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Abstract

Evolutionary pressures suggest that choices should be optimized to maximize rewards, by appropriately
trading speed for accuracy. This speed-accuracy tradeoff (SAT) is commonly explained by variation in just the
baseline-to-boundary distance, i.e., the excursion, of accumulation-to-bound models of perceptual decision-
making. However, neural evidence is not consistent with this explanation. A compelling account of speeded
choice should explain both overt behavior and the full range of associated brain signatures. Here, we
reconcile seemingly contradictory behavioral and neural findings. In two variants of the same experiment, we
triangulated upon the neural underpinnings of the SAT in the human brain using both EEG and transcranial
magnetic stimulation (TMS). We found that distinct neural signals, namely the event-related potential (ERP)
centroparietal positivity (CPP) and a smoothed motor-evoked potential (MEP) signal, which have both
previously been shown to relate to decision-related accumulation, revealed qualitatively similar average
neurodynamic profiles with only subtle differences between SAT conditions. These signals were then
modelled from behavior by either incorporating traditional boundary variation or utilizing a forced excursion.
These model variants are mathematically equivalent, in terms of their behavioral predictions, hence providing
identical fits to correct and erroneous reaction time distributions. However, the forced-excursion version
instantiates SAT via a more global change in parameters and implied neural activity, a process conceptually
akin to, but mathematically distinct from, urgency. This variant better captured both ERP and MEP neural
profiles, suggesting that the SAT may be implemented via neural gain modulation, and reconciling standard
modelling approaches with human neural data.

Key words: centroparietal positivity; decision-making; motor-evoked potentials; race model; sequential sam-
pling model; speed-accuracy tradeoff

Significance Statement

Successful organisms need to make the right choice fast. To make such decisions, we are regularly forced
to trade speed for accuracy. This tradeoff has been explained in behavioral models using a single free
parameter reflecting response caution. However, neural evidence suggests that more widespread changes
are associated with quick versus accurate decisions. Here, we suggest a model which reconciles these
seemingly contradictory findings. This “forced-excursion” model is mathematically equivalent to standard
models of response caution but implies a global modulation in activity akin to a change in neural gain or
urgency. Re-expressed in this way, the model is able to account for both behavioral and neural data from
two separate neural recording techniques.
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Introduction
Every day, we make countless decisions, each requiring

an appropriate compromise between speed and accu-
racy. This speed-accuracy tradeoff (SAT; Garrett, 1922;
Hick, 1952; Wickelgren, 1977) appears ubiquitous across
experimental tasks and species (Chittka et al., 2003;
Ivanoff et al., 2008; Heitz and Schall, 2012). The process
of making decisions can be formally described using
sequential sampling models: sensory evidence accumu-
lates over time, until a decision boundary is reached,
triggering a response (Ratcliff, 1978; Brown and Heath-
cote, 2008). Such models traditionally explain SAT-related
changes in the reaction-time distributions of both correct
and erroneous responses by adjusting their boundary
parameter. This reduces the required accumulation ex-
cursion, leading to faster but more error-prone decisions
(Usher and McClelland, 2001; Smith and Ratcliff, 2004;
Bogacz et al., 2006; Brown and Heathcote, 2008).

Signals displaying the accumulation predicted by these
models have been identified in electrophysiological data
from nonhuman primates (Shadlen and Newsome, 1996,
2001; Gold and Shadlen, 2000) and recently also in hu-
mans (Donner et al., 2009; O’Connell et al., 2012; Hadar
et al., 2016). However, when instructions or payoffs
change, neural accumulation profiles appear inconsistent
with a changing boundary, the traditional model-based
explanation of the SAT (Heitz and Schall, 2012, 2013;
Hanks et al., 2014).

Hanks et al. (2014) proposed that the SAT is explained
by an urgency signal in monkeys. Similarly, a recent hu-
man neuroimaging study proposed that urgency may
arise from a global modulation of neural gain (Murphy
et al., 2016). In fact, the concept of an evidence-
independent urgency signal, which increases over time to
inflate the accumulation process, has been a recurring
theme in the recent SAT literature (Cisek et al., 2009;
Milosavljevic et al., 2010; Thura et al., 2012). This urgency
signal may increase faster under speed instructions, lead-
ing to faster, more error-prone responses. However, al-
ternative accounts, prioritising human behavioral data,
favor models which implement boundary differences
(hereafter referred to as “classic” models) as opposed to
urgency signals (Hawkins et al., 2015a,b; see also Evans
et al., 2017).

Here, we aimed to square these contrasting behavioral
and neural findings. In classic models, the use of a varying
boundary to explain the SAT is in fact merely a concep-
tually appealing convention. Since sequential sampling
models are formally nonidentifiable (i.e., different param-
eter combinations can yield the same prediction), one
parameter must be chosen as a scaling parameter and
fixed to an arbitrary value (i.e., changing its value will lead
to a change in the value of all parameters but not in their
relation to each other and therefore will not affect the
model fits; Ratcliff and Rouder, 1998; Donkin et al.,
2009a). This suggests that a variant of the classic model
could be used to transfer the effects of the SAT onto other
model parameters, while providing an equivalent fit to the
data. We hypothesized that this mathematical sleight of
hand would reconcile the classic bound-variation expla-
nation of the SAT with neural findings.

We tested this hypothesis against data from two experi-
ments. Experiment 1 used transcranial magnetic stimulation
(TMS) to track corticospinal excitability, a downstream signal
presumed to be under continuous influence from the deci-
sion variable (Bestmann et al., 2008; Duque et al., 2010;
Hadar et al., 2016; Klein-Flugge and Bestmann, 2012). In
experiment 2, we recorded the event-related potential (ERP)
centroparietal positivity (CPP; O’Connell et al., 2012; Kelly
and O’Connell, 2013; Twomey et al., 2016), a large, late
positivity recorded over parietal regions. Importantly, this
ERP has been suggested to reflect decision-related accu-
mulation directly, independently of associated motor re-
sponses. These ERP and motor-evoked potential (MEP)
signals therefore represent fundamentally different neural
generators, which have both been shown to reflect decision-
making processes. We believe that this methodological tri-
angulation permits a more robust interpretation that spans
the sensorimotor pipeline.

In both experiments, participants made decisions with
two difficulty levels under SAT instructions. Difficulty in-
fluences the rate of evidence accumulation (Ratcliff and
McKoon, 2008; Donkin et al., 2011) and was introduced
here to confirm that our signals represented plausible
correlates of the decision variable. We then constructed
accumulation profiles predicted when the SAT is modeled
through boundary variations, and by our alternative
forced-excursion approach. By comparing these neuro-
dynamic predictions to data, we demonstrate that classic
models re-expressed to have a fixed excursion provide
compelling approximations to both brain and behavioral
measures in humans.

Materials and Methods
Participants

For the TMS experiment, an opportunity sample of 22
participants (13 female), primarily students and staff at
City, University of London were recruited. According to
criteria established before the experiment, participants
were excluded if they were unable to reach a calibrated
coherence level of �90% for either of the difficulty con-
ditions (see below, Difficulty calibration). The remaining 18
participants (11 female, mean age of 29.82, SD � 8.38)
took part in three sessions, each lasting between 2 and
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2.5 h and involving the same conditions (speed/accuracy
easy/hard, see below). For the EEG experiment, we re-
cruited 26 participants (17 females). Of these, 23 (15
females), with a mean age of 29.39 (SD � 7.47), pretested
sufficiently well to proceed to the main experiment, and
thus participated in a single 2-h session. All participants
were paid £8 per hour and an additional reward for task
performance (up to £4 per session). The experiments were
approved by the City, University of London Psychology
Department Ethics Committee.

Stimuli and procedure
Stimuli and experimental setup

In the random dot motion task (Fig. 1A), participants
saw an array of moving dots, a proportion of which moved
coherently in one direction (equiprobably up or down)
while the rest moved in random directions (selected for
each dot on each frame). Trial difficulty was manipulated
by varying the proportion of dots moving coherently. The
task was displayed on a cathode ray tube (CRT) screen
(size: 41 � 30 cm), operating at a refresh rate of 85 Hz and
a resolution of 1240 � 786 pixels. Participants sat at a
distance of 100 cm from the screen. In each trial, 300
white dots, each 0.04 � 0.04 degrees visual angle (dva) in
size, were displayed within a 5-dva aperture on a black
background. A fixation cross (size: 0.33 � 0.33 dva) was
located centrally. All dots moved at a speed of 3.3 dva/s.
The position of all dots was randomized every five frames.
The experiment was coded in MATLAB (MathWorks), us-
ing the psychophysics toolbox extension (Brainard, 1997;
Pelli, 1997; Kleiner et al., 2007) and run on a PC.

Initially, participants saw a fixation cross for 500 ms
(plus a jitter of up to 1000 ms, drawn from a uniform
distribution). Then, 100% of the dots moved randomly for
1000 ms (plus a jitter of up to 1500 ms, drawn from a
truncated gamma distribution with shape parameter 1 and
scaling parameter 150). This was followed by the onset of
coherent motion, either upwards or downwards, for up to
2000 ms, or until response. Feedback was provided after
each trial (see below, SAT instructions). Two equiprobable
coherence levels generated “easy” (high coherence) and
“hard” (low coherence) trials, which were randomly inter-
mixed. The “speed” and “accuracy” conditions were
blocked. The order of these SAT blocks was counterbal-
anced across participants.

Each participant completed a minimum of 100 practice
trials, followed by 200 calibration trials (see below, Diffi-
culty calibration). In each experimental TMS (EEG) ses-
sion, a total of 432 (800) planned trials were completed,
and self-timed breaks were provided after every 50 (100)
trials. In TMS sessions, to ensure the required frequency
of pulses (�0.2 Hz), TMS-free trials were added when
necessary (see below, TMS and EMG processing), lead-
ing to an average of �500 trials per session.

Responses
Participants in the TMS experiment held two digital

response buttons interfaced via a 16-bit A/D card (Na-
tional Instruments X-series PCIe-6323, sample rate
100,000 Hz) in their right hand. One button was placed
between the thumb and index finger and required a

“pinch” response, contracting the first dorsal interosse-
ous (FDI) muscle. The second button was placed on a
plastic cylinder in the palm of the hand and required a
“grasp” response, contracting the abductor digiti minimi
(ADM) muscle (Fig. 1B). The pinch and grasp buttons
indicated “up” and “down” responses, respectively. In the
EEG experiment, participants held one button between
the thumb and index finger of each hand, with right- and
left-hand button presses indicating upward and down-
ward motion, respectively.

Difficulty calibration
Once participants felt comfortable with the task, they

completed a total of 200 staircase trials to calibrate the
level of difficulty appropriate for the easy and hard con-
ditions. A QUEST procedure (Watson and Pelli, 1983)
estimated the coherence levels at which each participant
responded correctly in 75% and 95% of trials, used for
the hard and easy conditions, respectively. The stimulus
presentation time was reduced from 2000 to 1300 ms,
and no feedback was provided during QUEST trials. If a
participant’s performance led to estimated hard coher-
ence levels of �90%, the participant was excluded from
the experiment. This procedure resulted in a mean coher-
ence of 23.81% in the hard condition and 65.41% in easy
trials in the TMS experiment, and 30.63% for hard, and
67.67% for easy trials in the EEG experiment.

SAT instructions
After the difficulty calibration, the main experiment be-

gan, in which, participants were instructed to react either
as fast or accurately as possible in different blocks. Ad-
ditionally, feedback was provided after each trial to either
reward participants (by display of the word “correct” and
a small monetary reward, adding up to a maximum of £4
per participant) for fast and correct/correct responses in
speed/accuracy trials, respectively, or provide negative
feedback (with the words “too slow” or “incorrect” in
green letters on a red screen) when the instructions were
not followed. The intertrial interval was increased by 1000
ms after each trial with negative feedback. Neutral feed-
back (no monetary reward but a neutral screen with the
words “incorrect” or “too slow”) was shown when partic-
ipants responded fast but incorrectly in the speed condi-
tion or accurately but very slowly in the accuracy
condition. Whether a response was too slow or not was
determined by a variable deadline, which was initially set
to 600 ms for the speed and 1000 ms for the accuracy
condition. To optimize performance, the deadlines varied
between 450 and 750 ms (speed) and between 700 and
1300 ms (accuracy) and were adjusted using separate
QUEST procedures, targeting accuracy levels of 75% for
speed, and 90% for accuracy conditions. Feedback was
also provided when participants responded before the
onset of the coherent motion (“too fast”).

TMS and EMG processing
In the TMS experiment, participants’ muscle activity

was recorded using surface electromyography (EMG),
sampled at 1000 Hz via a 13-bit A/D Biometrics Datalink
system (version 7.5, Biometrics Ltd.). We placed 22 �
28-mm surface Ag/AgCL electrodes on the skin above the
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Figure 1. TMS experiment procedure. A, Random dot motion task: after a fixation cross and a period of random motion, coherent
motion (here: upward, coherence 70%) was displayed for 2000 ms or until response (the same task was used in the EEG experiment).
B, Response setup in TMS experiment: participants held one button (up) between their thumb and index finger (pinch) and one in the
palm of their hand (down), attached to a cylinder (grasp); EMG electrodes were placed on the ADM and FDI. C, Example EMG traces
from a single trial (here, a hard speed trial, where the responding muscle is the FDI and the nonresponding muscle is the ADM). D,
To create model predictions which are comparable to MEP data, accumulation values from both the correct accumulator (corre-
sponding to the responding muscle) and the incorrect accumulator (corresponding to the nonresponding muscle) are sampled at
simulated TMS times. E, Illustrative real MEP amplitudes (from the speed/easy condition) collated from all participants. F, MEPs and
simulations (data not shown) are then z-scored per muscle, participant, and session (note that latencies were normalized by the
median, not maximum, EMG RT for each participant). G, Real and simulated continuous signals can be created for each muscle
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FDI and the ADM of the right hand, as they contribute to
the pinch and grasp responses, respectively. Reference
electrodes were placed at distances of �2 cm to each
active electrode. Participants were instructed to relax
their hand muscles in between responses, and the EMG
signals were passed to two speakers to provide auditory
feedback about any unwanted muscle activation.

During the experiment, single-pulse TMS was applied
using a Magstim Rapid2 biphasic stimulator (Magstim Co
Ltd.). A figure-of-eight coil was positioned over the opti-
mal spot on the scalp over the left primary motor cortex to
elicit MEPs in both the ADM and FDI. The exact location
was adjusted for each participant and the stimulation
intensity was set at �110% of the resting motor thresh-
old, to evoke potentials of around 1 mV in both muscles.
The resting motor threshold was defined as the minimal
intensity necessary to elicit a MEP with a peak-to-peak
amplitude of �50 �V in 50% of stimulations in both the
FDI and the ADM, and was, on average, 59.28% (SD �
7.76) of maximum stimulator output.

TMS pulses were planned in 66% of trials but cancelled
if a response was detected before stimulation. To ensure
a good distribution of TMS pulses over the course of the
reaction time, TMS trials were divided into four equally
sized, equiprobable time bins (between 5 and 500 ms
relative to the onset of the coherent motion in the speed
condition and between 5 and 600 ms in the accuracy
condition). Within a given bin, the exact stimulation time
was drawn uniform randomly. Since the experiment fol-
lowed a single-pulse TMS protocol, pulses were required
to occur at a maximal frequency of 0.2 Hz. If, by chance,
a planned pulse followed a previous one after �5000 ms,
the task was adjusted in several ways. If the timespan
between the previous and the planned pulse was �5000
ms but �4000 ms, the intertrial interval was increased to
decrease the pulse frequency to �0.2 Hz. For scheduled
intervals of �4000 ms, the planned trial was replaced with
the next planned stimulation-free trial. If no stimulation-
free trial remained, random stimulation-free trials were
generated to increase the interval between TMS pulses,
resulting in an average of 68.67 (SD � 15.79) additional
trials per session.

EMG preprocessing
To eliminate potential differences in the time required to

execute pinch and grasp responses, we recorded the
onset of EMG as a measure of reaction time (EMG RT).
EMG data from both channels were aligned to the onset of
the coherent motion (stimulus onset) and visually in-
spected to select the onset of response-related EMG
bursts. Visual inspection provided no information about
the experimental condition of a given trial.

In TMS trials, MEP amplitudes in both channels (FDI
and ADM) of the right hand were defined as the difference
between the minimal and maximal EMG values in a time
window of 10–40 ms relative to stimulation time. An

algorithm detected EMG activity before the stimulation,
discarding any trials in which there was activity �50 �V
peak to peak in a period of 200 ms preceding the stimu-
lation. These trials, as well as trials in which there was
partial activation in more than one channel, or trials in
which a clear EMG onset could not be detected, were
excluded from further analysis (23.39% of trials). Addi-
tionally, trials with very fast (�100 ms) or very slow
(�1800 ms) response onsets (5.12% of trials), trials in
which no MEP was visible or in which the MEP amplitude
could not be accurately detected due to amplifier satura-
tion (1.05%), and trials in which the response preceded
the planned TMS pulse (6.09%) were excluded. In total,
35.65% of all trials were discarded, with a total of 17,067
trials remaining, including 6535 usable TMS trials (42.85%
of all planned TMS trials).

MEP processing
To yield sufficient data to accurately estimate cortico-

spinal excitability in a time-continuous manner, correct-
trial MEPs from all participants were combined. Before
pooling, MEP amplitudes were z-transformed separately
for each muscle, session and participant, while TMS la-
tencies were normalized by median RT of TMS-free trials
in the corresponding session. Z-scored MEPs were then
sorted as a function of stimulation latency (Fig. 1C,E,F)
and smoothed using a Gaussian kernel to recover a con-
tinuous time-varying MEP average in steps of 1% median
RT:
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Where the N contributing MEPs each have amplitude Yi

and occur at normalized time ti. The width of the Gaussian
kernel defined by the full width half maximum was set at
5% of median RT (i.e., around 20 ms), previously sug-
gested as an appropriate compromise between temporal
resolution and signal-to-noise ratio (Hadar et al., 2016).
This MEP signal was computed for both stimulus and
response-locked MEP latencies, and from the responding
muscle, the nonresponding muscle and the MEP ampli-
tude difference between them (Fig. 1G,H). Finally, 95%
confidence intervals were estimated around each signal
using a bias-corrected and accelerated bootstrap (BCa)
confidence interval, based on 1999 iterations. Since anal-
yses were restricted to correct trials, MEPs recorded from
the responding muscle always reflected activation of the
correct response, while MEPs form the nonresponding
muscle reflected the incorrect response. We focused par-
ticularly on the MEP average signal based on the ampli-
tude difference between responding and nonresponding
MEPs, as this eliminates variations due to nonspecific

continued
(responding, nonresponding), using a Gaussian smoothing kernel. H, However, to remove nonspecific processes, the same
smoothing is applied to the difference between simultaneously recorded MEPs (responding minus nonresponding).
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influences, such as inhibitory processes during action
preparation, which would result in MEP suppression in
both responding and nonresponding muscles (for review,
see Duque et al., 2017).

EEG recording and processing
Continuous EEG was recorded using 64 active elec-

trodes, placed equidistantly on the scalp (EasyCap, M10
Montage) and referenced to the right mastoid (BrainAmp
amplifier; BrainProducts; sampling rate: 1000 Hz). The
data were preprocessed and analyzed using custom
scripts in MATLAB (MathWorks), drawing on functions
from the EEGLAB toolbox (Delorme and Makeig, 2004).

EEG data were re-referenced to the average reference
and digitally bandpass filtered (0.1–45 Hz). Data were
visually inspected to remove large muscle artefacts be-
fore applying ICA to remove eye blink components. Any
remaining artefacts were removed manually during a sec-
ond visual inspection. Afterward, spherical spline interpo-
lation was used to reconstruct noisy channels, which were
identified and rejected during the first visual inspection. In
line with the procedures used in previous CPP studies
(O’Connell et al., 2012; Kelly and O’Connell, 2013), the
data were converted to current source density (CSD)
estimates using the CSD toolbox (Kayser and Tenke,
2006).

Experimental design and statistical analysis
Behavioral data analysis

We explored the within-subjects factors instruction and
difficulty with the levels speed/accuracy and easy/hard,
respectively. To test their effects on RT, we used a 2 � 2
repeated-measures ANOVA. Because accuracy data violate
the assumptions of ANOVA, statistical inferences about er-
rors were made using a generalized linear mixed-effects
model with a logistic link function and binomial data model
(applied using the fitglme function in MATLAB). Parameter
estimates were based on a maximum-likelihood method
using Laplace approximation and the “maximal” random
effects structure (Barr et al., 2014), i.e., both instruction and
difficulty, and the instruction-difficulty interaction were en-
tered as fixed effects, and both manipulations, and their
interaction within each participant (and session in the TMS
experiment) were included as random effects.

MEP analysis
Two analyses were conducted on the MEP difference

signal to confirm that MEP modulations across time re-
flected decision-related accumulation processes. We
compared the stimulus-locked build-up rate, expected to
be steeper in easy than hard trials, and the response-
locked signal amplitude, which should not vary across
difficulty levels at the time of decision. Comparisons were
also made across speed instructions, although no clear
predictions could be made regarding how evidence ac-
cumulation should vary in this case. MEP data were per-
muted across easy and hard (or across speed and
accuracy) trials 1999 times. Mean MEP signals (and 90%
BCa confidence intervals; see below) were then com-
puted for each iteration. The build-up rate was then esti-

mated from both the original and the resampled data as
the slope of a straight line fitted to the stimulus-locked
signal in a time window ranging from half median up to
median RT (corresponding to around 200–400 ms after
stimulus onset). Slope differences between difficulty lev-
els or instructions were considered significant if smaller
(or larger) than the lower (or upper) 2.5% of the corre-
sponding slope-difference null distribution obtained from
resampled signals.

To test response-locked amplitude differences while
controlling for multiple comparisons, a cluster statistic
was calculated (cf. Blair and Karniski, 1993; Nichols and
Holmes, 2001; Groppe et al., 2011). Potential regions of
difference between conditions were based on contiguous
time periods with no overlap between 90% bootstrap BCa
confidence intervals (the arbitrary “cluster threshold”). A
cluster sum was calculated within each such putative
cluster and was considered significant when this sum of
the point-by-point differences fell outside the central 95%
of the corresponding distribution of the biggest cluster
sum obtained from resampled signals. Amplitude differ-
ences were assessed on both stimulus and response-
locked signals.

ERP analysis
For the ERP analysis, we extracted both stimulus

(�200–2000 ms, relative to coherent motion onset) and
response aligned (�1000–100 ms, relative to the button
press) epochs. All epochs were baseline corrected to the
average over a 200–ms period preceding motion onset.
The appropriate electrode to generate the CPP wave form
was chosen individually, by visually inspecting each par-
ticipant’s averaged ERP topography to identify the cen-
troparietal region of maximum amplitude (chosen
electrodes: 1, 5, or 14, roughly equivalent to electrodes
Cz, CPz, Pz in the 10–20 system). The activity recorded
on the selected electrode was averaged for each condi-
tion (collapsed over up and down trials) and for stimulus
and response-locked signals separately. In line with Kelly
and O’Connell (2013), we measured the slope of the CPP
for each participant, by fitting a straight line to the wave
form from 200 to 350 ms in the stimulus-locked data.
Additionally, we measured the peak amplitude of the
response-locked ERP by averaging over the amplitude of
the wave form from -50 to 50 ms relative to the response.
Differences across conditions were assessed with a 2 � 2
repeated-measures ANOVA.

Modeling
Free-excursion race model

According to a standard free-excursion race model
(Laberge, 1962; Vickers, 1970; Bogacz et al., 2006) evi-
dence supporting the correct and the incorrect response
is integrated independently in two accumulators. The
amount accumulated at each time step (dx) is given by:

dxcorrect � vcorrect � N(0, �2)
(2)

dxincorrect � vincorrect 	 N(0, �2)
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Where xcorrect and xincorrect are the quantities accumu-
lated, and vcorrect and vincorrect the input evidence (i.e.,
accumulation rate; see below) in favor of the correct and
the incorrect responses. Noise, N, drawn from a normal
distribution of mean 0 and standard deviation �, is also
integrated at each iteration. To avoid negative values,
evidence accumulated at each time step is updated as:

xcorrect (t 	 1) � max(0, xcorrect(t) 	 dxcorrect)
(3)

xincorrect (t 	 1) � max(0, xincorrect(t) 	 dxincorrect)

Correct and incorrect accumulator starting points are
drawn in each trial from a uniform distribution ranging
between 0 and SZ. As soon as one of the accumulators
reaches the response boundary A, the corresponding
response is selected. The response time is then modeled
as the time required to reach the boundary, plus non-
decision time, during which sensory and motor processes
occur, drawn from a uniform distribution centered on Ter

and of width STer. In a standard race model for a binary
decision, this leads to a total of seven parameters (A, Sz,
vcorrect, vincorrect, Ter, STer, and �2). One parameter is cho-
sen as a scaling parameter and fixed to an arbitrary value,
resulting in a total of six free parameters.

To apply this model to the data in this experiment, we
added accumulation rate parameters to account for the
different difficulty conditions (veasy_correct, veasy_incorrect,
vhard_correct, vhard_incorrect). This implementation of difficulty
is well-established and has been validated using both
behavioral and neural data (Ratcliff and Rouder, 1998;
Roitman and Shadlen, 2002; Ratcliff and McKoon, 2008;
Mulder et al., 2014; Twomey et al., 2015). To explain
differences due to SAT instructions, we added a second
boundary parameter. The boundary for accuracy trials
Aaccuracy acted as a scaling parameter and was fixed to 1,
while the boundary for the speed condition, Aspeed, was
free to vary. We tested three different models: one in
which all remaining parameters were fixed across condi-
tions (model 1), one in which the starting point parameter
Sz was free to vary across SAT conditions (model 2), and
one in which the non-decision time parameter Ter was free
to vary across SAT conditions (model 3; Table 1).

Modeled RTs were simulated based on Equations 2 and
3 (10,000 simulated trials with a 1% median RT time step,
around 4 ms, for TMS and a 10-ms time step for EEG) and
compared to pooled RT data using quantile maximum
probability estimation (Heathcote et al., 2002). Specifi-
cally, we estimated empirical RT quantiles (at 0.1, 0.3, 0.5,
0.7, and 0.9), for both correct and erroneous responses,

and compared counts of simulated RTs in the resulting
bins against the predicted multinomial distribution. Pa-
rameter values were adjusted using a differential evolution
algorithm implemented in MATLAB (Price et al., 2005).
The goodness-of-fit of the different models was assessed
by computing the Akaike information criterion (AIC;
Akaike, 1977).

Forced-excursion race model variant
To test the hypothesis that the SAT is not implemented

through decision bound variation per se, but rather by
more widespread changes of neural activity, we con-
structed a forced-excursion model variant in which deci-
sion boundaries are fixed and the effects of the SAT are
transferred onto all other parameters. All parameters of
the free-excursion race model estimated in the speed
condition were divided by the speed boundary Aspeed

(apart from Ter and STer). This forced-excursion version of
the model is mathematically equivalent to the original one
as, given the scaling property of sequential sampling
models, multiplying all models parameters (except Ter and
STer) by the same amount does not affect model predic-
tions (Donkin et al., 2009b). A simple “rescaling” of speed
parameters hence results in a new set of parameters in
which the speed and accuracy response boundaries are
equal, and the SAT modulation is transferred onto the
other decision-related parameters.

Model predictions
TMS experiment In each session, EMG RTs were normal-
ized by median EMG RT, and trials were pooled across
sessions and participants. On average, we obtained 2651
trials per condition, used to determine best-fitting param-
eters at the group level. We then generated predictions
according to the free and forced-excursion race model
variants by simulating evidence accumulation. To allow
for a direct comparison, model predictions were con-
structed identically to the accumulation signals derived
from our experimental data, i.e., as MEP difference aver-
age signals.

For both models, and each condition, 20,000 single-trial
accumulation paths were computed based on Equations
2 and 3 (in 0.5% median EMG RT time steps). Each
modeled MEP amplitude was determined by the value of
one of the single-trial simulated accumulation signals
reached at a (simulated) TMS latency, based on stimula-
tion times applied during the experiment (Fig. 1D–F). The
difference between correct and incorrect values was used
to model the MEP difference signal. As in experimental
data, trials were discarded when simulated RT was
shorter than TMS latency (i.e., the response would have

Table 1. Model comparison

Model Number A Sz vcorrect vincorrect Ter STer �
Number of
parameters TMS experiment EEG experiment

AIC BIC AIC BIC
Model 1 Free Fixed Fixed Fixed Fixed Fixed Fixed 9 44,868 44,933 62,398 62,466
Model 2 Free Free Fixed Fixed Fixed Fixed Fixed 10 44,859 44,932 62,389 62,464
Model 3 Free Fixed Fixed Fixed Free Fixed Fixed 10 44,865 44,937 62,404 62,479

Bayesian Information Criterion (BIC) and AIC values for each model and each experiment (best BIC and AIC values in bold). The terms “fixed” and “free” here
relate specifically to changes across speed/accuracy instructions, as accumulation rate (V) was always free to vary between difficulty conditions.
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been given before the TMS pulse). The duration of sen-
sory and motor processes, which are represented by a
single Ter parameter, had to be allocated to pre- and
postaccumulation processes to generate predictions.
Since we modeled accumulation observed in or around
M1, we assumed that postaccumulation stages would
only relate to response execution, which could reasonably
be ignored, as reaction times were defined up to EMG
onset. Therefore, the whole of Ter was allocated to pre-
accumulation processes, and accumulation started after a
delay of Ter 
 STer.

From simulated MEPs, predicted continuous MEP signals
were then computed by applying the same smoothing
method applied to the MEP data. Finally, accumulation sig-
nals based on predicted MEPs were compared to the em-
pirical MEP signal using a mean squared error metric, after a
scaling procedure was applied to match modeled and ex-
perimental signal amplitudes. Modeled signals were verti-
cally normalized by the value minimizing the mean squared
error, estimated using the previously described differential
evolution algorithm. Note that although this normalization
could differ between the free and forced-excursion models,
the same value was applied within each model to all condi-
tions, and to stimulus and response-locked signals.

Finally, two complementary statistical analyses com-
pared the mean squared errors obtained for the free and
forced-excursion model variants, to determine which pre-
dictions displayed greater similarities to the neural signal.
First, goodness-of-fit of the model predictions was com-
puted based on AIC values, using the formula AIC �
n�log(MSE) 	 2K (Burnham and Anderson, 2004), where n
is the number of observations, MSE the mean squared
error, and K the number of free parameters (K � 1 in this
case, as only amplitude was allowed to vary freely to fit
recorded MEP signals). AIC was then used to compute
Akaike model weights, which can be seen as the weight of
evidence in favor of each model.

The second analysis applied a bootstrap procedure
estimating the distribution of differences of mean squared
error between the free and forced-excursion models, to
determine the bias-corrected 95% confidence interval
around the observed difference (bias-correction was used
rather than BCa to make the time of computation man-
ageable). To estimate the distribution, EMG RT data were
resampled 1999 times with replacement within each con-
dition. The best-fitting parameters for the original and
each resampled set of EMG RT data were then estimated
by a simplex algorithm implemented in MATLAB (Lagarias
et al., 1998), using the original parameters as starting
values (the Simplex algorithm was preferred to the differ-
ential evolution algorithm in this case to reduce the time of
computation). As for the original analysis, forced-
excursion parameters were obtained by normalizing the
free-excursion parameters by the response boundary
value obtained in the speed condition, and MEP signal
predictions for free and forced-excursion models were
computed. Mean squared errors were then calculated
between these bootstrapped signal predictions and a set
of equivalently resampled MEP signals, again after apply-
ing a scaling procedure matching signals amplitudes (via

a differential evolution algorithm; Price et al., 2005). The
95% bias-corrected confidence interval was estimated
based on the bootstrap distribution of mean squared error
differences between the free and forced-excursion mod-
els.

EEG experiment RTs were pooled across participants
to fit the models at a group level. As EEG signals integrate
spatially disparate underlying neuronal activity, we rea-
soned that the CPP would likely represent the sum of
evidence accumulators across time. The corresponding
accumulation signals predicted by the models should
therefore be obtained by adding up the correct and incor-
rect accumulators’ activities. For both models and each
speed and coherence level condition, 10,000 single-trial
accumulation paths were computed based on Equations
2 and 3. To account for sensory processes, accumulation
started after a sensory delay. Once a decision was made,
we assumed that evidence accumulation continued until
the response was executed (and the stimulus was turned
off). Accumulation therefore continued after the boundary
was reached for the duration of any motor processes
(Resulaj et al., 2009; Twomey et al., 2015). The compound
duration of sensory and motor processes were given by
the model non-decision time Ter, which we divided into Te

and Tr, modeling sensory and motor processes, respec-
tively. As detailed below, this division was optimized for
each model. To match with EEG processing, the sum-of-
accumulations signal was baseline corrected by subtract-
ing the first data point value from each trial. Finally, to
compare the prediction to the CPP, we averaged accu-
mulation signals in each condition, either time-locked on
stimulus onset (i.e., time 0), or on response time (the time
of the corresponding simulated RT). Since we can only
speculate on how the accumulator behaves once the
response is executed, trials were removed from averaging
once the simulated response time had been reached (and
the same procedure was used for the averaging of em-
pirical EEG data).

The similarity between the CPP and the predicted de-
cision variable of each model was quantified by comput-
ing the mean squared error between mean signals. To
provide optimal CPP predictions, the amplitude of each
summed signal was scaled to match the CPP amplitude,
and the division of non-decision time Ter into encoding
time Te and response time Tr was determined. The optimal
scaling factor and Ter division were obtained for each
model signal using differential evolution (Price et al.,
2005), minimizing the mean squared error.

Finally, as in the TMS experiment, a bootstrap analysis
(bootstrapping both RT and EEG data) determined
whether the mean squared error difference calculated for
the free- and the forced-excursion models had a 95%
confidence interval excluding zero, i.e., whether they dif-
fered significantly. In this experiment, no AIC-based com-
parison was attempted because EEG data points have
complex temporal dependencies (i.e., autocorrelation)
that make it difficult to establish the likelihood with which
a model predicts these neurodynamic data.
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Results
Behavioral results

Trials remaining after preprocessing were collapsed
over up and down trials (Fig. 2). Both experiments re-
vealed the same behavioral effects. As expected, RTs
were faster under speed than accuracy instructions (TMS:
F(1,17) � 26.90, p � 0.001, �p

2 � 0.61; EEG: F(1,22) �
36.47, p � 0.001, �p

2 � 0.62), as well as in easy com-
pared to hard trials (TMS: F(1,17) � 62.14, p � 0.001,
�p

2 � 0.79; EEG: F(1,22) � 120.12, p � 0.001, �p
2 � 0.85).

Additionally, instruction and difficulty interacted (TMS:
F(1,17) � 10.80, p � 0.004, �p

2 � 0.79; EEG: F(1, 22) �
36.47, p � 0.001, �p

2 � 0.62). Follow-up t tests revealed
that the effect of difficulty was larger in the accuracy
condition (p � 0.001) than in the speed condition (p �
0.001). All reported effects in the TMS experiment are
based on EMG RT (time of EMG onset), but results based
on response-button RT were not qualitatively different.

For error data, a generalized linear mixed-effects model
revealed higher accuracy scores under accuracy com-
pared to speed instruction (TMS: t(208) � 4.81, p � 0.001;
EEG: t(88) � 7.76, p � 0.001), as well as in easy trials
compared to hard trials (TMS: t(208) � 4.57, p � 0.001;
EEG: t(88) � 4.68, p � 0.001). The instruction-difficulty
interaction was not significant (p � 0.05).

Neural results
MEP-average signals

MEP amplitudes from correct trials were collated and
smoothed to form three categories of MEP-average sig-
nal: responding, nonresponding, and the difference be-
tween them. Responding and nonresponding MEP-
average signals obtained for each condition are presented
in Figure 3A. The responding MEP-average signal (asso-
ciated with the correct response) builds up gradually dur-
ing the reaction-time period, while the nonresponding
signal (associated with the incorrect response) remains
fairly flat. However, our main focus was the difference in
MEP amplitudes between responding and nonresponding
muscles (Fig. 3C). Statistical analyses confirmed that this
MEP signal displays characteristics consistent with the
hypothesis that M1 excitability reflects an accumulation
process. We found that the stimulus-locked signal built up
faster in easy than hard trials (for both speed, p � 0.049,
and accuracy, p � 0.001 instructions) and that the
response-locked signal amplitude reached similar levels
just before the response regardless of trial difficulty, with
cluster permutation tests showing no significant diver-
gence between conditions (p � 1). Differences were how-
ever observed in stimulus-locked averages, with higher
amplitudes evident in easy compared to hard trials from
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75% median EMG RT (�294 ms) in the speed condition
(p � 0.005) and from 81% (�318 ms) under accuracy
instructions (p � 0.001). The latter results demonstrate
that we had sufficient power to detect MEP amplitude
differences. Collectively, our results show that the MEP-

average difference signal is a viable neural correlate of
the decision variable. However, no difference was ob-
served between speed and accuracy instructions, on
either the slope or amplitude of MEP accumulation (all
p � 0.1).
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are highlighted. C, Stimulus-locked (left) and response-locked (right) MEP-average signal (responding minus nonresponding muscle).
D, Stimulus-locked (left) and response-locked (right) model predictions made by the free-excursion variant of the best-supported
model. E, Stimulus-locked (left) and response-locked (right) model predictions made by the forced-excursion variant of the
best-supported model. F, Stimulus-locked (left) and response-locked (right) CPP; note that the CPP here is a pooled average rather
than a grand average and therefore differs from B. Additionally, the wave form has been low-pass filtered with a cutoff of 5 Hz to assist
comparison with model predictions. G, Stimulus-locked (left) and response-locked (right) model predictions (correct and incorrect
accumulator summed) made by the free-excursion variant of the best-supported model. H, Stimulus-locked (left) and response-
locked (right) model predictions (correct and incorrect accumulator summed) made by the forced-excursion variant of the best-
supported model.
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ERP results
The CPP is displayed in Figure 3B. Like the MEP-

average difference signal, it builds over the course of the
decision, at a rate reflecting the difficulty of the decision.
For build-up rate, there was a significant main effect of
difficulty (F(1,22) � 14.70, p � 0.001, �p

2 � 0.40), with
higher slopes in easy compared to hard trials. There was
no main effect for instruction, and no interaction, in either
of the time alignments (p � 0.26).

There was also a main effect of difficulty on the peak
amplitude of the response-locked CPP, F(1,22) � 8.53, p �
0.008, �p

2 � 0.28, with higher amplitudes in the easy
compared to the hard conditions. However, again we
found no main effect for SAT instruction and no interac-
tion (p � 0.22).

Summarizing the neural data, neurodynamic signals
derived from two very different imaging methods con-
verged to yield the same outcome: clear effects of adjust-
ing task difficulty, particularly on the rate of accumulation,
but no statistically reliable effects of speed/accuracy in-
struction, despite the fact that these two manipulations
had similar magnitudes of behavioral effect (mean RT
effect sizes, i.e., �p

2, of 0.62 for SAT instruction vs 0.82 for
difficulty).

Model selection
In both experiments, we fitted several models to RT

data and used AIC to select the best candidate with which
to go on and make neural predictions. The winning race
model (model 2; Table 1) varied both response boundary
and starting-point between different SAT instructions (and
also varied drift rates with changes in difficulty). As antic-
ipated, the best-supported model’s best-fitting parame-
ters (shown under “free-excursion” in Table 2) show that
the response boundary decreased under speed instruc-
tion, and that accumulation rates were higher for easy
than hard trials. Additionally, starting-point variability was
larger under speed instructions. Since the starting-point
distribution ranges from 0 to the starting-point parameter
Sz, larger starting-point variability also implies a larger
mean starting-point, further decreasing the distance be-
tween baseline and boundary. The quality of the fit was
good (Fig. 4).

Importantly, we also re-expressed this model under a
forced-excursion constraint. In this forced-excursion ver-
sion, parameter normalization forced the speed response
boundary to be the same as the accuracy boundary, with
the SAT being transferred onto accumulation rate and
variability parameters. Note that the forced-excursion ver-
sion of this model is mathematically equivalent to the
standard one, with identical predicted RTs and error rates.

Stimulus and response-locked accumulation signals for
each experiment and each condition predicted by the free
and forced-excursion variants of the best-supported
model are shown in Figure 3, lower panels. Broadly the
same patterns were predicted in both experiments. The
main difference between free and forced-excursion pre-
dictions is the level of accumulation reached at the time of
the decision. This is evident in the amplitude of response-
locked signals attained just before response selection,
which is predicted to be higher under accuracy than
speed instructions for the free-excursion model, but sim-
ilar in the forced-excursion model (Fig. 3D,E,G,H). Note
that, while this pattern is more pronounced in the forced-
excursion predictions associated with the MEP signal
(Fig. 3E) than the EEG signals (Fig. 3H), the reduced
amplitude difference between speed and accuracy pro-
files before the response is evident in both experiments,
and importantly, both forced-excursion model predictions
capture the patterns seen in the corresponding neural
data (Fig. 3C,F). In the stimulus-locked predictions, easy
trials display a steeper build-up than hard trials, yet,
interestingly, although accumulation rates in the forced-
excursion model were higher under speed than accuracy
instructions (Table 2), the predicted signal was not corre-
spondingly steeper in this case (Fig. 3E,H). For MEPs, this
may be partly explained by the fact that both correct and
incorrect accumulation rates increased, such that the
slope of the (motoric, thus difference-based) accumula-
tion signal remained unaffected. However, the similar pat-
tern observed in CPP predictions (which were modeled as
a sum of accumulators, because this signal occurs rela-
tively early and is not response specific) indicates that the
�20% change in modeled accumulation rate was insuffi-
cient to generate a substantial increase in predicted slope

Table 2. Estimated parameter values for the best-supported model (model 2) when expressed with both free and forced-
excursion in both experiments

Parameters TMS experiment EEG experiment
Free excursion Forced excursion Free excursion Forced excursion
Accuracy Speed Accuracy Speed Accuracy Speed Accuracy Speed

SZ 0.447 0.523 0.447 0.586 0.319 0.541 0.319 0.664
A 1 0.893 1 1 0.815 1
Ter 0.382 0.382 0.257 0.257
STer 0.374 0.374 0.229 0.229
�2 0.499 0.499 0.558 0.785 0.785 0.964
vcorrect Easy 1.280 1.28 1.433 2.475 2.475 3.038

Hard 0.634 0.634 0.710 1.350 1.350 1.656
vincorrect Easy 0.098 0.098 0.109 0.253 0.253 0.310

Hard 0.004 0.004 0.005 0.054 0.054 0.066

The response boundary A in the accuracy condition was set to 1 as a scaling parameter. Parameters are not comparable across experiments, as the TMS fit
is to data normalized to the median RT of each participant.
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when combined with the associated changes in noise
parameters.

Summarizing these observations, the signals predicted
by the forced-excursion version of the best-supported
model appear to better reproduce the pattern of the re-
corded CPP and MEP signals than do those predicted by
the free-excursion version. Specifically, the accumulation
slope is steeper in easy than hard trials, but not different
between speed and accuracy conditions, and a similar
signal amplitude is attained before response for both
coherence levels, and, crucially, under both SAT instruc-
tions.

Statistical analyses confirmed these observations.
Akaike weights in the TMS experiment indicated that
neurodynamic predictions from the forced-excursion
model variant were better matched to the MEP signals
than were free-excursion predictions (forced-excursion:
0.994, free-excursion: 0.006). Additionally, bootstrap
analysis showed that the mean squared error between
predicted MEP signals and recorded MEP values was
significantly lower for the fixed than the free-excursion
model (p � 0.018, 95% bias-corrected confidence inter-
val on difference: [0.005; 0.056]). This significant differ-
ence, observed using a BCa confidence interval, was not
however evident when a simpler percentile interval was
used. This result should hence be interpreted cautiously
(but is bolstered by our subsequent findings with EEG).

The same bootstrap analysis revealed similar results in
the EEG experiment, where the forced-excursion model
predicted profiles more similar to the CPP than the free-
excursion model (p � 0.026, 95% bias-corrected confi-
dence interval on this difference: [1.55; 21.32]; for
consistency, we repeated the model comparison for the
ERP data set with RT normalized data and found that the
results were unchanged).

Discussion
We utilized two separate electrophysiological methods

to explore the neurocognitive mechanisms underlying the
SAT, a central yet unresolved issue in decision-making
research. The model-based behavioral literature suggests
that a variation in the decision boundary (or, equivalently,
a change in the baseline level) explains the SAT (Usher
and McClelland, 2001; Smith and Ratcliff, 2004; Brown
and Heathcote, 2008), but recent neural evidence has not
supported this claim, suggesting more widespread
changes (Heitz and Schall, 2012, 2013; Hanks et al., 2014;
Murphy et al., 2016). To resolve this paradox, we hypoth-
esized that the SAT may result from changes which are
mathematically equivalent to a modulation of the decision
boundary, but which are implemented physiologically
through global changes in neural activity akin to turning
up the gain in the brain. We recorded neurodynamic
substrates of decision-making during a motion discrimi-
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nation task with two difficulty levels and under instruc-
tions to focus on either response speed or accuracy. The
resulting data converged to favor the predictions made by
a forced-excursion model variant in which the SAT is
implemented by adjusting both the signal (i.e., accumula-
tion rates v) and noise (i.e., noise parameters Sz and �)
affecting accumulation-related neural activity.

Although our main interest was the SAT, we included a
difficulty manipulation as a “sanity test” regarding the
validity of our neurodynamic decision correlates. The im-
pact of difficulty on evidence accumulation has been
demonstrated previously, with both sequential sampling
models and proposed neural correlates of accumulation
displaying steeper build-up rates in easier decisions (Roit-
man and Shadlen, 2002; Ratcliff and McKoon, 2008; Kelly
and O’Connell, 2013; Mulder et al., 2014). Accordingly, we
found that faster and more accurate responses in easy
trials were explained by higher accumulation rates in both
experiments. These patterns were observed in both neu-
ral signals and their simulated accumulation profiles and,
consistently with previous studies (O’Connell et al., 2012;
Hadar et al., 2016), support the role of MEP and CPP
signals as neural correlates of the decision variable, with
corticospinal excitability likely receiving a time-lagged but
continuous input from CPP/decision-generating regions.

Like the difficulty manipulation, SAT instructions also
resulted in the expected behavioral changes, with faster
and more error prone responses under speed instruc-
tions. In line with many previous studies (Usher and Mc-
Clelland, 2001; Brown and Heathcote, 2008; Ratcliff and
McKoon, 2008; Heitz, 2014), our free-excursion race
model accounted for behavioral effects of the SAT, pri-
marily by varying the amount of accumulated evidence
required to make a decision. However, since recent stud-
ies exploring neural correlates of decision-making have
challenged this implementation of the SAT (Heitz and
Schall, 2012, 2013; Hanks et al., 2014; Murphy et al.,
2016), we used a forced-excursion variant which models
a global gain modulation by adjusting the parameters of
the free-excursion race model so that the boundary was
equal across SAT conditions, thus transferring the esti-
mated difference between response bounds onto all other
parameters affecting accumulation. In other words, a
fixed boundary between SAT conditions was made math-
ematically equivalent to the free-excursion model by as-
suming different underlying mechanisms, with changes
between SAT conditions explained not by boundary dif-
ferences, but by differences between virtually all other
parameters, modeling a global shift in decision-related
brain activity.

When we compared predicted accumulation profiles
from both the free and the forced-excursion model vari-
ants to our neural data, a fixed boundary provided signif-
icantly better degrees of correspondence between them
(we avoid the term “goodness of fit” here, because pre-
dictions were based on RT data, with little adjustment
required to capture neurodynamic trends). We should,
however, offer the caveat that the statistical basis of this
result is unconventional. By utilizing permutation tests on
pooled data, we compared against sampling distributions

derived from the population of all possible trials from our
particular set of participants, rather than the population of
all possible participants. However, generalizations to an
even less representative population (e.g., all neurons of a
given type within a single monkey) are commonplace in
neuroscience. Furthermore, there are several additional
observations that support our conclusion that the forced-
excursion model variant was best. In both model and
data, the stimulus-locked profiles displayed a slope dif-
ference between easy and hard trials and no difference
between speed and accuracy trials. Importantly, in the
response-locked model predictions, the terminal ampli-
tude differences between SAT conditions were reduced
compared to the predictions retaining a free excursion,
better resembling the neural signals. These findings sup-
port the hypothesis that differences induced by SAT in-
structions are explained by a global modulation of activity
rather than by varying a single specific parameter/pro-
cess.

Previous attempts to explain the SAT in the absence of
variation in the decision boundary have done so by incor-
porating an urgency signal, i.e., an evidence-independent
signal, which over time pushes the accumulation process
toward a boundary (Cisek et al., 2009; Thura et al., 2012;
Hawkins et al., 2015a,b). This integration of urgency is not
dissimilar to our suggestion of an amplified accumulation
process. Both approaches avoid a variation in response
boundary by boosting accumulation in hasty decisions
and make broadly analogous predictions regarding the
SAT’s impact on accumulation profiles.

However, urgency models do differ mathematically
from our forced-excursion model. While the former as-
sume the addition of an independent and growing signal,
i.e., a time-varying process, the latter is obtained by an
adjustment of parameters derived from the more estab-
lished free-excursion model, implying a time-invariant in-
trinsic amplification of the accumulation process induced
by global changes of the system. To expand on this
distinction (with the important caveat that urgency has
been implemented in different ways by different authors),
urgency may be implemented as the addition of an
evidence-independent signal at each time step, with this
signal growing over time (Hanks et al., 2014), or as the
multiplication of evidence by such a signal (Ditterich,
2006), in which case accumulation noise is also subject to
this time-varying gain. In the latter approach, the integra-
tion of evidence over time may additionally be deliberately
downplayed via (very) leaky integration (Cisek et al.,
2009). By contrast, our modeling instead captured the
SAT by amplifying both signal and noise in a constant
manner throughout the decision (with noise even ampli-
fied before the onset of the imperative stimulus, via the Sz

parameter). This is what we mean here by neural gain
modulation: the amplification of both signal and noise in a
time-independent manner. Note that the way starting-
point noise was implemented here implies that it effec-
tively conflates mean starting point with start-point
variability (see methods/results). In this sense, our “fixed-
excursion” terminology is a slight misnomer, as some part
of our model’s ability to explain the SAT in both behavioral

New Research 13 of 16

May/June 2018, 5(3) e0159-18.2018 eNeuro.org



and neural data is still dependent on a reduction in ex-
cursion, but several other parameters also play a role, and
the decision bound is fixed.

We wish to note that we are in no sense hostile to the
concept of urgency. In fact, we tested urgency models as
an additional exploratory analysis, but opted not to in-
clude these results for reasons of brevity and clarity. We
implemented two kinds of urgency model, with a linear
urgency signal proving more successful. This model was
about as good as those we present here when fitting our
behavioral data (it provided a better fit in the EEG exper-
iment, but a worse one in the TMS experiment). For
neurodynamic data, it performed very similarly to our
forced-excursion model in the EEG experiment. Its ability
to capture these data in the TMS experiment lay approx-
imately mid-way between our forced and free-excursion
classic models but did not differ significantly from either
one. Indeed, we find the concept of “urgency” to be a
useful one that somewhat overlaps our “neural gain” hy-
pothesis and finds support in the neuroscientific literature
(Thura and Cisek, 2017). Therefore, we do not claim that
our model is better supported than urgency models, either
here or in general. However, since a number of studies
evaluating the concept of an urgency signal have been
unable to support it, suggesting instead that standard
sequential sampling models can fully account for all be-
havioral data (Balci et al., 2011; Karşılar et al., 2014;
Hawkins et al., 2015a,b), we propose that forced-
excursion model variants should at least be considered as
an appropriate alternative to urgency signals, reconciling
decades of model-based support for decision boundary
variation with recent neural evidence.

Although we have argued that the simulated accumu-
lation profiles of the forced-excursion model closely re-
semble both of our neural signals, supporting the notion
of a global modulation of activity as the underlying mech-
anism explaining the SAT, there are nonetheless some
differences between the empirical and simulated profiles.
However, any model is a simplified approximation of the
true neurocognitive mechanisms and is unlikely to per-
fectly simulate any given process. This is particularly the
case for neural signals which inherently have a low signal-
to-noise ratio, such as ERPs and in particular the MEP
signal. Somewhat limited signal quality is however typical
for experiments of this nature (O’Connell et al., 2012;
Hadar et al., 2016), and we used large numbers of trials in
both experiments, producing demonstrably interpretable
neural signals. We would argue that the correspondence
between model predictions and neural data, both here
and elsewhere, is remarkable, given a class of models
originally conceived to have a largely behavioral scope
(Luce, 1986).

All neuroscientific methods have limitations. For exam-
ple, our MEP signal is derived from a technique that both
records and perturbs neural activity, with implications that
are difficult to precisely predict (Hadar et al., 2016). How-
ever, methodological triangulation is an established ap-
proach to building a convincing body of evidence. Here,
we obtained converging evidence from two fundamentally
different signals, as both corticospinal excitability and a

parietal ERP displayed qualitatively similar findings. While
there were small practical differences between the exper-
iments (e.g., one vs multiple sessions, bilateral vs unilat-
eral responses), these are unlikely to qualitatively alter the
accumulation process, and we have matched the simula-
tion of model predictions to the processing of each neural
signal to further reduce the impact of methodological
differences on our interpretation. Although the suggestion
that these signals represent decision accumulation is
recent, both signals were modulated by the difficulty ma-
nipulation, supporting this account. Furthermore, previ-
ous research using more established neural correlates of
decision-making in nonhuman primates has shown similar
findings, suggesting widespread changes in activity when
the SAT is manipulated (Heitz and Schall, 2012, 2013;
Hanks et al., 2014). Collectively, we believe these neural
findings warrant adjusting even a well-established model
(by rescaling its parameters) given that the adjustment is
purely conceptual and does not affect the behavioral fit.

A final potential concern relates to our decision to fit
models to pooled data, i.e., at the group, rather than
individual, level. Such collation may give rise to distorted
RT distributions relative to the shape of underlying indi-
vidual distributions. However, where comparisons have
been made between the mean of sequential sampling
model parameters derived from individual fits, and the
same parameters derived from a single group fit, they
have tended to suggest that the group fitting approach is
not particularly problematic (Ratcliff et al., 2003, 2004).
The procedure has been used in several recent papers
(Dmochowski and Norcia, 2015; Twomey et al., 2015).

In conclusion, we set out to explore the neural mecha-
nisms of the SAT by examining two neural correlates of
the decision variable, an MEP signal reflecting corticospi-
nal excitability and a parietal ERP component known as
the CPP. The SAT is typically explained in sequential
sampling models as a variation of the decision boundary.
Here, we tested whether this variation is visible in neural
activity or if it might instead be implemented through a
mathematically equivalent gain change in neural activity.
Our decision-related neural activity, independently sourced
from two brain networks, resembled the accumulation pro-
files predicted by a forced-excursion model variant in which
the boundary differences are transferred onto other decision
parameters. Consistent with previous studies, our results
therefore indicate that the SAT is implemented by global
changes of neural activity, but that this conceptually impor-
tant outcome does not necessarily invalidate traditional
modeling approaches.
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