cell types. As our previous filtering of frequent scars removed 

scars that may have been created multiple times, the lineage tree should fulfil the maximum 

parsimony principle, with every scar being created exactly once. Indeed, maximum 

parsimony approaches have previously been used for inferring trees from CRISPR/Cas9 

lineage data16. Earlier studies indicated that missing data does not need to be detrimental to 

maximum parsimony tree building methods25. However, such studies typically focused on a 

regime with an order of magnitude less taxa than we have cells, and more characters than we 

have scars. Using two simulated datasets, we found that Camin-Sokal maximum parsimony 

failed to reconstruct the correct tree for our system (Supplementary Fig. 10, 11). While it 

might be possible to solve this issue using modified versions of maximum parsimony or 

other established tree reconstruction algorithms, we developed an algorithm that is custom-

tailored to our experimental system. Our custom-built strategy also facilitated integration of 

a filtering step to remove spurious connections. We therefore developed a computational 
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method that fulfills the maximum parsimony criterion and allows for reconstruction of the 

correct tree in our system even if not all scars are detected in every cell (Supplementary Fig. 

10, Online Methods, Supplementary Note 1). Our algorithm is based on the observation that 

there is a correspondence between the underlying lineage tree and the resulting scar network 

graph, a representation of all pairwise combinations of scars that are experimentally 

observed together in single cells (Fig. 2a). If all scar connections are detected, the scar that is 

created first has the most connections in the scar network graph, followed by scars that were 

created next, enabling lineage tree reconstruction in an iterative manner (Fig. 2b). To remove 

spurious connections, caused by cell doublets for example, scar connections that do not 

occur in enough cells were not taken into consideration (Online Methods, Supplementary 

Note 1). Using a simulated dataset with realistic parameters, we found that our 

computational method correctly reconstructed lineage trees (Supplementary Fig. 11). 

Finally, we placed all single cells in the lineage tree based on the detected scars (Fig. 2c). 

Scar dropouts meant that we did not have full lineage information about every single cell. 

However, the reconstructed lineage tree allowed us to infer a large part of the missing scar 

information (Supplementary Fig. 12). The resulting single cell lineage trees were then 

converted to a condensed representation for easier interpretation (Fig. 2d).

For the 5 dpf larvae we found that, as expected, the major developmental lineages shown in 

Fig. 1d separated at least partially from each other in the reconstructed lineage trees (Fig. 2e, 

Supplementary Fig. 13, 14). This data can be explored at different levels of granularity, and 

we decided to next focus on the cell types of the lateral plate mesoderm (Fig. 2f). We found 

that the different blood cell types have a shared lineage, but we observed that the 

erythrocytes are also found in an additional branch that does not contain any immune cells. 

This observation probably reflects the transition from primitive to definitive hematopoiesis 

in early zebrafish development, as primitive hematopoiesis produces mostly erythrocytes, 

whereas definitive hematopoietic stem cells are capable of generating all blood cell types26. 

The primitive and definitive hematopoietic stem cells are known to have different 

developmental origins. We found that the putative definitive hematopoietic cells have a 

shared lineage origin with endothelial cells (Fig. 2f, Supplementary Fig. 14), which is to be 

expected, as the definitive hematopoietic stem cells (but not the primitive ones) are derived 

from endothelial cells of the dorsal aorta. For endodermal and neuronal/neural crest cell 

types, we observed a similar structure of partially cell-type specific lineage branches 

(Supplementary Fig. 15). Due to the stochastic nature of cell labeling in LINNAEUS, scar 

creation is not synchronized with mitosis. It is therefore important to note that reconstructed 

lineage trees do not necessarily contain all cell divisions (Supplementary Fig. 11). 

Furthermore, early zebrafish development is highly variable27. We can therefore not expect 

to find exact correspondence of early lineage trees for all cell types in different animals.

In another set of experiments, we applied LINNAEUS to dissected organs of adult fish 

(Supplementary Data 4 and 5). Analysis of >40,000 cells from the telencephalon, heart, 

liver, and the primary pancreatic islet by scRNA-seq allowed us to identify many different 

cell types in these organs (Fig. 3a, Supplementary Fig. 16, 17). We first analyzed the 

resulting lineage trees at low granularity, which revealed a strong separation of the 

individual organs (Fig. 3b and Supplementary Fig. 18). However, we also detected several 

cell types, mostly from the immune system, that were present in multiple organs. We found 
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that, as expected, the immune cells from different organs were grouped together in the 

lineage tree (Fig. 3c), which provided additional validation of our approach for scar filtering 

and lineage tree reconstruction. We next zoomed into cardiac and pancreatic cell types 

(Supplementary Fig. 19). In agreement with literature, we detected an early separation of 

myocardial and endocardial lineages28. In the primary pancreatic islet, we observed scars 

that cover all three major endocrine cell types (alpha, beta, delta). However, we also found a 

smaller scar clone (scar 1204) in which delta cells are strongly underrepresented compared 

to the other scars, suggesting that the progenitors carrying this scar predominantly 

contributed to the alpha and beta cell lineages (Supplementary Fig. 19). Further studies 

would be necessary to corroborate potential biases of endocrine progenitors towards 

particular cell fates.

Related single cell lineage tracing methods based on CRISPR/Cas9 technology have 

recently been used to study brain development as well as the clonal history of different organ 

systems in the zebrafish29,30. An important advantage of CRISPR/Cas9 lineage tracing 

compared to competing technologies, such as viral barcoding and other inducible sequence-

based lineage tracing methods, is the ability to move beyond clonal analysis and to 

computationally reconstruct full lineage trees on the single cell level. This is made possible 

by our computational approach for tree reconstruction that is robust to dropout events under 

realistic experimental conditions, and by our experimental strategy that uses independent 

scarring sites whose scars, once created, cannot be changed again. Within a single 

experiment, data analysis can be performed at different levels of granularity, from germ 

layers to organs and cell types. Our combined experimental and computational platform thus 

provides a powerful strategy for dissecting the lineage origin of uncharacterized cell types 

and for measuring the capacity of lineage trees to adapt to genetic or environmental 

perturbations. Our approach is based on an existing transgenic animal with multiple 

integrations of a transgenic construct, which should facilitate adaptation of the method to 

other model systems.

The observation that Camin-Sokal maximum parsimony failed to reconstruct the correct tree 

for our system (Supplementary Fig. 10, 11) serves as a cautionary note regarding 

computational analysis of CRISPR/Cas9 lineage data. However, additional studies would be 

necessary to systematically compare our algorithm to existing methods for tree 

reconstruction under different parameter regimes. Developing a general statistical 

framework for disentangling biological and technological variability of CRISPR/Cas9 

lineage tracing remains another important open challenge for the future. We anticipate that 

future modifications of the experimental platform, such as for instance inducible systems, 

will enable longer periods of lineage tracing and molecular recording of cellular signaling 

events during cell fate decisions.

Online Methods

Zebrafish lines and animal husbandry

We used the transgenic zebrafish line zebrabow M20 for LINNAEUS. This line has multiple 

integrations of a transgenic construct that expresses RFP from the ubi promoter, which is 

constitutively active in all cell types. Fish were maintained according to standard laboratory 
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conditions. All animal procedures were conducted as approved by the local authorities 

(LAGeSo, Berlin, Germany) under license number G0211/16. We set up crosses between 

zebrabow M adults with high RFP fluorescence, and we injected the embryos at the 1-cell 

stage with 2 nl Cas9 protein (NEB, final concentration 350 ng/µl) in combination with an 

sgRNA targeting RFP (final concentration 50 ng/µl, sequence: 

GGTGTCCACGTAGTAGTAGCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCT

AGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT). Since injection 

efficiencies may vary (Supplementary Fig. 1), we selected embryos with low RFP 

fluorescence for single cell analysis. For control experiments in Supplementary Fig. 2 and 7 

we set up crosses between pairs of adult Cas9 injected fish.

The sgRNA was in vitro transcribed from a template using the MEGAscript® T7 

Transcription Kit (Thermo Scientific). The sgRNA template was synthesized with T4 DNA 

polymerase (New England Biolabs) by partially annealing two single stranded DNA 

oligonucleotides containing the T7 promotor and the RFP binding sequence, and the 

tracrRNA sequence, respectively. In the experiments described here, we did not use the 

ability of the line zebrabow M to switch from RFP to YFP or CFP expression upon addition 

of Cre20.

Preparation of single cell suspensions

Single larvae at 5 dpf were transferred into 50 µl HBSS containing 1x TrypLE™ (Thermo 

Fisher Scientific) and incubated at 33°C for ~20 minutes with intermittent pipette mixing 

(every 5 minutes) until the larva was no longer visible. 500 µl cold HBSS (Thermo Fisher 

Scientific) supplemented with 1% BSA was then added to the suspension, and the cells were 

pelleted in a table-top centrifuge at 4°C and 300 g for 5 minutes. The pellet was washed with 

500 µl cold HBSS supplemented with 0.05% BSA and centrifuged down again. The 

resulting pellet was resuspended in the same buffer and filtered through a cell strainer of 35 

µm diameter.

Adult zebrafish were euthanized by an overdose of tricaine in combination with low water 

temperature. Afterwards, heart, brain, pancreas islets, and liver were isolated from the fish. 

Single cell suspensions of the organs were obtained using different protocols:

Heart—The zebrafish heart including atrium, ventricle and bulbus arteriosus was 

transferred into cold HBSS and opened carefully with forceps, allowing most of the 

erythrocytes to be washed away. Afterwards, the heart tissue was transferred into 500 µl 

HBSS containing Liberase™ enzyme mix (Sigma-Aldrich, 0.26 U/mL final concentration) 

and Pluronic® F-68 (Thermo Fisher Scientific, 0.1 %). The reaction was incubated at 37°C 

for 30 minutes while shaking at 750 rpm with intermittent pipette mixing. Afterwards, most 

of the tissue was dissociated. The reaction was stopped by adding 500 µl cold HBSS 

supplemented with 1% BSA. The cells were pelleted by centrifuging at 200 g in a table-top 

centrifuge at 4°C, then washed and filtered following the procedure described above for 5 

dpf larvae.

Brain—The telencephalon without olfactory bulbs was isolated in cold HBSS and 

immediately transferred to a solution of HBSS with 0.81% D-glucose and 15 mM HEPES. 
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Dissociation was initiated by adding 0.1x TrypLE™ and 0.1 % Pluronic® F-68 (final 

concentrations). The tissue was incubated for 30 minutes at 37°C while shaking at 750 rpm, 

with occasional gentle mixing. The dissociation reaction was stopped by addition of equal 

volume of EBSS solution containing 4% BSA and 20 mM HEPES. The sample was filtered 

using a 70 µm filter and centrifuged at 300 g for 5 minutes, after which the pellet was 

washed once with PBS and resuspended in HBSS with 0.04% BSA. Finally, the suspension 

was filtered with a 35 µm filter.

Pancreas and liver—The pancreatic tissue containing preferentially the primary 

pancreatic islet was isolated under a stereomicroscope and transferred into 500 µl HBSS 

containing 1x TrypLE™ and 0.1% Pluronic® F-68. The liver was isolated and dissected into 

small pieces, one of which was transferred into 500 µl HBSS containing 1x TrypLE™ and 

0.1% Pluronic® F-68. After 30 minutes of incubation at 37°C with intermittent pipetting, 

the suspensions were pelleted, washed and filtered following the procedure described above 

for 5 dpf larvae.

All final single cell suspensions were quantified and controlled for quality by microscopy 

using a hemocytometer.

Scar detection in bulk samples

DNA-based scar detection: DNA of single animals was extracted by heating the samples in 

50 µl of 50 mM NaOH at 95°C for 20 minutes. 1/10 volume of 1 M Tris-HCl, pH = 8.4 was 

then used to neutralize the mixture. We took 20 µl of the DNA for amplification of scar 

sequences using RFP-specific barcoded primers. The RFP primers were chosen such that the 

cut site of Cas9 was positioned approximately in the middle of the sequencing read. We then 

pooled the PCR products, performed a clean-up reaction using magnetic beads (AMPure 

Beads, Beckman Coulter), and added Illumina sequencing adapters in a second PCR 

reaction. Primer sequences are provided in Supplementary Table 1.

RNA-based scar detection: RNA of single or pooled animals was extracted with TRIzol™ 

Reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol. The RNA was 

precipitated using isopropanol, and the pellet was washed 2 times with 75% ethanol, air 

dried, and resuspended in 10 µl of reverse transcription mix (0.3 µM poly-T primer, 1x first 

strand buffer (Thermo Fisher Scientifc), 10 µM DTT, 1 mM dNTPs, 0.5 µl RNAseOUT™ 

(Thermo Fisher, Cat. No. 10777019), 0.5 µl SuperScript™ II (Thermo Fisher, Cat. No. 

18064-014. The reaction was incubated at 42°C for 2 h for reverse transcription, followed by 

scar specific PCR amplification as described above for DNA-based scar detection.

Transcriptome and scar detection in single cells

Single cells were captured using Chromium™ (10X Genomics, PN-120233), a droplet-based 

scRNA-seq device according to the manufacturer’s recommendations. Briefly, the 

instrument encapsulates single cells with barcoded beads, followed by cell lysis and reverse 

transcription in droplets. Reverse transcription was performed with polyT primers containing 

cell-specific barcodes, Unique Molecular Identifiers31 (UMI), and adapter sequences. After 

pooling and a first round of amplification, the library was split in half. The first half was 
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fragmented and processed into a conventional scRNA-seq library using the manufacturer’s 

protocols. We used the second, unfragmented, half to amplify scar reads by two rounds of 

PCR, using two nested forward primers that are specific to RFP, and reverse primers binding 

to the adapter site. The RFP primers were chosen such that the cut site of Cas9 was 

positioned approximately in the middle of the sequencing read, ensuring that a broad range 

of deletion lengths can be reliably detected. Primer sequences are provided in 

Supplementary Table 1. We confirmed successful library preparation by Bioanalyzer (DNA 

HS kit, Agilent). Samples were sequenced on Illumina NextSeq 500 2x 75 bp and Illumina 

HiSeq 2500 2x 100 bp.

Mapping and extraction of single cell mRNA transcript counts

A zebrafish transcriptome was created with Cell Ranger 2.0.2 from GRCz10, release 90. 

Alignment and transcript counting of libraries was done using Cell Ranger. Cell numbers to 

be extracted were set at a minimum of 6000 but were increased if there were substantially 

more cells with more than 500 unique transcripts. Exact numbers can be found in 

Supplementary Data 1.

Mapping and filtering of single cell scar data

Scar reads have the same structure as transcript reads: they consist of a barcode, a UMI and 

a scar. The scar sequences were aligned using bwa mem32 to a reference of RFP. Valid cell 

barcodes were identified based on the single-cell transcriptome data (see previous 

paragraph). We removed reads that were unmapped, had an incorrect barcode, or did not 

start with the exact PCR primer we used. We truncated all scar sequences to 75 nucleotides 

and filtered out shorter sequences.

To mitigate the effect of sequencing errors, we implemented several rounds of scar filtering 

(Supplementary Fig. 2). We started by counting the number of times each molecule was 

sequenced. Sequencing errors will typically have fewer reads than the actual scars they 

originate from. As a first filtering step, we therefore removed all molecules only seen once 

to reduce the complexity in the dataset for consecutive filtering steps.

In the second filtering step, we aimed to remove easily recognizable sequencing errors and 

chimeric reads33. To this end, we consecutively considered scar sequences that have the 

same cellular barcode and UMI, UMIs that have the same cellular barcode and scar 

sequence, and cellular barcodes that have the same UMI and scar sequence. In each step, we 

kept only the molecule with the highest number of reads. The rationale behind this is that it 

is very improbable to have two valid scar sequences in the same cell with the same UMI, or 

to have a scar sequence with the same UMI appear in two different cells. The observation of 

two different UMIs for the same scar in the same cell is much more likely and corresponds 

to detection of multiple transcripts from the same locus, but information about scar 

expression levels was not required in our downstream analysis.

In the third filtering step, we specifically targeted sequencing errors within each cell. We 

compared the scar sequences found within a cell to each other. We filtered out sequences 

that had a Hamming distance of 2 or less to another scar sequence in the same cell that 

occurred in at least eight times as many reads. Scar sequences in the same cell that were one 
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Hamming distance apart but had a read ratio less than eight were tested on three criteria if 

both of them occurred at least twice in the scar library:

1. Do both scars have more than one transcript?

2. Do both scars occur in cells independently from each other?

3. Do the UMIs of both scars have Hamming distance of two or more?

If two of these criteria were true, the scars were kept and the sequences were placed on a list 

of validated scars that, if they occurred in the same cell in another library, did not have to be 

tested anymore. If one or zero criteria were true, the scar that had only one transcript, or the 

scar that did not occur independently, were filtered out.

In the fourth filtering step, we determined the distribution of reads for the scars we had kept 

so far. Based on this distribution we set a cut-off and filtered out the scars that did not have 

at least this number of reads. Finally, for each cell type we determined the distribution of 

different scars seen per cell and set a maximum number of scars a cell of that type can have. 

We filtered out cells in which we observed more than this maximum number as possible 

doublets.

While each scar is identified by its sequence, scars are labeled in the manuscript using their 

ranking in the bulk scar frequency distribution (e.g. “scar 77”) or their CIGAR code (e.g. 

“47M6D28M”) as a shorthand notation. Since scars cannot be modified once created, each 

scar is considered as a separate entity for lineage tracing independent of its sequence.

Determination of scar probabilities

We aligned reads from thirty-two single embryos (DNA-based bulk scar detection) to a 

reference of RFP. We filtered out unmapped reads and reads that did not start with the exact 

PCR primer, and truncated all reads to one hundred nucleotides, removing shorter ones. To 

determine the creation probabilities of the different scars, we removed all unscarred RFP 

reads from each embryo. We normalized the scar content of each embryo to one and 

calculated scar probabilities as the average ratio with which each scar was observed.

To account for the slightly different sequencing read structure of single cell and bulk scar 

detection (see above), we considered only the nucleotides that are shared between the two 

approaches, and we assigned the bulk scar probabilities to single cell scars accordingly. 

Single cell scars that were not detected in bulk had their probability set to the lowest 

probability value detected in bulk.

Determination of scarring dynamics

Embryos were injected with Cas9 and sgRNA at the 1-cell stage. After 1, 2, 3, 4, 6, 8, 10, 

and 24 hours, several embryos were collected and pooled (5-6 for earlier stages, 2-3 for later 

stages), followed by RNA and/or DNA extraction using TRIzol Reagent. Bulk scar libraries 

were produced as described above. For each sample, we calculated the percentage of 

unscarred RFP. We fit a negative exponential to this data, assuming that the fraction of 

unscarred RFP at t=0 was one.
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Identifying cell types

We used the R package 'Seurat', version 2.1.022, for cell-type identification as described 

below. We removed genes that were not found in at least three cells, and removed cells that 

had less than two hundred of those genes. We log-normalized the transcript counts and 

removed cells with more than 2,500 genes observed. For single cells from 5 dpf larvae and 

adult pancreas, we filtered out cells with a mitochondrial content of more than 7.5 percent, 

and for single cells from adult hearts and telencephalons we filtered out cells with a 

mitochondrial content of more than fifteen percent; we expect the cardiomyocytes in 

particular to have high mitochondrial content. We regressed out influences of the number of 

transcripts, mitochondrial transcripts, and libraries, and kept a total of 2779 highly-variable 

genes for cells of 5 dpf larvae, 3775 highly-variable genes for cells of adult telencephalon, 

4536 for cells of adult heart and 3018 for cells of adult pancreas. We performed a principal 

component analysis and kept the first sixty components for single cells from 5 dpf larvae, 

eleven for adult brains, eight for adult hearts, and fifty for adult pancreases. Clustering, 

using the smart local moving algorithm34 on a K-nearest neighbor graph of cells, was done 

on these components with resolution 1.8 for 5 dpf larvae, resolution 0.8 for adult brain cells, 

resolution 1.0 for cells from adult heart and adult pancreas. Dimensionality reduction, using 

t-Stochastic Neighbor Embedding35,36 (tSNE), was done on the sixty components for the 5 

dpf larvae, and on components three to twenty-two for the adult organs to reduce the visual 

impact of batch effects. To calculate differential gene expressions, we used the likelihood-

ratio test as implemented in Seurat, introduced in McDavid et al., 201337, with an 

underlying negative binomial distribution for gene expression. This test aims to detect 

changes in mean gene expression and expression frequencies over different clusters. Using 

these differentially expressed genes, we assigned clusters to cell types based on literature 

and the ZFIN database38 (Supplementary Data 2 and 4). We did not aim to identify all cell 

types with maximal resolution and focused instead on unequivocal identification of those 

cell types that are highlighted in the text (such as the larval hematopoietic cells, and adult 

pancreatic cells). Cell type assignments of all other clusters should therefore be considered 

tentative. Clusters were subsequently merged if they were found to have the same cell type, 

and we applied a mild coarse-graining by merging highly related cell types (for instance, 

different neuronal subtypes in the adult telencephalon were merged).

Connection enrichment analysis

We used an analysis of the scars shared between cells to illuminate the overall structure of 

the sequencing results from 5 dpf larvae. We expect that cells in which we observe the same 

scar have a shared lineage. To understand the scarring process better, we aimed to find out 

which cell types share many scars – these cell types would have a strong lineage relationship 

– and which cell types do not share many scars – these cell types would not have many 

immediate shared precursors.

We call cells 'connected' if they share at least one scar that has a creation probability of less 

than 0.1% and is only present in one organism. To find out whether cell types have a higher 

number of connections between them than expected by chance, we developed the 

background model described below (see also Supplementary Fig. 8). The background model 

starts with the realization that a connection is defined by its endpoints, and that therefore the 
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number of expected connections between two cell types is determined by the number of 

connection endpoints of the two cell types. More precisely, the chance of forming a 

connection between cell type A and B is given by p(A-B) = 2 * CE(A)*CE(B)/CE(tot)^2, 

and that of forming a connection within cell type A by p(A-A) = CE(A)^2/CE(tot)^2, with 

CE(A) the number of connection endpoints of cell type A, and CE(tot) the total number of 

connection endpoints. These probabilities define a binomial background model. Using this 

model, we calculate the enrichment z-score between cell types, i.e. how many standard 

deviations the observed number of connections between two cell types is away from the 

expected number of connections. A positive enrichment score indicates more connections 

than expected by chance, a negative enrichment score indicates less connections than 

expected by chance.

We define the distance between cell types based on their enrichment z-scores by the 

following equation: D(A, B) = 1 - (E(A, B) - Emin)/(Emax – Emin), with D(A, B) the distance 

between cell types A and B, E(A, B) the enrichment z-score between them, Emin the 

minimal enrichment z-score and Emax the maximum enrichment z-score. The term E – Emin 

can be understood as a translation of all enrichment scores to positive values. These values 

are then divided by the maximum value and subtracted from 1 to create distances scaled 

between 0 and 1. We performed hierarchical clustering on these distances, using average 

linkage as implemented by the hclust function in R. We performed this analysis for two 

larvae, cutting the dendrogram into three and four clusters, respectively (Supplementary Fig. 

9).

Tree building

Our computational method for lineage tree reconstruction consists of two phases. First, we 

derive the order of scarring events. To do so, we make use of scar network graphs, a 

representation of all pairwise combinations of scars that are experimentally observed 

together in single cells (Fig. 2a). If all scar connections are detected, the scar that is created 

first has the highest degree of connections in the scar network graph, followed by scars that 

were created next, enabling lineage tree reconstruction in an iterative manner (Fig. 2b). In 

the second phase, we place all cells in the lineage tree according to their scar profile (Fig. 

2c). Cells are placed as low in the tree as their scars allow. Due to incomplete scar detection, 

we do not have full lineage information about every single cell. However, the structure of the 

scar network graph is robust towards scar dropouts, since it is based on the collective 

information of thousands of single cells (see simulations in Supplementary Fig. 10). To 

ensure that lineage tree reconstruction is not affected by known experimental biases, we also 

included the following measures:

- Double scarring: Some scars have a higher intrinsic probability than others (Fig. 

1e). To minimize the chance of considering scars that may have been created 

twice or more in the same fish, we excluded all scars that have a probability 

higher than 0.1%. With this threshold, most scars were unique to a single fish 

among the replicates studied (Supplementary Fig. 6). Any remaining scars that 

were not unique to a single replicate were also excluded from the subsequent 

analysis.
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- Cell doublets: Co-encapsulation of two cells in one droplet is a known limitation 

of scRNA-seq techniques that are based on droplet microfluidics. Cell doublets 

can lead to spurious connections between scars in the network graph. Incomplete 

tissue dissociation, limited barcode diversity, barcode sequencing errors, and 

free-floating RNA from cells burst in the microfluidic system may potentially 

have similar consequences. As a protection against this effect, we only accept 

connections in the scar network graph that are more highly detected than 

expected by chance given a library-specific doublet rate (typically around 10%, 

depending on the experimental cell loading rate). See Supplementary Note 1 for 

details.

- Missing connections: In case of very low cell numbers or scar detection 

efficiencies, it is possible that a connection is missed in the scar network graph. 

To address this issue, we performed a statistical test for each scar to check 

whether the number of observed connections is compatible with the scar being 

on top of the current sub-branch, given the numbers of cells and the observed 

scar dropout rates (Supplementary Fig. 20, Supplementary Note 1). In each 

iteration, we tested only those scars whose inferred detection rate (if placed on 

top of the corresponding sub-branch) was higher than 0.1, a threshold derived 

experimentally in Supplementary Fig. 7.

- Pruning the tree: Especially for later, smaller branches, it is possible that not 

enough connections are observed to accurately place them in the lineage tree, 

resulting in positioning of the branch too high up in the tree (Supplementary Fig. 

20, Supplementary Note 1). We prune the lineage tree for such branches by 

removing branches that have less than 25% of the cells their siblings have.

Using simulated data under realistic conditions (including cell doublets, as well as cell type 

and integration site dependent scar detection efficiencies), we demonstrate that this approach 

reconstructs the correct lineage tree (Supplementary Fig. 11). Lineage trees were visualized 

by expanding the R-package 'collapsibleTree' (https://github.com/AdeelK93/

collapsibleTree/) with previous authorization from the author. This package relies on the D3 

javascript libraries.

Simulations

We simulated the scarring process during embryo development (Supplementary Fig. 10, 11). 

To do this, we used a simple model that starts with one cell, and in which all cells present 

undergo synchronized mitosis. Every cell cycle, the RFP integrations of the cells can acquire 

a unique scar. The chance of creating a scar is fixed for every integration for every cell 

division, and all scars are transmitted to the progeny of the cells.

After simulating the scarring events during development, we also simulate a sequencing 

experiment that produces data for tree building. To this end, the cells at the bottom of the 

tree are clonally expanded, generating many copies that all have the same scar profile. The 

experimental data consists of a sample of these cells, with a scar detection rate determining 

the chance of seeing a scar that is present in a cell.
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We simulated two distinct trees. The first is a simple tree of three generations, where all cell 

divisions are marked by acquisition of new scars (Supplementary Fig. 10). From this tree we 

sampled 125 cells with a scar detection rate of 0.3, yielding 99 cells in which at least one 

scar was detected. This dataset was then used to compare LINNAEUS tree building with 

maximum parsimony tree building.

The second simulated tree was a more realistic tree in which six generations of cells can 

potentially receive a scar on ten target sites (Supplementary Fig. 11). Here, we used a cell 

division rate of 4 per hour, as measured by microscopy39,40. A scarring rate of 0.4 per hour 

reproduced the fit scarring dynamics during the first three hours (Supplementary Fig. 11a). 

We can use this simulation to estimate the number of new scars per cell division 

(Supplementary Fig. 11b). In this simulation, we assumed three cell types (fraction 15%, 

25%, 60%) with different detection rates (70%, 30%, 10%, respectively). We furthermore 

assumed that two of the ten target sites are much harder to detect (by a factor 20, i.e. 

detection rates 3.5%, 1.5%, 0.5%). The resulting developmental tree is shown in 

Supplementary Fig. 11c. Due to the stochasticity of scar creation, scars are not created in all 

precursor cells, and in Supplementary Fig. 11d we show the maximal lineage tree that can be 

measured by scars. We expand all final branches (not shown) and sample 2000 cells from the 

resulting pool with a cell doublet rate of 5%, yielding 1716 cells (including doublet cells) 

with at least one scar.

Tree building on simulated data

To validate our tree building method, we built trees from both simulated trees using the cells 

sampled as described in the section “Simulations”. We compared our results to maximum 

parsimony tree building as done by the program “mix” in PHYLIP 3.69541, using the 

Camin-Sokal algorithm with missing states encoded as “0”. If multiple trees were tied for 

best tree, we took the first generated tree.

The simple developmental tree (Supplementary Fig. 10) was recreated flawlessly by the 

LINNAEUS tree building algorithm (Supplementary Fig. 10b). However, maximum 

parsimony was not able to resolve the tree correctly, creating unjustified complexity due to 

multiple creation events for the same scar (Supplementary Fig. 10c). The more realistic scar 

tree (Supplementary Fig. 11) was also recreated faithfully by LINNAEUS (Supplementary 

Fig. 11f). Maximum parsimony again created a strong amount of unjustified complexity 

with a total of 265 scarring events for 46 scars, an average of over five times per scar 

(Supplementary Fig. 11g).

Statistics

We assessed RNA scar expression rates by comparing scar abundance in DNA to scar 

abundance in RNA in three 24 hpf animals. Using 70,251 data points, every one of which 

representing the RNA and DNA abundances of a sequence in one fish, we found a Pearson 

correlation of 0.97 between RNA and DNA abundances (Supplementary Fig. 3).

We used Seurat to identify cell types in four datasets: 72,252 cells from 5 dpf larvae (n=7 

animals) and cells from three different organs in adult fish (n=3 animals): heart (12,248 

cells), telencephalon 7,045 cells) and pancreas/liver (20,777 cells). Distribution of cell 
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numbers over identified clusters can be found in Supplementary Data 2 (larvae) and 4 

(adults). We determined differential gene expression using Seurat’s “negbinom” test that 

includes a Benjamini-Hochberg correction of p-values.

To determine whether cell types had a statistically significant amount of connections 

(Supplementary Fig. 8 and 9), we first determined the theoretical connection probability of 

two cell types following the reasoning laid out above. We then used a two-tailed binomial 

test to assess whether the actual observed number of connections between the two cell types 

is different from the expected number of connections. The p-values were corrected for 

multiple testing using the Benjamini-Hochberg correction. Values for all 2,485 tests can be 

found in Supplementary Data 6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editor Summary

LINNAEUS reconstructs developmental lineages using RNA sequencing data and lineage 

markers from the same single cells.
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Figure 1. Using the CRISPR/Cas9 system for massively parallel single cell lineage tracing.
(a) Cas9 creates insertions or deletions in an RFP transgene. These genetic scars can be used 

as lineage barcodes. Using the fish line zebrabow M, which has 16-32 integrations of the 

RFP transgene, enables us to record complex lineage trees with a single sgRNA. 

Simultaneous transcriptome profiling by scRNA-seq allows unbiased cell type identification. 

(b) Sketch of the experimental protocol. Injection of Cas9 and sgRNA for RFP into the 

zygote marks cells with genetic scars at an early developmental stage. Scars can be read out 

together with the transcriptome by scRNA-seq at a later stage. (c) Approach for 
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simultaneous detection of scars and transcriptome from single cells. Cells are captured by 

droplet microfluidics, followed by lysis, reverse transcription, and amplification. After 

amplification, the material is split and processed into a whole transcriptome library and a 

targeted RFP library for scar detection. (d) t-SNE representation of scRNA-seq data and 

identified cell types for dissociated zebrafish larvae (5 dpf, n=7 animals). Cell types were 

grouped into 8 categories as indicated by the color code. (e) Probability distribution of scars, 

measured in bulk experiments on the DNA level. Pie chart shows fractions of different types 

of scars (deletion, insertion, single nucleotide polymorphism (SNP), complex scars). (f) 
Length distributions for deletions and insertions for the data shown in (e). (g) Scarring 

dynamics as measured on the DNA and RNA level, with exponential fit.
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Figure 2. Computational reconstruction of lineage trees on the single cell level.
(a) In a developmental lineage tree (top), each scar can be identified by a unique number 

corresponding to its ranking in the bulk scar frequency distribution (Fig. 1e). Newly created 

scars are indicated in black font. The resulting scar tree (middle), a reduced representation of 

the order of scarring events, can be represented as a network graph (bottom). In a scar 

network graph, each node corresponds to a different scar, and pairs of scars that are co-

expressed in single cells are connected by gray lines. In LINNAEUS, we experimentally 

measure scar network graphs, based on which we computationally reconstruct the 
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underlying lineage tree. (b) Cartoon of the computational approach. Network graphs allow 

reconstructing the order of scar creation events in an iterative approach. The first scar is 

determined as the one with the highest connectivity (red arrow). Upon removal of the first 

scar and its connections, the following scars are identified as the most highly connected ones 

in the reduced network. For details see Online Methods. (c) After the scar tree has been 

built, we position all individual cells in the tree according to their scar profile. Incomplete 

scar detection efficiency may lead to loss of information in single cells (black numbers: 

detected scars; gray crossed out numbers: missed scars). As a consequence, some cells 

cannot be placed all the way down to the lowest branch of the tree (example: red cell, in 

which scar 41 and 75 were not detected). However, some missing scars can be reconstructed 

(example: blue cell, in which scar 41 can be inferred). See also Supplementary Fig. 12. (d) 
Sketch of a simple single cell lineage tree with two cell types (red, blue). Single cell lineage 

trees can be represented in a condensed form by indicating fractions of cell types as pie 

charts (cumulative with respect to the branches below). (e) Lineage tree for one 5 dpf larva. 

Pie charts are plotted small for n<50, medium for n≥50, and large for n≥1000. Color code 

for cell types as in Fig. 1d. Scars with creation probability ≥0.001 and scars that were 

detected in more than 1 larva were excluded from the analysis. In general, developmental 

lineages separate well in the tree. However, since scarring ends at ~10 hours post 

fertilization, the end points of the branches may still give rise to multiple cell types in 

multiple tissues. (f) Lineage tree for one 5 dpf larva, zoomed into lateral plate mesoderm 

(see color code). The tree structure was determined based on the whole dataset (e).
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Figure 3. Single cell lineage analysis of adult organs reveals hierarchies of cell fate decisions.
(a) t-SNE representations of scRNA-seq data for dissociated organs from adult zebrafish 

(red: heart, green: pancreas + liver, blue: telencephalon; n=3 animals). (b) Lineage tree for 

organs from one adult. Pie charts are plotted small for n<50, medium for n≥50, and large for 

n≥1000. Scars with creation probability ≥0.01 were excluded from the analysis. Color code 

as in (a). (c) Lineage tree zoomed into immune cell types from same adult as (b) (see color 

code). As expected, immune cells from different organs cluster together in the lineage tree, 

even though the sequencing libraries for the different organs were prepared separately. This 

observation is an additional important validation of the scar filtering pipeline, since it shows 

that even small cell populations such as these immune cells do not acquire scars from other 

cells types in their organ of origin by mechanisms such as cell doublets or sequencing errors.
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