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HLA-G is a nonclassical major histocompatibility complex molecule first described at the maternal-fetal interface, on extravillous
cytotrophoblasts. Its expression is restricted to some tissues in normal conditions but increases strongly in pathological conditions.
The expression of thismolecule has been studied in detail in cancers and is now also beginning to be described in infectious diseases.
The relevance of studies on HLA-G expression lies in the well known inhibitory effect of this molecule on all cell types involved
in innate and adaptive immunity, favoring escape from immune control. In this review, we summarize the features of HLA-G
expression by type of infections (i.e, bacterial, viral, or parasitic) detailing the state of knowledge for each pathogenic agent. The
polymorphism, the interference of viral proteins withHLA-G intracellular trafficking, and various cytokines have been described to
modulate HLA-G expression during infections.We also discuss the cellular source of HLA-G, according to the type of infection and
the potential role of HLA-G. New therapeutic approaches based on synthetic HLA-G-derived proteins or antibodies are emerging
in mouse models of cancer or transplantation, and these new therapeutic tools may eventually prove useful for the treatment of
infectious diseases.

1. Introduction

HLA-G was first described by Geraghty et al. in 1987 [1]
as a member of the nonclassical human leukocyte antigen
(HLA) family, which also includes HLA-E and F [2, 3]. The
HLA-G gene is located within the major histocompatibility
complex on the p21.31 region of chromosome 6. It has
eight exons and seven introns, and its sequence is about
86% identical to the consensus sequence of the HLA-A,
-B, and -C genes. Unlike classical class I molecules, HLA-
G has a short cytoplasmic tail of six amino acids, due to
premature stop codon in exon 6 [1]. Alternative splicing
of the primary transcript generates four membrane-bound
isoforms and three soluble forms. HLA-G1 has a structure
similar to that of classical HLA class I molecules: a heavy
chain consisting of three extracellular globular domains (𝛼1,
𝛼2, 𝛼3) noncovalently associated with the 𝛽-2 microglobulin
and a monomer peptide. The membrane-bound isoforms,

HLA-G2, -G3, and -G4, are truncated isoforms lacking the 𝛼2
and/or 𝛼3 domains of the heavy chain [4, 5] and they should
not, therefore, bind 𝛽-2 microglobulin [6]. Soluble HLA-G
isoforms are generated either by alternative splicing of the
HLA-G primary transcript (HLA-G5, -G6, and -G7) or by
proteolysis of the HLA-G1 isoform (HLA-G1s) [7–9]. Indeed,
the HLA-G5, -G6, and -G7 isoforms are highly unusual, as
they are spliced variants of the HLA-G mRNA retaining
introns 4 and 2 [7, 9, 10].

HLA-G is structurally diverse, with (i) different iso-
forms resulting from alternative splicing, (ii) some 𝛽2M-free
molecules [11], and (iii) all isoforms other thanHLA-G3 being
able to form homomultimers [12]. Indeed, HLA-G isoforms
can also form homotrimers and homodimers, through the
establishment of disulfide bridges between cysteine residues
located in positions 42 and 147 [13]. Truncated isoforms of
HLA-G can also carry out the biological functions of this
molecule. Indeed, multimeric structures of HLA-G isoforms
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function by differential binding to LILRB receptors [12].Thus,
HLA-G has specific features not found in other HLA class
I molecules, such as (i) limited polymorphism [14, 15], (ii)
restricted expression in physiological conditions [16], (iii) a
shorter cytoplasmic tail region due to a stop codon in exon
6, (iv) unusual regulatory mechanisms due to the use of
a promoter unique among HLA class I genes [17–20], and
(v) numerous immunomodulatory properties, as described
below.

HLA-G expression was initially described as restricted to
the maternal-fetal interface, on extravillous cytotrophoblasts
[21]. In healthy, nonfetal subjects, theHLA-Gprotein is found
only on the cornea [22], thymicmedulla [23], nailmatrix [24],
beta cells of the islets of Langerhans [25], mesenchymal stem
cells [26], and endothelial precursors [27].

Levels of this protein are upregulated in many diseases
and this upregulation may modulate the immune response.

The immunosuppressive properties of HLA-G have been
thoroughly described. Indeed, the role of this molecule in
immunotolerance was first described following its detection
at the maternal-fetal interface, in in vitro studies, and has
recently been confirmed by in vivo studies in mice. HLA-G
can inhibit all types of immune competent cells (Figure 1).
This effect is mediated by the direct binding of both com-
pletely soluble and membrane-bound isoforms to inhibitory
receptors via the 𝛼3 domain. Indeed, B and T lymphocytes,
NK cells, and monocytes of the myeloid lineage express the
immunoglobulin-like transcript ILT2 (CD85j, ILIRB1) [28];
monocytes, macrophages, and dendritic cells express ILT-
4 (CD85d, LILRB2) [29]. The killer cell immunoglobulin-
like receptor (KIR2DL4/p49) is specific for HLA-G and is
expressed by decidual NK cells. Unlike other inhibitory
receptors, it may also mediate activation [30, 31]. In addition,
soluble HLA-G triggers the apoptosis of T and NK cells
via CD8-like classical class I soluble molecules [32]. HLA-G
modulates adaptive and innate immunity by interacting with
T or B lymphocytes and NK cells or polymorphonuclear cells
(Figure 1).

HLA-G can inhibit all steps in the immune response:
differentiation, proliferation, cytolysis, cytokine secretion,
and immunoglobulin production. It can also alter antigen
presentation to T lymphocytes, by inhibiting dendritic cell
function and maturation [33–36] and by specific effects on
T and B lymphocytes during effector activities. Indeed, this
molecule inhibits the cytolytic activity of T and NK cells
[37, 38] and the proliferation of B lymphocytes, together with
the differentiation of these cells and their immunoglobulin
secretion [39]. It also affects cooperation between B and T
lymphocytes, by inhibiting T4 alloproliferation [36, 40] and
inducing different types of regulatory T cells [41, 42]. Trogo-
cytosis can generate different types of temporary regulatory
cells in situ, accounting for the immunosuppressive effect of
HLA-G-positive cells, despite their small numbers [43]. In
addition, HLA-G inhibits the function of neutrophils, key
cells in host immune defense against pathogens. Indeed, its
interaction with its receptor, ILT4, on neutrophils impairs
phagocytosis and the respiratory burst of neutrophils respon-
sible for reactive oxygen species production [44].
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Figure 1: Causes and consequences of HLA-Gmodulation in infec-
tious diseases. Positive and negative effects of HLA-G are shown
in blue and red, respectively. Parasites, bacteria, or viruses induce
the secretion of various cytokines, including IL-10 and interferon
(-𝛾 for bacterium and IFN-𝛼 and -𝛽 for virus). These cytokines
upregulate the expression or secretion of HLA-G. In addition, IL-
10 induces IL-10-producing human dendritic cells (DCs), termed
DC-10, expressing HLA-G and ILT4. HLA-G induces tolerogenic
DC in addition to DC-10 and regulatory cells via direct interaction
with ILT2 and/or ILT4. HLA-G, through direct interaction with
ILT2, inhibits the function of T and NK cells and B cells, whereas
it inhibits the function of granulocytes and myeloid DC via direct
interaction with ILT4. Indirect effects of HLA-G are mediated by
the induction of HLA-E cell surface expression, which inhibits
CD94/NKG2a onNKandT cells.The consequence ofHLA-G action
is a downregulation of innate and adaptive immunity.

Many studies have focused on HLA-G in tumoral pro-
cesses, highlighting its role in tumor escape from the immune
response [45]. The expression of this molecule is also begin-
ning to be reported in other diseases, including infectious
diseases. As host immune defense mechanisms efficiently
eliminate most infections, studies on HLA-G in infections
are based on the rationale that this molecule decreases
the efficacy of the immune response through wide-ranging
effects on all cell types involved in the immune response.

2. Features of HLA-G Expression by
Infection Type

The main studies on HLA-G and infectious diseases are
summarized in Table 1.
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(a) Bacterial Infections. Septic shock is characterized by
high mortality (40–50%) despite adequate initial treat-
ment. Indeed, during septic shock, the initial huge systemic
inflammatory response is immediately followed by an anti-
inflammatory process, acting as negative feedback. However,
this compensatory inhibitory response may subsequently
become deleterious, as nearly all immune functions are
compromised [46].

Monneret et al. [47] reported that marked, persistent
HLA-G5 expression in septic shockwas predictive of survival.
The exocytosis-mediated upregulation of ILT4 expression on
neutrophils is inhibited in conditions of sepsis, so the large
amounts of HLA-G5 found in the plasma samples of patients
surviving sepsismay have allowed them to control neutrophil
inflammatory activity [44]. However, soluble HLA-G con-
centration was not found to be predictive of the detection
of bacteremia and sepsis in pediatric oncology patients with
chemotherapy-induced febrile neutropenia [48].

(b) Parasitic Infections. Few clinical data for parasitic infec-
tions are available, and those published relate mostly to
plasma concentrations of sHLA-G, with the exception of
one study of the protective role of HLA-G polymorphism
in malaria [49]. We previously reported an increase in
soluble HLA-G levels in 35% of cases of visceral leishmaniasis
(Leishmania infantum) (VL) in HIV-seronegative patients
and 57% of patients coinfected with HIV and Leishmania
infantum [50]. However, the percentage of HLA-G-positive
patients and themean sHLA-G value were significantly lower
in patients with both HIV infection and VL than in the
patients with HIV infection alone. These results suggest that
the increase in sHLA-G levels in HIV-infected patients with
VL may contribute to a general tolerogenic environment,
favoring the persistence of Leishmania and shortening the
life expectancy of HIV-infected patients. sHLA-G may also
be an immune biomarker of successful treatment. Thus,
levels of sHLA-G with indoleamine 2,3 dioxygenase (IDO)
activity may thus constitute, together with Th1/Th2 cytokine
levels, surrogate markers for the resolution of VL, at least
in immunocompetent patients [51]. High levels of sHLA-
G are found in the amniotic fluid in women acquiring
toxoplasmosis during pregnancy. The levels of this protein
are the highest when the fetus is congenitally infected.
However, all fetuses were born alive in our small series
of patients, consistent with adequate downregulation of
the inflammatory response. HLA-G may, therefore, play an
immunomodulatory role that is necessary to avoid fetal loss
but that may lead to the maternal-fetal transmission of Tox-
oplasma gondii [52]. HLA-G expression increases upon the
in vitro infection of primary human trophoblasts and BeWo
cells with Toxoplasma gondii, probably due to the secretion
of proinflammatory cytokines in response to the parasite
[53].

(c) Viral Infections.Many extensive studies have been carried
out on cancers, but HLA-G expression has also been studied
in many viral infections, with HIV infections being the most
extensively studied (at least 30 published studies).

2.1. HIV Infection. Levels of sHLA-G are significantly higher
in HIV-infected patients before treatment than in healthy
controls [54]. The increase in plasma sHLA-G concentration
in these patients has been attributed to an increase in
HLA-G secretion from intracellular stores in monocytes and
dendritic cells [55]. Indeed, a longitudinal study of plasma
sHLA-G concentration in HIV-infected individuals with
different rates of clinical progression showed that sHLA-G
expression was associated with HIV disease progression [56].
HLA-G levels are high early in infection and remain high
in rapid progressors. However, these concentrations return
to normal levels in the chronic phase of infection, in both
untreated normal progressors and long-termnonprogressors,
when the infection is controlled. Cell surface expression of
HLA-G is also detected on 93% of monocytes and 34% of
T lymphocytes in patients [57]. Serum concentrations of
HLA-G, like those of the other classical class I molecules
(sHLA-A, -B, -C), also increase in HIV-infected patients and
are significantly decreased by antiretroviral therapy (highly
active antiretroviral therapy, or HAART), in cases in which
HIV-1 replication is strongly inhibited.

Moreover, HAART significantly decreases the concentra-
tion of circulating soluble HLA-G molecules, this decrease
being correlated with viral clearance and an increase in
CD4+ T cells, as reported for classical class I molecules.
The decrease in sHLA-G levels after HAART reported by
Cabello et al. is not consistent with the finding of an increase
in HLA-G expression on monocytes following HAART in
another study [56]. The agents responsible for this increase
are nucleoside reverse transcriptase inhibitors rather than
protease inhibitors [58]. Murdaca et al. explain these conflict-
ing findings in terms of the membrane expression of HLA-G
inducing an increase in soluble HLA-G molecule shedding
[59]. However, high levels ofHLA-G in peripheralmonocytes
were also observed in two of the 12 untreated patients,
suggesting other causes unrelated toHAART [56].High levels
of HLA-G molecules are also found in the monocytes of
untreated HIV-positive patients [57], possibly due to the
pathogenesis of infection.

HLA-G expression may allow these cells to evade the
immune system, because the protective function of HLA-
G occurs after the induction of this molecule in HAART-
treated HIV-1 patients, accounting for both the consistently
defective function of monocytes in HIV-1-infected patients
and the role of the viral reservoir present in monocytes
during infection [56]. It inhibits myeloid dendritic antigen-
presenting capacity via ILT4 and enhances the secretion
of inflammatory cytokines [55]. HLA-G+ regulatory T cells
decrease in both absolute numbers and relative propor-
tions during progressive HIV-1 infection. Their levels are
thus inversely correlated to those of phenotypic markers of
immune activation. HLA-G+ T regulatory cells can decrease
harmful bystander activation andmay protect against HIV-1-
associated immune activation and HIV-1 disease progression
[60].

2.2. Human CMV (hCMV). Bothmembrane-bound and sol-
uble plasma HLA-G concentrations increase during hCMV
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infection. The induction of HLA-G protein in macrophages
has been observed after the generation of these cells ex vivo
from latently infectedmonocytes and after the reactivation of
hCMV infection [61]. HLA-G protein has also been detected
ex vivo on bronchoalveolar macrophages from patients
suffering from acute hCMV pneumonitis, on peripheral
monocytes and in plasma [62]. Blood sHLA-G concentration
has been shown to be correlated with blood IL-10 and IFN-𝛾
concentrations.

2.3. Neurotropic Virus. HLA-G protein has been reported to
be expressed in human neurons after infection with rabies
virus or herpes simplex type I, following the activation of gene
transcription [63, 64].

2.4. Influenza A Virus (IAV). HLA-G expression was first
demonstrated in vitro in an alveolar epithelial cell line, at
the mRNA and protein levels, after treatment with various
IAV strains [65]. HLA-G expression has been detected in
vivo in patients infected with the pandemic H1N1 or seasonal
H1N1 [66] viruses. It has been detected on monocytes and T
lymphocytes, including T4 regulatory cells in particular.This
cellular HLA-G expression contrasts with the absence of an
increase in the plasma concentration of this protein.

2.5. Human Papilloma Virus (HPV). Low levels of HLA-G5
expression are observed in all HPV-related cases of invasive
cervical cancer [67]. Indeed, HPV E5 may be involved in the
decrease in HLA-G expression at the cell surface, because
high-risk HPV oncoproteins may inhibit the promoters of
HLA class I heavy chain genes and may modulate the levels
of the transporter associated with antigen processing (TAP1)
protein.

2.6. Hepatitis B andCViruses (HBVandHCV). PlasmaHLA-
G concentration is higher during hepatitis infection than
in healthy subjects without HBV infection. It is higher in
cases of chronic hepatitis B than in acute hepatitis B and
it returns to normal after resolution of the infection. In
addition, an increase in HLA-G cell surface expression is
observed on peripheral monocytes and regulatory T cells
[68]. Similarly, an increase in blood sHLA-G concentration
has been reported in patients with chronic hepatitis infection
[69], associated with an increase in blood IL-10 and IFN-𝛾
concentrations.

HLA-G expression in the liver has been detected by
immunohistochemical methods, in hepatocytes and biliary
epithelial cells from patients with chronic hepatitis B, by
Souto et al. [70]. We [71] found that the number of HLA-
G+ cells was significantly correlated with the area of tissue
affected by fibrosis. This led to the first demonstration
that HLA-G+ cells were mast cells. HLA-G secretion was
significantly induced in humanmast cells stimulated with IL-
10 or class I interferons.

3. Mechanisms of HLA-G Modulation
during Infection

Thesemechanisms (polymorphism, interference of infectious
proteins with HLA-G intracellular trafficking and shedding,
and cytokines) are summarized in Figure 1 and Tables 2 and
3.
(a) Polymorphism, Alleles, and Single-Nucleotide Polymor-
phisms. Firstly, HLA-G polymorphism, although limited with
40 alleles identified [15], is involved in susceptibility to
viral infections, particularly those caused by HIV and HCV
(Table 1). Indeed, the G∗010108 allele has been reported to
be associated with an increase in the risk of HIV-1 infection,
whereas the G∗0105N allele (null allele) has been shown
to be associated with protection from infection in African
women [72, 73] but a greater risk of infection in a population
from north-eastern Italy [74]. Da Silva et al. have shown that
HLA-Gvariants influence the horizontal transmission ofHIV
horizontal in African-derived HIV-infected patients, with a
higher frequency of alleles and genotypes associated with
low levels of HLA-G expression (i.e., a higher frequency of
the 14 bp insertion allele) in African-derived HIV-infected
individuals and a higher frequency of the 14 bp insertion
+3142G (insG) haplotype and the insG/insG diplotype. In
addition, a higher frequency of the ins/ins genotype is found
among African-derived HIV-infected patients also infected
with HCV [75].

Thus, the transmission of HIV-1 from infected mothers
to their infants may be influenced by dissimilarities in
their HLA-G sequences [76]. HLA-G∗01:03+ mothers have
recently been shown to be less likely to transmitHIV-1 to their
children during the perinatal period [77]. The polymorphic
sites may affect miRNA binding to the HLA-G mRNA,
thereby influencing HLA-G translation [19, 78].

HLA-G polymorphism may also affect susceptibility to
HCV infection in patients with sickle cell disease, because
the C allele seems to confer protection against HCV, by a
mechanism associated with an increase in HLA-G expression
[79]. Homozygosity for the 14 bp deletion and the allele
containing this deletion (010401) seems to be a risk factor for
the vertical transmission of HCV, whereas the 0105N allele
confers protection [80]. The HLA-G 14 bp insertion/deletion
polymorphism is also a putative susceptibility factor for active
hCMV infection in children [81]. Two polymorphisms in the
3 untranslated region of the HLA-G gene (3UTR) (14 bp
ins/del, +3142C>G) are involved in susceptibility to HPV
infection; indeed, the 14 bp del allele is associated with a high
risk of HPV infection, and the del/C haplotype is associated
with the development of invasive cervical cancer [82].

An association of HLA-G 3UTR polymorphisms with
the antibody response to Plasmodium falciparum has also
recently been reported [49, 83].
(b) Interference of Viral Proteins with the Intracellular Traffick-
ing of HLA-G. Viral proteins have generally been reported to
decrease HLA class I expression, but their effect on HLA-G
expression at the cell surface is more ambiguous (Table 3).
Indeed, they may have no effect [84–86] or an inhibitory
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Table 2: Influence of HLA-G polymorphism on susceptibility to infectious diseases.

Pathogens Protection Susceptibility Vertical transmission
(mother-to-child) References

HIV

HLA-G∗0105N
(null allele) [72, 73]

G∗010108 allele
G∗010108/010401
G∗010101/010108

[72]

G∗0105N
14 bp (ins) allele

+3142G (insG) haplotype

[74]
[75]
[75]

G∗01:01:01 genotype G∗01:04:04 genotype [122]
Differences in the
HLA-G gene DNA
sequence between
mother and child

[76]

14 bp insertion allele
14 bp + 3142G (insG)

haplotype
[75]

insG/insG diplotype
in HCV coinfected [75]

HCV

insG/insG diplotype
in HIV coinfected [75]

+3142C allele in
sickle cell disease

patients
[79]

−14 bp/−14 bp genotype [81]

HLA-G∗0105N
G∗010401

homozygosity for
HLA-G 14 bp deletion

[80]

HPV 14 bp ins allele
14 bp del allele

del/C haplotype with ICC
development

[82]

Plasmodium falciparum

+3187G allele
and haplotype UTR1 Haplotype UTR3 [83]

+3010G and +3142C
+3010G and +3196G [49]

effect [87–90], and one study, carried out by Onno et al. [61],
even reported HLA-G induction after viral reactivation in
activatedmacrophages, through the cooperative action of the
early HCMV proteins pp72 and pp86. By contrast, another
team showed that HLA-G1 levels at the cell surface were
downregulated and that this downregulation was dependent
on hCMV short viral US glycoproteins [89]. Some US
proteins have differential effects on the expression of classical
HLA class I and HLA-G molecules at the cell surface, due
to the shorter cytoplasmic tail of HLA-G [91] and other
structural characteristics [91].

These conflicting results for hCMV may be accounted
for by differences between the cell types studied (monocytes,
trophoblasts, or the U373-MG astrocytoma cell line). The
effects of viral proteins differ with the infected cell target,
the type (classical or otherwise) of HLA class I molecules,
and the membrane-bound or soluble nature of the HLA-G
protein. These conclusions are illustrated by the following

examples. US10 downregulates the cell surface expression of
HLA-G but not that of classical class I MHC molecules [88],
because the short cytoplasmic tail of HLA-G (RKKSSD) acts
as a US10 substrate. On the other hand, the US2 protein
decreases levels of HLA class I molecules by supporting
proteasome-mediated degradation, unlike HLA-G1, which
lacks the residues essential for interaction with US2 [84].
Moreover, HLA-G1 has also been reported to be targeted for
degradation, independently of the cytoplasmic tail [84].

For HIV infections, the short cytoplasmic tail of HLA-
G confers resistance to Nef-induced downregulation [85],
whereas Nef downregulates MHC class I molecules [92].
(c) Cytokines. Many viruses have also developed other
strategies for escaping host immune surveillance, such as
a deregulation of the host cytokine network through the
secretion of cytokines. Cytokines are also important in
bacterial infections.
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Table 3: Interference of viral proteins with HLA-G intracellular trafficking; comparison with classical HLA class I molecules.

Virus Viral
protein

Classical HLA class I HLA-G References
Mechanism Downregulation Downregulation No change Upregulation

HIV

Nef

Interacts directly with
class I domain
Redirects to

endolysosomal
pathway

↘

→

truncated
cytoplasmic
domain

[85]

Vpu

Redirects to
degradation pathway
Affects early step in

biosynthesis

↘ ↘ [119]

HCMV

US2
US11

Exports for cytosolic
degradation ↘

→

truncated
cytoplasmic
domain

[84, 86]

US3
US6

Retention in
endoplasmic
reticulum

↘ ↘ [87]

US10 ↘

cytoplasmic tail [88]

pp72 and
pp86 ↗ [99]

Herpes Virus ICP47

Inhibits TAP
(transporter

associated with
antigen processing)

↘ ↘ [90]

The interleukin- (IL-) 10 family of cytokines and the
related interferon (IFN) family form the larger class II
cytokine family [93]. The IL-10 family consists of three
subgroups, defined on the basis of biological functions: IL-10,
the IL-20 subfamily cytokines (including IL-19, IL-20, IL-22,
IL-24, and IL-26), and the type III IFN group (IFN𝜆s).

Several viruses have been shown to upregulate the expres-
sion of cellular IL-10, which is produced by monocytes and,
to a letter extent, by lymphocytes and, possibly, mast cells.
Other viruses, such as the Epstein-Barr virus and HCMV,
have functional orthologs of IL-10. Indeed, blood IL-10 and
IFN-𝛾 concentrations are high in hCMV infection [62] and
in chronic hCMV infection [69]. In bacterial infections, IL-
10 is also produced during sepsis [94]. High IL-10 levels are
associated with bacteremia and sepsis in febrile pediatric
cancer patients with neutropenia [95].

IL-10 is a pleiotropic cytokine with both immunostim-
ulatory and immunosuppressive properties [96]. HLA-G
expression is induced following IL-10 stimulation in exper-
iments in vitro and is associated with IL-10 expression in
vivo in a context of cancer. IL-10 selectively induces HLA-
G expression, at both the mRNA and protein levels, in
human trophoblasts and monocytes [97]. By contrast, Zhao
et al. [53] have reported that IL-10 downregulates HLA-G
expression in an in vitro model based on the infection of
human trophoblasts with Toxoplasma gondii.

Interferons trigger important antiviral effects during viral
infections. They can be classified into three classes: (i)
class I (IFN-𝛼, -𝛽), produced by NK cells, lymphocytes,

macrophages and fibroblasts, and other molecules, such as
IFN-𝜔 and -𝜁, produced by leukocytes, (ii) class II, consisting
solely in IFN-𝛾 produced by NK and T cells, and (iii) class
III, recently described and including IFN-𝜆1 (IL-29), -𝜆2
(IL-28A), and -𝜆3 (IL-28B), produced by numerous cell
types, including plasmacytoid dendritic cells. Types I and
III interferons are produced by virus-infected cells. In these
cells, double-stranded RNA activates the signaling cascades
leading to the transcription of the IFN-𝛼 and -𝛽 genes.
Following their secretion, these interferons interact with a
specific IFN𝛼/𝛽 receptor on neighboring uninfected cells and
on the initial infected cells, activating a signaling cascade that
produces antiviral proteins that act on viruses and upregulate
HLA class I expression. IFN-𝛾 is involved in both innate and
adaptive immunity. Type III IFNs signal through a receptor
complex consisting of IL10R2 and IFNL-R1 (IL-28RA). HLA-
G induction by interferons has been reported in numerous
studies. Indeed, different types of IFN (𝛼, 𝛽, and 𝛾) can
induce HLA-G expression in different cell types. Yang et
al. [98] reported the induction of HLA-G on Jeg 3 cells by
different interferons.The induction of HLA-G on monocytes
has also been reported [99]. IFN-𝛽 and -𝛾 have recently been
shown to activate HLA-G expression in a human neuron cell
line infected with rabies virus [63]. HLA-G expression after
IFN treatment has also been demonstrated in several tumor
models, including a melanoma cell line. Thus, treatment
with IFN-𝛽 or -𝛾 increases the dimer/monomer ratio and,
subsequently, affinity for the ILT2 receptor [100]. An increase
in HLA-G expression, in monocytes and serum, is also
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observed in patients treated systemically with IFN-𝛼 [101].
Similar effects have also been reported after treatment with
IFN-𝛽1 [102]. Interferons are known to induce HLA class I
expression by binding to the interferon-stimulated response
element (IRSE) motif in the proximal promoter region of
class I genes. This motif is absent from the HLA-G promoter
[15], so the upregulation of HLA-G expression by interferons
was unexpected. This upregulation was accounted for by the
identification of another specific functional IRSE in the distal
promoter, at a position−744 bpupstream from theATG [103].

The early phase of septic shock is characterized by a
massive release of inflammatory mediators, causing organ
dysfunction and hypoperfusion. These cytokines include
tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta
(IL-1beta), and IFN-𝛾. Like IFN-𝛾, TNF-𝛼 and IL-1 can also
induce HLA-G. Indeed, TNF-𝛼 has been shown to induce
a moderate increase in steady-state levels of HLA-G mRNA
in human trophoblast cell lines [98]. IL-1𝛽 increases the
expression of HLA-G and Toll-like receptor 4 (TLR4) in an
HIF-1𝛼-dependent manner [104].

Protease levels generally increase during bacterial and
viral infections and this may lead to the proteolytic shedding
of membrane-bound HLA-G in a soluble form, resulting in
an increase in blood HLA-G concentration.

4. General Discussion

An upregulation of HLA-G expression has been reported
in most studies of viral infection. Reported discrepancies in
the results concerning HLA-G expression in hCMV or HIV
infections may reflect differences in the models used or in
infection status or stage between studies.This upregulation of
HLA-G expression results principally from an increase in the
secretion of cytokines, such as IL-10 and class I interferons.
HLA-G levels increase, either at the cell surface or in the
blood (sHLA-G). Indeed, concentrations of soluble HLA-G
in the blood increase in some viral infections caused by HIV,
hCMV, HCV, and HBV viruses, similar to classical soluble
class I antigens. The increase in the secretion of cytokines,
including interferons in particular, during the course of viral
infection, and the use of interferons as therapeutic agentsmay
account for the increase in HLA-G levels. Shedding, due to
metalloprotease digestion, is favored by interferons and also
contributes to the increase in soluble HLA-G concentration
in the blood. The peripheral cells expressing HLA-G during
viral infections are monocytes and T lymphocytes (HIV,
influenza). Neurons and bronchoalveolar macrophages have
been shown to express HLA-G in infected tissues. In HCV
hepatitis, Souto et al. [70] found that hepatocytes and biliary
epithelial cells expressedHLA-G,whereaswe identifiedHLA-
G-positive cells as mast cells [71]. This discrepancy can also
be accounted for a difference in the definition of positivity,
because we also observed a weak staining of hepatocytes
but took only strong staining into account. These findings
were confirmed by our findings for a human mast cell line
showing that this cell line expressed HLA-G and secreted
class I interferons. Moreover, mast cells may promote liver
fibrosis [105] by stimulating collagen synthesis and fibroblast

chemotaxis. Cytokines involved in liver fibrosis, such as IL-4
or IL-33 [106], act as chemoattractants, driving the activation
of mast cells [107, 108]. In addition, mast cells secrete tryptase
and many cytokines involved in fibroblast proliferation [109]
and fibrogenesis [110], including IL-10 [111]. However, the
role of HLA-G in viral infections remains unclear, because
two hypotheses are possible. It may promote virus immune
escape, as in cancers. This hypothesis is supported by the
immunosuppressive properties of HLA-G, which act on all
the cells involved in the immune response. In addition,
sHLA-G downregulates CXCR3 levels on peripheral blood
and tonsil CD56 cells [112].This dysregulation of CXCR3 sig-
naling due to CXCL10 deficiency impairs antiviral responses
in vivo, including the antiviral response to herpes simplex
virus 1 infection [113].

Alternatively, HLA-G expression or secretion may reflect
an appropriate and efficient response to the inflammatory
process occurring during viral infection or septic shock.
Indeed, HLA-G may be beneficial during viral infection,
because an increase in HLA-G concentration occurs follow-
ing the secretion or therapeutic administration of interferons,
classes I and III IFNs are secreted as physiologic antiviral
responses, and IFN-𝛼 is an effective treatment for chronic
HCV infection. We can hypothesize that the antiviral effect
of classes I and III IFNs may be mediated by the properties of
HLA-G, which is induced by IFN, as described above.

The immunosuppressive properties of HLA-G have been
clearly demonstrated in vitro, and the role of this protein has
nowbeen elucidated in vivo. Indeed, two studies have demon-
strated the involvement of this protein in tumor progression
in a mouse model in vivo. In a xenograft model, the HLA-G1
isoform promotes tumor progression in immunocompetent
Balb/c mice, affecting both innate and adaptive immunity. By
contrast, no tumor development is observed when HLA-G is
blocked by a specific antibody, demonstrating the specificity
of the effect [114]. HLA-G plays a role in tumor escape,
through expansion of the population of myeloid-derived
suppressor cells and an alteration of the cytokine balance
in favor of a Th2 response rather than a Th1/Th17 response.
HLA-G expression is associated with tumor metastasis and
poor survival in the Balb/c nu/nu mouse model of ovarian
cancer [115]. In another model used to assess the efficacy
of synthetic HLA-G proteins for therapeutic purposes in
a context of transplantation, it was shown that a single
treatment of skin allograft recipient mice with these proteins
was sufficient to prolong graft survival significantly and that
four weekly treatments were sufficient to ensure graft survival
[116].

The feasibility of synthesizing effective HLA-G-derived
molecules opens up new possibilities in the fields of tumor
diseases and infection. For example, HCV infections are a
worldwide public health problem and may be suitable for
treatment with such molecules, because HLA-G expression
is correlated with the area of fibrosis.

In the future, it may be possible to modulate HLA-G
transcription with a miRNA, such as the hsa mir-148a and
mir-152, which bind to the 3 untranslated region of the
HLA-G gene (3UTR) [19], downregulating its mRNA levels.
Indeed a polymorphism of the binding site for this miRNA
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(the 263del/ins SNP) has been associated with poor control
of HIV infection [117].

5. Conclusions

As in cancers, HLA-G expression is upregulated in infectious
diseases, in response to changes in the cytokine microenvi-
ronment, relating principally to increases in the levels of IL-
10 and interferons. HLA-G expression may occur in infected
tissues and/or, more frequently, in peripheral blood, in the
form of sHLA-G or a membrane-bound form on monocytes
or different types of T cells (CD4, T reg). This molecule
may have deleterious effects, promoting pathogen escape
from immune control, as reported in cancers, or it may
be beneficial, as in septic shock [47], reflecting appropriate
and effective feedback control of inflammatory process. The
role of this protein in parasitic and viral infections remains
to be elucidated. Thus, HLA-G may be a single marker
of infectious diseases, related to pathogens and/or to the
immune response, or it may constitute a therapeutic target,
once its function has been clarified in particular types of
infections.
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