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Abstract

RNA modification, as a crucial post-transcriptional regulatory mechanism, plays a pivotal role in normal physiological processes and
is closely associated with the onset and progression of various human diseases. Recent studies have highlighted significant alterations
in the level of RNA modifications, including m6A, m6Am, m1A, m5C, m7G, ac4C, ¥, and A-to-I editing, across multiple diseases. These
findings suggest the potential of RNA modifications and their regulatory factors as biomarkers for early disease diagnosis and prognosis.
This review provides an overview of statistical methods, machine learning techniques employed in identifying disease diagnostic and
prognostic biomarkers, along with relevant evaluation metrics and bioinformatics tools. We further explore the types of common RNA
modifications, the modifying proteins involved, and the underlying mechanisms of modification. The focus of this paper is on the
application of machine learning algorithms in discovering RNA modification-related biomarkers, particularly for disease diagnosis and
prognosis. By reviewing recent advancements in the identification of disease biomarkers, and analyzing the prospects and challenges
of their clinical application, we aim to offer insights into the mining methods of RNA modifications and their associated factors as

disease diagnostic or prognostic biomarkers, providing a valuable reference for future research and clinical practice.
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Introduction

RNA modification refers to the post-transcriptional chemical
changes in RNA molecules, also termed epitranscriptomic
modifications. These modifications are essential for the dynamic
regulation of gene expression. The epitranscriptome dynamically
regulates the chemical modifications of both coding and non-
coding RNA (ncRNA) molecules, which regulate the function and
stability of RNA and thereby affect various biological processes
in cells [1]. Proteins involved in RNA modifications, collectively
known as RNA-modifying proteins, can be classified into three
functional categories: ‘writers,’ ‘erasers,” and ‘readers.” Writers
catalyze the addition of modifications, erasers remove them, and
readers selectively recognize and bind to modified RNA.
Abnormalities in RNA modifications are closely linked to the
initiation and progression of various diseases, particularly in can-
cer, neurological disorders, and cardiovascular diseases. Conse-
quently, they can serve as biomarkers that reflect changes in
specific diseases or physiological states, and they can also be
used to assess the degree of body response to disease treatment
[2]. For instance, in gastric cancer, m6A levels are significantly
elevated compared to normal tissues [3]. The regulation of RNA
modifications is a dynamic biological process, with modifica-
tion levels exhibiting significant changes across diverse physi-
ological and pathological conditions. Therefore, RNA modifica-
tions and their associated factors, including specific modification

levels, RNA modification regulators, and modification-regulated
genes, exhibit significant potential as biomarkers, offering novel
approaches for early disease diagnosis and prognostic evaluation.

Methods for identifying biomarkers for disease diagnosis
and prognosis include statistical methods, machine learning,
bioinformatics tools, and experimental verification. Among these,
machine learning algorithms enable the extraction of patterns
and regularities from complex high-dimensional data, thereby
generating knowledge and insights that facilitate prediction
and decision-making [4]. In recent years, machine learning
algorithms have been increasingly applied to the discovery of
disease biomarkers. In particular, supervised learning methods
have demonstrated significant potential in identifying RNA
modification-based disease biomarkers, thereby enhancing the
accuracy of disease diagnosis and prognostic prediction. The
integration of RNA modification research with machine learning
provides novel perspectives for advancing precision medicine
diagnosis. However, their clinical translation still requires
validation through independent cohort studies and investigations
into molecular mechanisms.

This review summarizes the methods for identifying dis-
ease diagnostic and prognostic biomarkers based on RNA
modification-related factors, encompassing statistical methods,
machine learning algorithms, as well as bioinformatics tools. In
addition, we introduce eight common types of RNA modifications
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along with their associated modifying enzymes or proteins,
summarizes their regulatory mechanisms in diseases, with a
focus on the research status of machine learning techniques
in uncovering disease diagnostic and prognostic biomarkers
related to RNA modifications. The aim of this review is to
provide researchers with an overview of the current research
status and insights into potential future directions regarding
RNA modifications and their related factors as disease diagnostic
and prognostic biomarkers. A literature search was conducted
through platforms such as PubMed, limiting the scope to English-
language publications from January 2020 to January 2025,
focusing on studies related to RNA modifications and human
disease diagnostic or prognostic biomarkers.

Statistical methods, machine learning, and
analytic tools

Statistical methods are employed to organize, summarize,
generalize, and infer overall characteristics from data. Traditional
statistical techniques, such as the t-test, analysis of variance
(ANOVA), Mann-Whitney U test, Pearson’s correlation coefficient,
and Spearman’s rank correlation coefficient, are designed to
explore relationships between variables [5]. The t-test compares
differences between two sample groups, while ANOVA is used to
assess differences across multiple groups. In disease biomarker
discovery, these methods can preliminarily identify biomarkers
by comparing gene expression differences across groups or
performing correlation analysis. Additionally, Cox regression is
a widely used survival analysis model for evaluating the impact
of variables, such as specific genes or other biomarkers, on patient
survival [6]. Although traditional statistical methods are relatively
easy to interpret, they rely on assumptions, such as the type of
error distribution, which limits their applicability in analyzing
complex data [5]. To overcome these limitations, various machine
learning algorithms have been developed and increasingly applied
to biomarker discovery.

Machine learning algorithms do not require a priori assump-
tions about the data, and they are capable of handling large-scale,
diverse data distributions and high-dimensional datasets, and
can identify complex patterns and learn nonlinear relationships
within the data, offering greater flexibility [4, 7]. This flexibility
provides machine learning methods with a significant advantage
in biomarker discovery, particularly in the crucial step of feature
selection. Machine learning algorithms can sift through numer-
ous candidate features to identify potential disease biomark-
ers. Common machine learning techniques include supervised
learning, unsupervised learning, semi-supervised learning, and
reinforcement learning [8]. Among these, supervised and unsu-
pervised learning are the most frequently employed in disease
biomarker discovery. Supervised learning involves training mod-
els on labeled datasets and can be divided into classification
and regression tasks [8]. Random Forest (RF) [9], Support Vec-
tor Machine (SVM) [10], Decision Tree (DT) [11], eXtreme Gradi-
ent Boosting (XGBoost) [12], and Least Absolute Shrinkage and
Selection Operator (LASSO) [13] are commonly applied supervised
learning algorithms in biomarker discovery (Fig. 1). Unsupervised
learning seeks to uncover hidden structures and patterns in data
without prior labels or information [14]. In biomarker discovery,
unsupervised learning techniques are frequently employed to
identify latent subtypes and extract salient features from com-
plex datasets. For instance, clustering methods group samples
with similar RNA modification patterns to distinguish groups

of patients with different prognosis or treatment response [15].
Frequently used unsupervised learning algorithms include con-
sensus clustering [16], principal component analysis (PCA) [17],
and t-Distributed Stochastic Neighbor Embedding (t-SNE) [18]
(Fig. 1). Material 2 in the Supplementary material provides an
introduction to these algorithms.

Statistical and machine learning methods are both essential
tools for feature selection, which serves as a critical step in
disease biomarker discovery. By eliminating irrelevant variables,
feature selection enhances the accuracy of biomarker identifi-
cation. The primary strategies for feature selection include fil-
ter, wrapper, and embedded methods [19]. Filter methods utilize
statistical tests or correlation analyses, such as t-tests and chi-
square tests, to independently evaluate the relationship between
each feature and the target variable. However, these methods may
neglect interactions between features and considerations related
to classifier choice. Wrapper methods iteratively evaluate feature
combinations, such as linear SVM recursive feature elimination
and genetic algorithms, based on the predictive performance of
a given model. Embedded methods integrate feature selection
directly into the model-building process by incorporating regu-
larization penalties, such as LASSO, which automatically select
relevant features during training. In addition, these embedded
strategies can even be applied to less interpretable models, such
as deep neural networks, to enhance feature selection. Thus,
machine learning-based feature selection provides a robust foun-
dation for identifying reliable and biologically meaningful RNA
modification related biomarkers.

To evaluate the performance of biomarkers identified through
feature selection, appropriate assessment metrics are required.
Commonly used indicators for assessing evaluate diagnostic or
prognostic biomarkers include area under the receiver operat-
ing characteristic (ROC) curve (AUC), sensitivity and specificity
[8]. Among them, the ROC curve is a key tool for evaluating
the diagnostic performance of biomarkers, showing the trade-
off between the true positive rate (TPR) and the false positive
rate (FPR) at different classification thresholds. In clinical appli-
cations, selecting the optimal threshold requires alignment with
the biomarker’s intended purpose, as different scenarios prioritize
different outcomes. For instance, in cancer screening, a lower
threshold increases sensitivity, reducing false negative (FN) and
ensuring more cases are identified. However, this comes at the
cost of a higher false positive (FP) rate, potentially leading to
misdiagnosis of healthy individuals. This trade-off is critical in
early disease detection. Conversely, a higher threshold prioritizes
specificity, minimizing FP but increasing the risk of missing true
cases. To determine the optimal threshold, the Youden Index
(J=TPR—FPR) is commonly used, selecting the threshold that
maximizes the difference between correct and incorrect predic-
tions. Additionally, cost-sensitive analysis incorporates domain-
specific penalties for misclassification. For example, in malignant
tumor screening, the high risk associated with delayed diagnosis
makes FN more costly and therefore favors a lower threshold
to minimize FN rates. Conversely, for diseases with low preva-
lence and high diagnostic cost of FP, a higher threshold is pre-
ferred to reduce FP [20]. Overall, the ROC curve is a valuable tool
for assessing the impact of FP and FN on model performance,
optimizing the threshold to balance sensitivity and specificity,
and computing the AUC to evaluate the overall performance of
the model. For prognostic biomarkers, in addition to prediction
accuracy, survival analysis is necessary, incorporating the con-
cordance index (C-index), Kaplan-Meier curves, hazard ratio (HR)
and p-values. Material 3 in the Supplementary material provides
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Figure 1. Relationships between Al, machine learning, deep learning, and statistical methods. Al algorithms include machine learning and deep learning
algorithms. Machine learning algorithms commonly used to identify RNA modification-related disease biomarkers mainly include supervised learning

and unsupervised learning.

descriptions and formulas for common performance evaluation
metrics.

To ensure the reliability of selected biomarkers, a validation
process is necessary to assess the model’s generalization ability.
Validation methods can be categorized into internal and exter-
nal verification. Internal validation typically involves techniques
such as k-fold cross-validation or leave-one-out cross-validation,
where the data is partitioned into training and testing sets to
evaluate model performance. External validation includes eval-
uation of model performance using independent datasets and
validation of biological functions of biomarkers through in vivo
and in vitro experiments. For instance, quantitative real-time
polymerase chain reaction (QRT-PCR) can be used to assess gene
expression levels, while western blotting can verify changes in
protein levels [21]. With external validation, the reliability of the
biomarker can be tested and whether it is of value for further
research can be determined.

Finally, bioinformatics tools are essential in disease biomarker
discovery, enabling more precise and insightful analysis of identi-
fied biomarkers and the interpretation of their biological signifi-
cance and mechanisms of action. Common tools include data sta-
tistical modeling tools, functional annotation tools, network anal-
ysis tools, and public database resources such as Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) for anal-
ysis. For instance, the Gene Ontology (GO) database divides the
gene functions into three categories: cellular component, biolog-
ical process and molecular function [22]. Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis provides func-
tional and signaling pathway for related molecules and metabo-
lites within the context of disease [23]. The STRING database
facilitates the exploration of functional proteins and protein—
protein interactions linked to key genes [24]. Weighted gene co-
expression network analysis (WGCNA) can identify modules of co-
expressed genes, including those strongly correlated with disease
phenotypes, and extract hub genes within these modules [25].

Numerous studies employ a variety of tools and online databases
to analyze key genes [26-28].

Common types of RNA modifications

Currently, over 170 distinct RNA modifications have been identi-
fied [1]. Common RNA modifications include N6-methyladenosine
(m6A), N6,2’-O-dimethyladenosine (m6Am), N1-methyladenosine
(m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-
methylguanosine (m7G), Pseudouridine (¥), adenosine-to-inosine
(A-to-I) editing, alternative polyadenylation (APA), and 2’-O-
methylation (Nm). These modifications occur in a wide range of
RNAs, including messenger RNA (mRNA), ribosomal RNA (rRNA),
long non-coding RNA (IncRNA), transfer RNA (tRNA), microRNA
(miRNA), circular RNA (circRNA), small nuclear RNA (snRNA),
small nucleolar RNA (snoRNA), and enhancer RNA (eRNA) [1].
The regulation of RNA modifications is a complex and dynamic
process mediated by specific proteins known as ‘writers,’ ‘erasers,’
and ‘readers,” which catalyze the addition, removal, and recogni-
tion of chemical modifications on RNA molecules, respectively.
These modifications play essential roles in post-transcriptional
gene regulation and have been linked to aberrant gene expression
in various diseases. Several of the enzymes involved, particularly
writers and erasers, have emerged as potential therapeutic tar-
gets. For instance, inhibition of the methyltransferase METTL3
has been shown to significantly suppress the progression of acute
myeloid leukemia (AML) [29]. This review focuses on eight com-
mon RNA modifications (m6A, méAm, m1A, m5C, ac4C, m7G, ¥,
A-to-I editing) and their associated enzymes or proteins (Table 1).

N6-methyladenosine

m6A refers to the methylation of the sixth nitrogen atom of
adenine in RNA molecules, which occurs mainly near stop codons,
in 5'- and 3’ -untranslated regions, in long internal exons, and in
the shared sequence RRACH (R=A/G and H=A/C/U) [30]. It is the
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Table 1. Common types of RNA modifications and associated enzymes or proteins

Type Contribution Writers Erasers Readers Ref.
m6A MRNA, 1RNA, IncRNA, METTL3, METTL14, METTL16, ALKBHS, FTO YTHDC1, YTHDC2, YTHDF1, [31, 32]
miRNA, circRNA, RBM15, RBM15B, VIRMA YTHDF2, YTHDF3, IGF2BP1,
snRNA, snoRNA (KIAA1429), WTAP, ZC3H13, IGF2BP2, IGF2BP3, HNRNPC,
CBLL1 (HAKAI), ZCCHC4, HNRNPA2B1, HNRNPG, FMR1,
METTLS RBMX, LRPPRC
elF3, PRRC2A, SND1
m6Am mRNA, snRNA PCIF1 (CAPAM), METTL4 FTO PCF11 [33, 34]
mlA mRNA, TRNA, IncRNA, TRMT6, TRMT61A, TRMT61B, ALKBH1, ALKBH3, YTHDF1, YTHDF2, YTHDEF3, [35]
tRNA TRMT10B, TRMT10C, NML ALKBH7, FTO YTHDC1
(RRPS)
mb5C mMRNA, TRNA, IncRNA, NSUN1, NSUN2, NSUN3, ALKBH1, TET1, TET2, ALYREF, YBX1, YBX2, YTHDF2, [36, 37]
tRNA, miRNA, eRNA NSUN4, NSUNS5, NSUNG6, TET3 RADS52, FMRP, SRSF2
NSUN7, DNMT2 NSUN5a/b/c
ac4C MRNA, TRNA, IncRNA, NAT10 N/A N/A [38]
tRNA
m7G MRNA, TRNA, tRNA, METTL1/WDR4, N/A QKI, IGF2BP3, elF4E, CBC [39-42]
miRNA WBSCR22/TRMT112, RNMT (NCBP1/2)
v MRNA, TRNA, tRNA, DKC1, PUS1, PUS3, PUS7, N/A N/A [43, 44]
snRNA PUS7L, PUS9, PUS10, RPUSD1,
RPUSD2, RPUSD3, RPUSD4,
TRUB1, TRUB2
A-to-I editing mMRNA, IncRNA, miRNA ADAR1, ADAR2, ADAR3 N/A N/A [45]

most abundant internal modification in eukaryotic RNA, widely
present in mammalian mRNA and various non-coding RNAs [1].
The recognition and binding of m6A modification depend on
multiple reader proteins [31, 32], as shown in Table 1.

N6,2’-0-dimethyladenosine

m6Am is an RNA modification formed by N6-methylation of 2’-O-
methyladenosine, occurring primarily near the m7G cap structure
of mRNA and snRNA [33]. FTO is the only known demethylase
[33]. Additionally, An et al. demonstrated that the transcription
terminator PCF11 can function as a specific reader of m6Am [34].

N1-methyladenosine

m1A is a modification involving the methylation of the N1 posi-
tion of adenosine. This process is catalyzed by a group of methyl-
transferases, primarily including TRMT6, TRMT61A, TRMT61B,
TRMT10B, TRMT10C, and NML [35].

5-methylcytosine

The m5C modification involves the addition of methyl groups to
cytosine residues in RNA molecules, forming 5-methylcytosine.
This modification plays a crucial role in regulating RNA stability,
export and translation. Known m5C readers include eight proteins
36, 37].

N4-acetylcytosine

The ac4C modification refers to the chemical modification result-
ing from acetylation at the N4 position of cytosine. Currently,
NAT10 is the only known ac4C ‘writer’ [38].

N7-methylguanosine

m7G is an RNA methylation modification at the N7 position
of guanine. It plays a variety of roles in different RNA types,
including RNA maturation, nuclear export, and translation [39].
Known readers of m7G include QKI and IGF2BP3 [40, 41]. However,

research on m7G-modifying enzymes, particularly the ‘erasers’
remains insufficient [42].

v

¥, the C5-ribosyl isomer of uridine, is a post-transcriptional mod-
ification catalyzed by a group of enzymes known as pseudouri-
dine synthases. At present, thirteen pseudouridine synthases are
known, including DKC1, PUS1, PUS3, PUS7, PUS7L, PUS9, PUS10,
RPUSD1, RPUSD2, RPUSD3, RPUSD4, TRUB1, TRUB2 [43, 44].

A-to-I editing

A-to-I RNA editing is a common post-transcriptional modification
widely present in animal cells, primarily catalyzed by the adeno-
sine deaminase acting on RNA family of enzymes [45].

RNA modifications play essential roles in both coding and
non-coding RNA molecules (31, 33, 35, 36, 38, 42, 43, 45]. The
biological functions of eight representative RNA modifications are
summarized in Table 2.

RNA modification and diseases

Aberrant RNA modifications are closely associated with the onset
and progression of various diseases (32, 33, 35, 37-39, 42, 44-47].
Table 3 summarizes eight RNA modifications (m6A, m6Am, m1A,
m5C, ac4C, m7G, ¥, and A-to-I editing) and their related diseases.

The regulatory mechanisms of RNA modifications in disease
onset and progression are illustrated in Fig. 2. Alterations in the
activity of RNA-modifying enzymes lead to changes in the mod-
ification status of specific RNA molecules, thereby affecting the
stability, splicing, or translational efficiency of the target RNA.
These molecular changes disrupt the regulation of critical sig-
naling pathways, resulting in aberrant cellular behaviors that
ultimately contribute to disease onset and progression [3, 48-51].

In bladder cancer (Fig. 2a), elevated YTHDF2 recognizes m6A-
modified DDX58 mRNA at its CDS GGAC motif, promoting its
degradation and impairing RIG-I-mediated type I IFN signaling.
This leads to decreased apoptosis, enhanced immune evasion,
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Modifications Target RNA Biological function Ref.
m6A mMRNA Regulates transcription, nuclear export, stability, splicing, translation, and degradation [31]
TRNA Promotes translation
IncRNA Modulates structure and stability
miRNA Facilitates pri-miRNA processing
circRNA Regulates biogenesis, export, translation, and stability
SnRNA Affects snRNA-mediated pre-mRNA splicing
m6Am mMRNA Enhances stability [33]
SnRNA Affects pre-mRNA splicing
mlA mMRNA Regulates translation and stability [35]
rRNA Maintains ribosomal integrity
tRNA Stabilizes tRNA structure and influences translation initiation
m5C mRNA Regulates stability, export and translation [36]
TRNA Regulates stability and translation
IncRNA Affects stability
tRNA Regulates stability and translation
ac4C mRNA Enhances stability and translation efficiency [38]
TRNA Regulates rRNA biogenesis
IncRNA Regulates stability
tRNA Improves the fidelity of protein translation
m/G mRNA Regulates stability, transcription, splicing, translation initiation and degradation rate [42]
TRNA Impacts the structural stability and folding of rRNA
tRNA Affects tRNA folding, structural stability, translation initiation and efficiency
v mMRNA Regulates splicing and translation [43]
rRNA Improves the conformational stability, controls translational fidelity
tRNA Facilitates tRNA-derived fragments generation, enhances the stability of anticodon pairing
snRNA Influences structure
A-to-I editing mRNA Regulates localization, translation, and stability [45]
miRNA Regulates miRNA maturation and stability
Table 3. Eight kinds of RNA modifications and associated diseases
Modifications Diseases Ref.
m6A cancers; neuropsychiatric disorders (such as major depressive disorder and schizophrenia); metabolic [31, 32, 46]
diseases (such as type 2 diabetes, non-alcoholic fatty liver disease, and obesity); cardiovascular conditions
(such as ischemic heart disease and pulmonary arterial hypertension); immune diseases (such as
rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and psoriasis)
m6AmM obesity; gastric cancer, colorectal cancer, glioma; viral infections [33]
mlA cancers, including gastrointestinal, hepatocellular, glioma, breast cancer, ovarian cancer, non-small cell [35]
lung cancer, colorectal cancer, and prostate cancers
m5C genetic disorders; neurological diseases; cancers; autoimmune conditions; infertility; infections [37]
ac4C cancers, cardiovascular diseases, metabolic diseases; neurological diseases; infectious diseases; [38]
autoimmune diseases
m7G cancers; nervous system diseases [39, 42]
v cancers; cardiovascular diseases; neurological diseases; metabolic diseases [44]
A-to-I editing cancers; neurological diseases [45, 47]

and facilitates the progression from non-muscle-invasive blad-
der cancer to MIBC [49]. Similarly, in heart failure (Fig. 2d), the
upregulation of METTL1 increases m7G modification of SRSF9
mRNA, thereby enhancing its stability and protein expression.
Elevated SRSF9 levels promote the alternative splicing of NFATc4
pre-mRNA and the activation of hypertrophic gene expression,
thereby activating the NFAT signaling pathway, leading to cardiac
hypertrophy and remodeling, and ultimately promoting the occur-
rence and development of heart failure [50].

RNA modifications regulate key signaling pathways through
diverse molecular mechanisms, exerting disease-specific reg-
ulatory effects. In addition to the type I interferon and NFAT
pathways discussed above, numerous other signaling cascades
have been implicated in RNA modification-mediated disease

processes. For example, oncogenic pathways such as the
MYC, Wnt/B-catenin, p53, and BCL-2 pathways are frequently
modulated by mé6A-related regulators, influencing tumor pro-
gression [52]. Moreover, different RNA modifications may exhibit
synergistic effects on the same pathway. For instance, GPX4
transcripts in colorectal adenocarcinoma are co-modified by
m6A and m5C, thereby activating the cGAS-STING pathway to
maintain redox homeostasis and promote antitumor immunity
[53].

Although most studies have focused on mRNA modifications,
an increasing number of studies have shown that RNA modifica-
tions also play a key regulatory role in non-coding RNAs, including
miRNAs, snRNAs, snoRNAs, and IncRNAs, thereby contributing to
disease initiation and progression. For instance, the m6A reader
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Figure 2. Regulatory mechanisms of RNA modifications in disease occurrence and progression. ‘Writers’ catalyze the addition of modifications to RNA,
‘erasers’ remove these modifications, and ‘readers’ recognize the modified RNA and recruit the appropriate molecular machinery during translation.
These modification regulators change the modification state of the target gene RNA, affecting RNA metabolism, thereby altering signaling pathways

and cell phenotypes, and ultimately affecting disease onset and progression.

HNRNPA2B1 facilitates the maturation of miR-106b-5p in an m6A-
dependent manner, leading to SFRP2 suppression and activation
of the Wnt/g-catenin pathway, thereby promoting proliferation
and migration in lung adenocarcinoma [54]. Pseudouridylation
mediated by snoRNAs and their associated enzymes has been
implicated in tumor invasiveness; e.g. SNORA23 promotes rRNA
pseudouridylation and is associated with increased invasiveness
in pancreatic ductal adenocarcinoma [44]. In IncRNA, METTL3-
mediated m6A modification of LINC00958 enhances its stabil-
ity and facilitates hepatocellular carcinoma progression via the
LINC00958/miR-3619-5p/HDGF axis [55]. These regulatory mech-
anisms highlight the clinical relevance of RNA modifications in
ncRNAs and their potential as biomarkers.

Biomarker discovery based on machine
learning

The workflow of RNA modification-related disease diagnosis or
prognostic biomarker identification based on machine learning is
shown in Fig. 3.

In studies of diagnostic and prognostic biomarkers, datasets
are primarily sourced from repositories such as GEO, TCGA,
and Genotype-Tissue Expression (GTEx). Prognostic analyses
also require clinical information, such as patient survival and
disease stage. The RNA modification regulators used for analysis
are typically derived from previous studies and literature. Data
preprocessing involves batch effect correction, normalization of
expression data, and matching with clinical data. Subsequently,
statistical methods and machine learning algorithms, either

individually or in combination, are applied for feature extraction
and selection, as well as to construct diagnostic or prognostic
models. For example, in diagnostic modeling, differentially
expressed genes (such as |logFC|>1, P<.05) can be identified
using the limma package, and feature subsets were determined
by ranking features based on variable importance scores of RF
[56]. For prognostic modeling, univariate Cox regression can be
used for initial screening (such as P <.05), followed by LASSO
regression to compress redundant variables and retain predictors
with nonzero coefficients [57]. Model performance is assessed
using established metrics such as the AUC and the C-index.

Where feasible, experimental approaches, including gRT-PCR
for verifying gene expression trends, western blot for assessing
protein levels, and animal-based or cell-based functional assays,
are used to further validate the findings. In addition, clustering
analysis based on RNA modification regulators can be performed
to categorize disease samples into distinct groups. Differences
among these groups can then be examined in terms of gene
expression, survival outcomes, functional pathways, immune cell
infiltration, and drug sensitivity. This analysis helps to uncover
potential biological heterogeneity and provides a molecular basis
for precision medicine.

Diagnostic biomarkers

Diagnostic markers are biomarkers used to detect the presence or
absence of a disease and to identify its subtypes. Machine learning
techniques have been employed to identify diagnostic biomarkers
across various disease categories, including cardiovascular and
cerebrovascular diseases, infectious diseases, immune diseases,
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Figure 3. Workflow for using machine learning to identify RNA modification related genes as diagnostic or prognostic biomarkers for diseases.

and bone and joint diseases (Tables 4-7). The screened biomarkers
exhibit significantly aberrant expression in these diseases. These
markers emerge throughout both the early and progressive stages,
serving as dynamic targets for diagnosis, and treatment. The
following section reviews the application of machine learning
approaches in the identification of diagnostic biomarkers across
four selected disease categories.

Cardiovascular and cerebrovascular diseases are often associ-
ated with abnormalities in the blood circulation system, impaired
heart function, or insufficient blood supply to the brain, and
they have a high mortality rate in the world. Studies have shown
that these diseases are associated with dynamic changes in RNA
modifications such as m6A and m7G [58-61] (Table 4).

Tian et al. [58] analyzed two mRNA expression datasets related
to ischemic stroke (IS) to identify m7G differentially expressed
genes (DEGs) in samples of ischemic stroke patients and healthy
controls, and then further identified key m7G regulatory genes in
IS through RF algorithm. Subsequent validation using a middle
cerebral artery occlusion model and gPCR confirmed that the
identified m7G-regulated genes play essential regulatory roles in
IS. The resulting biomarker panel, including EIF3D, CYFIP2, NCBP2,
DCPS, and NUDT1, achieved an AUC of 0.967 for IS prediction. In
ischemic cardiomyopathy (ICM), Zheng et al. [S9] employed an RF
model to identify seven key méA regulators, namely genes encod-
ing méA-related proteins, and constructed a diagnostic nomo-
gram based on their expression levels. Additionally, clustering
algorithms and PCA were applied to identify two distinct m6A
modification patterns, thereby stratifying ICM patients into sub-
groups with differing immune regulatory mechanisms, and com-
paring the expression changes of biomarkers in different sub-
groups. Similarly, Wang et al. [61] used the intersection of the fea-
ture selection results of three machine learning methods, namely
LASSO, RF, and support Vector Machine recursive feature elimi-
nation (SVM-RFE), as the diagnostic feature gene for pulmonary
arterial hypertension (PAH). Additionally, the association between
the selected signature genes and the drugs in DSigDB database
was analyzed, and the utility of these drugs was evaluated based

on p-values and other relevant metrics, providing new ideas for
the treatment of PAH.

Infectious diseases are caused by pathogens, including bacte-
ria, viruses, fungi, and parasites, which invade the host and trigger
clinical symptoms, such as sepsis, chronic hepatitis B and COVID-
19 [26, 62-64]. Lin et al. [62] integrated two sepsis related datasets
and corrected for batch effects, applied DT, RF, and XGBoost to
identify key genes of sepsis m5C modification. The common genes
identified by all three methods were DNMT1, TP53, and TLRS,
with diagnostic AUC values 0f 0.979, 0.967, and 0.944, respectively.
Zhangetal. [26] analyzed five classes of RNA modification-related
genes (m1A, m5C, m6Am, m7G, and W) to identify novel diagnostic
biomarkers for sepsis. Unsupervised clustering revealed distinct
RNA modification subtypes, followed by CIBERSORT, WGCNA, GO,
and KEGG analyses to characterize immune infiltration patterns
and biological functions associated with each subtype.

Immune diseases are disorders caused by abnormalities or
dysfunctions in the immune system. Liu et al. [27] explored the
diagnostic potential of m6A regulators in psoriasis and identified
10 DEGs associated with m6A using logistic regression and the
LASSO algorithm, and then constructed a diagnostic classifier
using SVM. Dai et al. [15] compared the effects of RF and SVM
models in screening characteristic genes and found that the RF
model (AUC=0.87) had higher accuracy than SVM (AUC=0.84).
Eventually, RF was selected to screen five candidate m6A regu-
lators, and cluster analysis was conducted to divide children with
asthma into two different m6A modification patterns. These pat-
terns effectively distinguished allergic from non-allergic asthma
and guide the subsequent treatment.

Bone and joint diseases, which affect bones, joints, can cause
pain, swelling, stiffness, and dysfunction, significantly impairing
patients’ quality of life, such as osteoarthritis (OA) and osteoporo-
sis (OP). Bian et al. [65] compared the effects of RF and SVM in the
feature selection of m6A regulatory factors for OA synovitis and
found that the AUC of RF was greater than that of SVM, indicating
that the accuracy of the RF model was higher than that of SVM.
Chen et al. [56] studied the specific effects of eight RNA modifiers
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Table 4. Research on RNA modifications combined with machine learning algorithms for cardiovascular and cerebrovascular diseases
diagnostic biomarkers

RNA Disease  Sample Size and Source Diagnostic Biomarkers Models and Results Ref.
Type Approaches
m7G IS 89 IS patient samples and 43 control EIF3D, CYFIP2, NCBP2, RF, SVM, screen AUC=0.967; RF (AUC=1) [58]
samples; GEO database DCPS, NUDT1 key genes is better than SVM
(AUC =0.946)
m6A ICM 118 ICM patients and 22 healthy WTAP, ZCH3H13, YTHDC1,  RF, screen key AUC=0.934 (training set), [59]
subjects (training set), 136 ICM FMR1, FTO, RBM15, genes AUC=0.891 (testing set)
patients and 95 healthy subjects YTHDF3
(testing set); GEO database
mo6A AS 35 healthy individuals and 69 AS METTLS SVM-RFE, RF, AUC=0.850 [60]
patients, sScRNA-seq data of 3 carotid screen key genes
artery plaques and 3 adjacent healthy
tissues; GEO database
m7G PAH 26 PAH patients and 13 normal CYFIP1, EIF4E, IFITS LASSO, RF and AUC=0.956 (training [61]

(training set), 15 PAH patients and 11
normal (testing set); GEO database

SVM-RFE, screen
key genes

set), AUC=0.721
(validation set)

Note: IS, Ischemic stroke; ICM, Ischaemic cardiomyopathy; AS, atherosclerosis; PAH, Pulmonary arterial hypertension.

Table 5. Research on RNA modifications combined with machine learning algorithms for infectious diseases diagnostic biomarkers

RNA Type Disease =~ Sample Size and Source Diagnostic Biomarkers =~ Models and Results Ref.
Approaches
m5C Sepsis 47 normal samples and 184 sepsis DNMT1, TP53, TLR8 DT, RF, XGBoost, the AUC of DNMTT1, [62]
samples (test set), 54 normal samples screen genes TP53, and TLR8 was
and 514 sepsis samples (validation 0.979, 0.967, 0.944
set); GEO database
mlA, m5C,  Sepsis 839 sepsis patient samples and 87 NSUN7, NOP2, PUST, RF, GLM, SVM and the AUC of NSUN?7, [26]
m6Am, m7G control samples; GEO database. 39 PUS3, FTO XGBoost, screen NOP2, PUS1, PUS3 and
and v adult patients and 13 healthy key genes FTO was 0.828, 0.707,
controls (recruited) 0.846, 0.834, 0.976;
SVM is superior to the
other three models
(AUC=0.998)
m7/G CHB 128 liver samples and 124 LARP1, GEMINS5S SVM-RFE, RF, AUC=0.985 (LARP1) and  [63]
HBV-related liver fibrosis samples; screen key genes  AUC=0.964 (GEMINS);
GEO database. 30 healthy people and validation set:
39 CHB peripheral blood samples AUC=0.897 (LARP1) and
(clinical samples). AUC=0.876 (GEMINS)
mo6A COVID-19 100 COVID-19 patients and 26 RBM15B, ELAVL1, RBM15, RF, SV, identify RF (AUC=1) is better [64]

non-COVID-19 patients; GEO

database

FMR1, IGFBP3, METTL3,
VIRMA, HNRNPA2B1

candidate m6A
regulators

than SVM (AUC =0.975);
calibration curves, verify
the accuracy

Note: COVID-19, coronavirus disease 2019; CHB, Chronic hepatitis B.

Table 6. Research on RNA modifications combined with machine learning algorithms for immune diseases diagnostic biomarkers

RNA Type Disease Sample Size and Source Diagnostic Biomarkers Models and Approaches Results Ref.
m6A Psoriasis 170 human skin tissue FTO, IGF2BP2, METTL3, LR, LASSO, select the AUC=0.974 (training [27]
samples (training dataset), ~YTHDC1, ZC3H13, feature genes; SVM, set), AUC=0.730
180 human skin tissue HNRNPC, IGF2BP3, LRPPRC, construct the diagnostic (validation set)
samples (validation YTHDC2, HNRNPA2B1 model
dataset); GEO database
m6A childhood 40 non-asthmatic and 65 FMR1, KIAA1429, WTAP, RF, SVM, screen candidate RF (AUC=0.87) is better [15]
asthma asthmatic patients; GEO YTHDC?2, ZC3H13 m6A regulators than SVM (AUC=0.84)

database

in OA and their association with immune infiltration. Among the
identified biomarkers, WDR4 and CFI demonstrated diagnostic
performance, with AUC values of 0.925 and 0.950, respectively.
Bal et al. [66] developed both the LASSO regression and the

SVM-RFE model to screen candidate méA regulators for predicting
OP from 13 differentially expressed m6A regulators. By intersect-
ing results from both models, they selected FTO, YTHDF2, and
CBLL1 as potential biomarkers.
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Table 7. Research on RNA modifications combined with machine learning algorithms for bone and joint diseases diagnostic biomarkers

RNA Type Disease Sample Size and Source Diagnostic Models and Results Ref.
Biomarkers Approaches
m6A OA 30 OA patients and 29 healthy YTHDF2 RF, SVM, screen AUC=0.875,95% CI: [65]
control population; GEO database key genes 0.778-0.952;
RF (AUC=1) is better than
SVM (AUC=0.899)
A-to-I, APA, m5C, OA contain 30 OA and 10 normal WDR4, CFI RF, SVM, screen AUC=0.925,95% CI: [56]
m6A, m7G, sub-chondral samples; GEO key genes 0.825-1.000 (WDR4);
mcm5s2U, Nm database AUC=0.950, 95% CI:
and v 0.882-0.995 (CF1);
the residual of RF is
smaller than that of SVM
m6A osteoporosis 40 high and 40 low hip BMD FTO, YTHDF2, LASSO, SVM-RFE,  Training cohort [66]
monocyte samples (training CBLL1 screen hub genes  AUC=0.683; validation

cohort), 14 high and 12 low hip
BMD monocyte samples
(validation cohort); GEO database

cohort AUC=0.732

Note: OA, osteoarthritis; CI, confidence interval.

Prognostic biomarkers

Prognostic markers are biomarkers that predict clinical outcomes,
including disease recurrence, progression, and patient survival, in
individuals with confirmed diagnoses. RNA modifications regu-
late the expression of oncogenes and tumor suppressor genes by
modulating processes such as transcription, RNA splicing, mRNA
stability, and translation, thereby influencing tumor initiation and
progression.

In general, diseases with a complex course and high het-
erogeneity require prognostic evaluation, such as malignant
tumors and chronic inflammatory diseases. Prognostic models
based on molecular subtypes can evaluate the survival of
different subgroups of patients, guide the development of
personalized treatment plans, and optimize the priority allocation
of medical resources through risk stratification. For instance, lung
adenocarcinoma (LADC) patients stratified by median risk score
were divided into high-risk and low-risk groups, with the high-
risk group exhibiting significantly shorter survival times, which
guides targeted therapy strategies. Moreover, analysis using the
Tumor Immune Dysfunction and Exclusion algorithm indicated
that immune checkpoint blockade therapy might be beneficial
for high-risk LADC patients, whose tumor tissues have higher
expression levels of PD-L1 and PD-L2 [57]. Relevant studies of
tumor prognostic biomarkers related to RNA modification are
summarized in Table 8.

Li et al. [67] collected RNA-Seq, copy number variation, single
nucleotide variation, and clinical data for breast cancer samples
from TCGA. Using univariate Cox regression analysis and the
LASSO algorithm, they identified six m1A modification associated
genes as prognostic biomarkers and constructed a risk model,
which was externally validated using GEO dataset with consistent
results. Zhao et al. [68] used univariate Cox regression to screen
genes related to the survival of gastric adenocarcinoma (STAD),
and a LASSO-based prognostic model was developed, and based
on the median risk score, STAD patients were stratified into low-
risk and high-risk subgroups. Chen et al. [69] applied LASSO
regression to construct a prognostic model for rectal cancer (RC)
patients, revealing that low expression of YTHDC2 and METTL14
was significantly associated with poorer overall survival. Huang
et al. [70] used a SVM model to predict 3-year survival rates, prog-
nostic status, and pathological stage of RC based on risk scores
derived from survival-associated signature genes, achieving AUCs

of 0.863, 0.8721, and 0.8752, respectively. Zhou et al. [71] utilized
RF and neural network models to rank the expression of 10 m6A
regulators in head and neck squamous cell carcinoma tumor
and normal tissues. Among these, YTHDC2 emerged as the most
significant prognostic biomarker. In studies of tumor prognostic
markers, LASSO is frequently combined with Cox proportional
hazards regression to efficiently select predictive variables and
assess survival outcomes [28, 57, 68, 72-77].

By integrating machine learning algorithms with statistical
and bioinformatics approaches, robust prognostic models can
be developed to assess patient risk scores, thereby facilitating
personalized treatment strategies.

Discussion
Disease data sets and data sources

In the reviewed literature, studies on diagnostic and prognostic
biomarkers predominantly utilize datasets from the GEO and
TCGA databases, which are generated using various chip plat-
forms and detection technologies, e.g. Affymetrix, Agilent, Illu-
mina microarray chip platforms, variations among these plat-
forms can affect result accuracy and marker screening [78]. Thus,
integrating datasets from multiple platforms can enhance the
reliability of RNA modification related biomarkers identification
[26]. Gene chip technology is well-established, and machine learn-
ing can rapidly identify candidate biomarkers from the struc-
tured data matrices produced by microarrays. Next-generation
sequencing (NGS) has been employed to characterize disease
transcriptome via RNA-seq, thereby providing information on
gene expression. However, its short reads can limit the analysis
of complex transcripts. In contrast, third-generation sequenc-
ing, with its long-read capabilities, can resolve intricate tran-
script structures and directly detect epigenetic modifications,
although its sequencing error rate is higher than that of NGS.
Furthermore, gene chip technology is generally less expensive
than NGS, NGS less expensive than third-generation sequencing.
In the reviewed literature, most studies utilized microarray data,
while some employed processed RNA-seq gene expression profiles
obtained from NGS.

Many studies validate their findings by employing data from
different platforms, e.g. using the TCGA dataset as the training
set and the GEO dataset for validation, to ensure robustness and
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Table 8. Research on RNA modifications combined with machine learning algorithms for disease prognostic biomarkers

RNA Type Disease Sample Size and Source Prognostic Biomarkers Models and Approaches  Results Ref.
mlA BRCA 1069 BRCA samples and MEOX1, COL17A1, univariate Cox, LASSO AUC=0.763 (1 year), [67]
114 normal samples, FREM1, CD1C, TNN, Cox AUC=0.658 (3 years),
TCGA,; 115 BRCA samples, SLIT3 AUC=0.646 (5 years)
GEO
m6A STAD 375 STAD tumor samples, IGF2BP1, RBM15, FTO, Univariate and 1 year (AUC=0.743), [68]
361 normal tissues ALKBH5 Multivariate Cox 3 years (AUC =0.743),
samples; TCGA, GTEx Regression, LASSO 5 years (AUC=0.874)
m6A RC 95 RC patients and 10 RBMX, LRPPRC Univariate and P=.022 (YTHDC2); [69]
normal adjacent tissues, Multivariate Cox P=.016 (METTL14)
TCGA; 203 RC tumor Regression, LASSO
tissue samples, GEO
moA LADC 398 LADC patients IGF2BP1, IGF2BP2, univariate Cox, LASSO 3 years (AUC =0.684), [57]
samples, TCGA; 468 LADC HNRNPA2B1, METTL3, Cox 5 years (AUC=0.646),
patients samples, GEO; HNRNPC C-index=0.71
m6A MM 859 MM samples and 337 HNRNPA2B1, KIAA1429 LASSO Cox regression, 5-year (AUC=0.792) [77]
normal samples; GTEx PCA
m6A Colorectal 175 samples (training set), =~ RBM15B, FTO, IGF2BP2, multivariate Cox 1 year (AUC=0.64), [72]
cancer 3 validation sets; GEO ZCCHC4, KIAA1429 regression, LASSO, 5 years (AUC=0.67)
clustering, PCA
mo6A Glioma 665 glioma patient TAGLNZ2, PDPN, TIMP1, PCA, LASSO Cox AUC=0.8 (TCGA), [73]
samples, TCGA; 420 LGG EMP3 AUC=0.72 (CGGA)
patients and 237 GBM
patients samples, CGGA
meA READ 88 READ samples; TCGA ADAMTSI1, CSMD2, PCA, Univariate Cox AUC=0.8630 (3 years), [70]
FAM13C, FAM184A, Regression, SVM AUC=0.8721 (prognosis
KLHL4, OLFML2B, PDZD4, status)
SEC14L5, SETBP1,
TMEM132B
m6A HNSCC 506 HNSCC Samples; ALKBHS, YTHDC2 Univariate and YTHDC?2 was selected as  [71]
TCGA Multivariate Cox the most prognostically
Regression, Random important locus of the 10
forest, neural network m6A regulatory genes in
model HNSCC
m6A PC 176 PC patients; TCGA, IGF2BP2 PCA, univariate Cox HR=2.19, higher IGF2BP2  [28]
GEO regression, LASSO Cox contributed to lower
survival rate
m7G HCC 365 HCC patients samples;  NCBP2 LASSO, PCA, t-SNE, AUC=0.682 (1 year), [74]
TCGA Univariate and AUC=0.638 (3 years),
Multivariate Cox AUC=0.601 (5 years)
Regression
m7G AML 150 AML samples, TCGA; CBR1, CCDC102A, PCA, univariate Cox, AUC=0.871 (1 year), [75]
104 AML samples, GEO LGALS1, RD3L, SLC29A2, LASSO AUC=0.874 (3 years),
TWIST1 AUC=0.951 (5 years)
m7G Sarcoma 260 sarcoma instances EIF4A1, EIF4G3, NCBP1, univariate Cox, LASSO AUC=0.724 (1 year), [76]
and 2 non-cancerous WDR4 Cox AUC=0.638 (3 years),
tissue samples, TCGA; 3 AUC=0.718 (5 years)

GEO datasets

Note: BRCA, breast carcinoma; STAD, gastric adenocarcinoma; RC, Rectal cancer; LADC, lung adenocarcinoma; MM, multiple myeloma; READ, rectum
adenocarcinoma; HNSCC, head and neck squamous cell carcinoma; PC, pancreatic carcinoma; HCC, hepatocellular carcinoma; AML, acute myeloid leukemia.

external consistency [67, 76]. Furthermore, sample size plays a
crucial role in study stability, as small clinical cohorts may lead to
model overfitting. In addition to that, studies have demonstrated
crosstalk among different RNA modification types. Consequently,
instead of relying on a single modification, combining data on
multiple RNA modification types can enhance the identification
of disease biomarkers [69].

Applications of machine learning

Among the reviewed literature, the most commonly used machine

learning methods were supervised and unsupervised learning.
Various supervised learning algorithms, including RF, DT, SVM,

and XGBoost, are widely employed to screen disease key genes

from large datasets, construct diagnostic or prognostic models
[26, 27, 62]. In comparative analyses of feature selection methods
across reviewed literature, RF algorithm demonstrated superior
robustness and accuracy. For instance, in the context of COVID-
19, the RF model achieved an AUC of 1.0 following 10-fold cross-
validation, outperforming the SVM model, which yielded an AUC
of 0.975 [64]. Similarly, in a tuberculosis diagnostic study based
on m6A regulatory genes, four machine learning algorithms, RF,
SVM, XGB, and GLM, were compared for their ability to identify
relevant regulators [79]. The RF model had the smallest residuals,
indicating better overall performance. Its AUC reached 1.0, higher
than those of SVM (0.926), XGB (0.992), and GLM (0.816), with
ROC analysis further confirming the robustness of RF. Due to its



ensemble decision-tree structure, strong robustness, and ability to
rank feature importance, RF is widely adopted for feature selec-
tion in RNA modification-based biomarker studies. Unsupervised
learning algorithms, such as clustering and PCA, can be used to
distinguish between different RNA modification patterns and dis-
ease subtypes [28, 59, 77]. To improve the accuracy of biomarker
screening, several studies compare and integrate results from
multiple machine learning models to determine the optimal algo-
rithm or combination thereof. For instance, the intersection of
feature genes identified by multiple machine learning approaches
can also be employed to define key regulatory genes [61].
Additionally, deep learning models, like artificial neural net-
works, can also be applied to disease biomarker mining [71].
However, deep learning is rarely applied in this field due to sev-
eral challenges. First, available datasets are typically small, often
comprising only tens to hundreds of samples, making conven-
tional machine learning algorithms more suitable. These algo-
rithms reduce the risk of overfitting and require less training
time, whereas deep learning models generally demand large-
scale data and incur high computational costs. Second is the
lack of interpretability. Traditional machine learning methods can
provide clear insights into variable contributions, the inherent
‘black box’ nature of deep learning limits its transparency and
hampers clinical translation. Deep learning is more suitable for
the identification of biomarkers by multimodal data integration
and the prediction of RNA modification sites, which can improve
the prediction performance. Therefore, integrating RNA modifica-
tion data with other omics datasets, introducing attention mech-
anism, SHAP and other methods to enhance the interpretability,
may further facilitate the application of deep learningin this field.

RNA modification and liquid biopsy

Liquid biopsy technology also has great potential in identifying
disease biomarkers associated with RNA modifications. Com-
pared to traditional tissue biopsy, liquid biopsy offers advantages
such as convenient sampling, high safety, minimal discomfort,
and real-time monitoring of disease progression [80]. Peripheral
blood, one of the most common sample types in liquid biopsy,
can extract various biomarkers for analysis. Among them, the
detection of RNA modification levels can serve as a valuable
biomarker for non-invasive disease diagnosis. For instance, the
level of m5C modification in peripheral blood immune cells of
colorectal cancer patients increases with cancer progression and
metastasis but significantly decreases post-treatment. The AUC
for m5C modification level in diagnosing colorectal cancer was
0.888, outperforming conventional serum biomarkers such as CEA
(0.739), CA19-9 (0.669), and CA125 (0.629) [81]. Similarly, combin-
ing peripheral blood m6A modification levels with METTL14 and
FTO regulatory genes achieved an AUC of 0.929 for breast cancer
diagnosis, which was also better than the biomarkers CEA (0.599)
and CA153 (0.572). [82]. These studies consistently indicate that
specific RNA modification profiles outperform traditional serum
biomarkers, highlighting their potential for clinical translation.

RNA modification related biomarkers and
cross-disease research

Although RNA modification-related biomarkers have shown diag-
nostic and prognostic value in specific disease contexts, their gen-
eralizability across diverse disease types remains largely unex-
plored. Current efforts have primarily focused on pan-cancer
analyses. For instance, studies have examined the expression
and mutation of 26 RNA modification writers (RMWSs) across 32
cancer types and found that most RMWs are highly expressed
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in tumor tissues and associated with poor patient prognosis,
indicating that these biomarkers have certain commonalities [83];
evaluated the diagnostic and prognostic potential of the m6A
reader YTHDC2 in pan-cancer settings [84]; conducted a pan-
cancer analysis of 26 m7G regulators across 17 tumor types
using bioinformatics approaches, the m7Gscore was found to be
strongly correlated with prognosis in most cancers, highlighting
the potential of m7G regulators as prognostic biomarkers [85].
Future studies should systematically compare the expression
patterns, regulatory mechanisms, and predictive performance of
RNA modification factors across multiple diseases, to identify
both shared and disease-specific biomarker. Integrating multi-
disease datasets with machine learning approaches will enable
comprehensive analyses to assess the cross-disease robustness of
these biomarkers, thereby facilitating the transition from disease-
specific findings to clinically applicable, broadly useful diagnostic
tools.

Biomarkers related to RNA modifications in
ncRNAs

RNA modifications are widely distributed across both coding
and non-coding RNAs; however, their biological functions and
clinical significance are significantly different between these two
RNA classes. In mRNAs, RNA modifications directly influence
protein expression, facilitating the identification of their associa-
tions with disease phenotypes and enabling more straightforward
detection. In contrast, in ncRNAs, modifications primarily modu-
late RNA structure, processing, and interactions, thereby exerting
indirect effects on gene regulatory networks.

While this review focuses on machine learning-based discovery
of mRNA-related prognostic biomarkers in RNA modification-
associated diseases, some studies highlight that ncRNAs associ-
ated with RNA modifications may also serve as potential prog-
nostic biomarkers in various diseases [86, 87]. For example, m7G-
related IncRNAs have the potential as prognostic biomarkers of
esophageal squamous cell carcinoma [88].

Limitations and challenges of current
research

Although great progress has been made in integrating RNA modi-
fication biology with machine learning to identify diagnostic and
prognostic biomarkers, several critical challenges remain.

First, many studies rely on small sample sizes or single-cohort
data, increasing the risk of overfitting and limiting external
validation. Second, biological and technical variability across
datasets, such as tissue types, batch effects and sequencing
platforms, can introduce noise and confounding factors, thereby
affecting the discovery of accurate biomarkers. Third, biological
heterogeneity among patients, including differences in tissue
origin, disease stage, and comorbidities, adds complexity to
biomarker discovery and limits the generalizability of predictive
models. Fourth, current RNA modification detection methods,
such as MeRIP-seq, suffer from limited resolution, batch effects,
and technical biases, resulting in false positives or negatives
and reduced reproducibility. In addition, tracking the dynamic
regulation of RNA modification remains challenging. Finally,
translating these findings into clinical practice is difficult. Most
studies lack large-scale prospective validation, which may lead
to overestimation of biomarker performance. Extensive clinical
trials are necessary to confirm the diagnostic and prognostic
value of these markers before their clinical application. In
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summary, there is great potential in mining new diagnostic
and prognostic biomarkers based on RNA modification-related
factors, but there are still limitations and challenges that need to
be overcome.

Conclusions and future directions

This article reviews eight common RNA modifications implicated
in disease, examines the mechanisms by which these modifica-
tions contribute to disease development, and discusses methods
for identifying biomarkers associated with RNA modification.
Special emphasis is placed on the application of machine learning
techniques for discovering diagnostic and prognostic markers,
offering new strategies for precision diagnosis, disease surveil-
lance, and drug development.

In the future, integrating multi-omics data, such as various
RNA modifications and biopsy images, and employing advanced
deep learning algorithms may facilitate the identification of
multimodal biomarkers and enable a comprehensive analysis
of the RNA modification regulatory network. In addition, future
studies should explore the commonalities and differences of RNA-
modified biomarkers in different disease types to evaluate their
generalization ability and potential clinical application value.
Moreover, advances in sequencing technologies and improve-
ments in analytical algorithms have enhanced sequencing
speed and enabled more precise detection and analysis of RNA
modifications, thereby facilitating in-depth investigations into
the complex relationship between RNA modifications and gene
expression regulation. For example, nanopore sequencing, a rapid
and real-time sequencing technology, enables efficient tracking
of RNA modification dynamics during disease progression.
This capability holds great promise for early disease detection,
dynamic monitoring of disease development, and evaluation of
therapeutic efficacy. As sequencing costs continue to decline and
portable devices become more widely available, research on RNA
modifications is expected to accelerate its translation into clinical
applications.

Key Points

e This review introduces eight common RNA modifica-
tions related to diseases and the regulatory mechanisms
of RNA modifications in diseases. To clarify the prin-
ciple of RNA modification regulated genes as disease
biomarkers.

e This article introduces the latest progress of using
machine learning to identify disease-related RNA mod-
ification related gene markers, including diagnosis and
prognosis evaluation. The overall workflow of biomarker
screening was analyzed, and the selection of machine
learning methods, feature selection strategies, and chal-
lenges in research were discussed.

e Although significant progress has been made in the min-
ing of gene markers related to RNA modification, a large
number of clinical trials are still needed to verify their
effectiveness in clinical applications. In the future, the
deep intersection of Al algorithms, multimodal and epi-
genetic research is expected to promote further research
on RNA modification in disease diagnosis and prognosis.
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