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ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and

knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside

researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data be-

yond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative

(N3C), an open science community focused on analyzing patient-level data from many centers.

Materials and Methods: The Clinical and Translational Science Award Program and scientific community cre-

ated N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing

individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organi-

zations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible

collaborative analytics.

Results: Organized in inclusive workstreams, we created legal agreements and governance for organizations

and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases;

a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the se-

cure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a

synthetic data pilot to democratize data access.

Conclusions: The N3C has demonstrated that a multisite collaborative learning health network can overcome

barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 an-

alytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and

data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term

impacts of COVID-19.

Key words: COVID-19, open science, clinical data model harmonization, EHR data, collaborative analytics, SARS-CoV-2

INTRODUCTION

Rationale
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had

infected 12.6 million people—and the novel coronavirus disease

2019 (COVID-19) had caused 562 000 deaths—worldwide as of

July 11, 2020, according to Johns Hopkins University.1 Scientists

warn that recurrences are likely after the current initial pandemic,

particularly if SARS-CoV-2 immunity wanes over time.2 To curb

this trajectory, in addition to public health measures to contain the

virus as much as possible, it is crucial to gather large amounts of

data in a comprehensive and unbiased fashion.3 These data enable

the global community to understand the natural history and compli-

cations of the disease, ultimately guiding approaches to effectively

prevent infection and manage care for individuals with COVID-19.

Key challenges of a new pandemic disease include understanding

pathophysiology and symptom progression over time; addressing bio-

logical, environmental, and socioeconomic risk and protective factors;

identifying treatments; and rapidly building clinical decision support

(CDS) and practice guidelines. The pandemic raises many difficult

questions: Which drugs are most likely to benefit a given patient? What

treatments, risk factors, and social determinants of health (SDoH) im-

pact disease course and outcome? How do we develop, adapt, and de-

ploy CDS to keep up with a dynamic pandemic? To address these

questions, it is critical to analyze a high volume of reliable patient-level,

accurately attributed, nationally representative data.

Currently, the research community’s access to electronic health

record (EHR) data are limited within given organizations or consor-

tia of local and regional organizations. Research consortia such as

Accrual to Clinical Trials (ACT) Network,4 National Patient-

Centered Clinical Research Network (PCORnet),5 Observational

Health Data Sciences and Informatics (OHDSI),6 the Food and

Drug Administration’s Sentinel Initiative,7 TriNetX,8 and the re-

cently established international Consortium for Characterization of

COVID-19 by EHR (4CE)9 support querying structured data across

participating organizations using a common data model (CDM).

These networks are a vital resource for responding to the COVID-

19 crisis, revealing key patterns in the disease.9,10 However, their

distributed nature would greatly complicate certain types of analyses

that require a centralized approach to enable timely analyses. Study

questions and data queries that can be prespecified, such as testing

for associations between one or a group of comorbidities and labo-

ratory results, are often answerable using federated networks. In

contrast, centralized resources can greatly simplify implementation

of iterative processes such as training deep learning algorithms and

carrying out clustering for phenotype development.11–14 A central-

ized resource also enables rapid integration with knowledge graphs

and other translational knowledge and data sources to aid discov-
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ery, prioritization, and weighting of results. Federated machine

learning algorithms will likely ultimately play important roles in

allowing model training on distributed datasets.15–19 While these

methods show great promise, we have chosen not to pursue this ap-

proach at this time to avoid adding complexity to an already ambi-

tious project. Creating a massive corpus of harmonized EHR data

for analytics would support rapid collaboration and discovery, and

also build on the substantial resources (eg, CDM-specific data qual-

ity tools) developed within the federated consortia.

The recent retractions in The Lancet20 and The New England

Journal of Medicine21 have underscored the need for fully prove-

nanced and reproducible EHR analyses as major policy decisions

that can hinge on EHR results. Moreover, the pathway for obtaining

permissions to reuse data must be clear and well documented. The

ideal data resources are FAIR (findable, accessible, interoperable, re-

usable), particularly in a pandemic in which analyses must be fast,

verifiable, and based on the latest data.22

National COVID Cohort Collaborative overview
The National COVID Cohort Collaborative (N3C) (covid.cd2h.org)

aims to aggregate and harmonize EHR data across clinical organiza-

tions in the United States, and is a novel partnership that includes

the Clinical and Translational Science Awards (CTSA) Program

hubs (60 institutions), the National Center for Advancing Transla-

tional Science (NCATS), the Center for Data to Health (CD2H) and

the community.23 The N3C was built on a foundation of estab-

lished, productive research communities and their existing resources.

It comprises a collaborative network of more than 600 individuals

and 100 organizations and is growing. N3C enables broad access

and analytics of harmonized EHR data, demonstrating a novel ap-

proach for collaborative data sharing that could transcend current

and future health emergencies. The primary features of N3C are na-

tional collaboration and governance, regulatory strategies, COVID-

19 cohort definitions via community-developed phenotypes, data

harmonization across 4 CDMs, and development of a collaborative

analytics platform to support deployment of novel algorithms of

data aggregated from the United States. The N3C supports

community-driven, reproducible, and transparent analyses with

COVID-19 data, promoting rapid dissemination of results and

atomic attribution and demonstrating that open science can be effec-

tively implemented on EHR data at scale.

N3C is built on principles of partnership, inclusivity, transpar-

ency, reciprocity, accountability, and security:

• Partnership: N3C members are trusted partners committed to

honoring the N3C Community Guiding Principles and User

Code of Conduct.
• Inclusivity: N3C is open to any US organization that wishes to

contribute data. N3C also welcomes registered researchers from

any country who follow our governance processes, including citi-

zen and community scientists, to access the data.
• Transparency: Open and reproducible research is the hallmark

of N3C. Access to data is project-based. Descriptions of projects

are posted and searchable to promote collaborations.
• Reciprocity: Contributions are acknowledged and results from

analyses, including provenance and attribution, are expected to

be shared with the N3C community.
• Accountability: N3C members take responsibility for their activity

and hold each other accountable for achieving N3C objectives.

Figure 1. Establishing National COVID Cohort Collaborative (N3C) sociotechnical processes and infrastructure via community workstreams. Each workstream

includes representatives from National Center for Advancing Translational Sciences (NCATS),25 the Clinical and Translational Science Awards hubs,23 the Center

for Data to Health,26 sites contributing data, and other members of the research community. (1) Data Partnership and Governance: This workstream designs gov-

ernance and makes regulatory recommendations to National Institutes of Health (NIH) for their execution. Organizations sign a Data Transfer Agreement (DTA)

with NCATS and may use the central institutional review board. (2) Phenotype and Data Acquisition: The community defines inclusion criteria for the N3C COVID-

19 (coronavirus disease 2019) cohort and supports organizations in customized data export. (3) Data Ingest and Harmonization: Data reside within different organ-

izations in different common data models. This workstream quality-assures and harmonizes data from different sources and common data models into a unified

dataset. (4) Collaborative Analytics workstream: Data are made accessible for collaborative use by the N3C community. A secure data enclave (N3C Enclave),

from which data cannot be removed, houses analytical tools and supports reproducible and transparent workflows. Formulation of clinical research questions

and development of prototype machine learning and statistical workflows is collaboratively coordinated; portals and dashboards support resource, data, exper-

tise, and results navigation and reuse. (5) Synthetic Clinical Data: A pilot to determine the degree to which synthetic derivatives of the Limited Data Set are able to

approximate analyses derived from original data, while enhancing shareable data outside the N3C Enclave. ACT: Accrual to Clinical Trials; OMOP: Observational

Medical Outcomes Partnership; PCORnet: National Patient-Centered Clinical Research Network.
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Figure 2. Panel A. Regulatory steps and user access. Organizations can operate as data contributors or data users or both; contribution is not required for use. For contribut-

ing organizations, the first step is a Data Transfer Agreement (DTA) which is executed between National Center for Advancing Translational Sciences (NCATS) and the con-

tributing organization (and its affiliates where applicable). For organizations using data, a separate, umbrella/institute-wide Data Use Agreement (DUA) is executed between

organizations and NCATS. Interested investigators submit a Data Use Request (DUR) for each project proposal, which is reviewed by a Data Access Committee (DAC). The

DUR includes a brief description of how the data will be used, a signed User Code of Conduct (UCoC) that articulates fundamental actions and prohibitions on data user ac-

tivities, and if requesting access to patient-level data a proof of additional institutional review board (IRB) approval. The DAC reviews the DUR and upon approval, grants ac-

cess to the appropriate data level within the National COVID Cohort Collaborative (N3C) Enclave. Synthetic data currently follow the same procedure, but if the pilot is

successful, we aim to make access available by simple registration if provisioned by the organizations. The lock symbol references steps where multiple conditions must be

met. HIPAA: Health Insurance Portability and Accountability Act; LDS: Limited Data Set; NIH: National Institutes of Health. Panel B. Features and requirements for each level

of data in the N3C Enclave: Synthetic,35,36 De-identified data 33,34,37, and Limited Data Set, 34.
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• Security: Activities are conducted in a secure, controlled-access,

cloud-based environment, and are recorded for auditing and at-

tribution purposes.

The analytics platform or N3C Enclave, hosted by a secure Na-

tional Center for Advancing Translational Sciences (NCATS)–con-

trolled cloud environment, includes clinical data from patients who

meet criteria in the N3C COVID-19 phenotype from sites across the

United States dating back to January 2018.24 Privacy-preserving re-

cord linkage will be developed to allow association with additional

regulatory approvals to other datasets, such as imaging, genomic, or

clinical trial data. Additionally, N3C will pilot the creation of algo-

rithmically derived synthetic datasets. The N3C data is available to

researchers to conduct a broad range of COVID-19–related

analyses. N3C activities are divided into 5 workstreams as shown in

Figure 1.

DATA PARTNERSHIP AND GOVERNANCE

The Data Partnership and Governance Workstream focuses on col-

laboratively developing a governance framework to support open

science, while preserving patient privacy and promoting ethical re-

search. With this goal in mind we borrowed best practices from

prior work including centralized data sharing models—All of Us Re-

search Program researcher hub,27 Human Tumor Atlas Network,28

the Synapse platform27–32—and consulted governance frameworks

of other networks—Global Alliance for Genomics and Health,30 In-

ternational Cancer Genome Consortium,31 ACT Network.32 The

N3C governance framework was drafted and refined iteratively

with feedback from partners, especially from sites contributing data.

This framework is composed of interlocking elements: (1) a secure

analytic environment, (2) governing documents, (3) data transfer

and access request processes and the Data Access Committee, (4)

community guiding principle, and (5) an attribution and publication

policy. The regulatory steps for organizations and users are shown

in Figure 2A, which provides details on the many layers of security,

approvals, and policy-meeting required to ensure the dual goals of

the highest security for and broad usage of the data. N3C supports 3

levels of data: Health Insurance Portability and Accountability Act

(HIPAA) limited data, de-identified data, and synthetic data (see Fig-

ure 2B).33,34

Security, privacy, and ethics
N3C has designed and tested processes and protocols to protect sen-

sitive data and provide ethical and regulatory oversight. The N3C

Enclave, which provides the only external access to the combined

dataset, is protected by a Certificate of Confidentiality.38 This pro-

hibits disclosure of identifiable, sensitive research information to

anyone not connected to the research except when the subject con-

sents or in a few other specific situations. NCATS acts as the data

steward on behalf of contributing organizations.

Community guiding principles
Shared expectations and trust are essential for the success of the

N3C community. Our goal is to ensure that N3C provides the abil-

ity to easily engage and onboard to a collaborative environment, for

the broadest possible community. To this end, the workstream de-

veloped Community Guiding Principles, which describe behavioral

and ethical expectations, our diversity statement, and a conflict reso-

lution process.

Data Transfer and Data Use Agreements

The Data Partnership and Governance Workstream worked closely

with NCATS to develop 2 governing agreements: the Data Transfer

Agreement (DTA), which is signed by contributing organizations

and NCATS, and the Data Use Agreement (DUA), which is signed

by accessing organizations and NCATS. Under the HIPAA Privacy

Rule,34 a limited dataset may be shared if an agreement exists be-

tween the disclosing and the receiving parties. The NCATS DTA

and DUA meet these HIPAA requirements and include provisions

prohibiting any attempts to reidentify the data or use it beyond

COVID-19 research. The decision to cover data transfer and data

use as separate agreements was intentional, as it allows organiza-

tions to access data even if they do not contribute data.

Institutional review board oversight

Submission of data to N3C must be approved by an institutional re-

view board (IRB). To lower the burden associated with individual

IRB submissions, and in accordance with the revised Common

Rule,39 we established a central IRB at Johns Hopkins University

School of Medicine via the SMART IRB40 Master Common Recip-

rocal reliance agreement. Contributing sites are encouraged to rely

on the central IRB, but may choose to undergo review through their

local IRB. This initial IRB approval is intended to cover only contri-

bution of data to N3C and does not cover research using N3C data.

In addition, the N3C Data Enclave also requires ongoing IRB over-

sight. Because NCATS is the steward of the repository, data received

by NCATS for the N3C Data Enclave from collection (post-DTA),

maintenance, and storage is covered under an NIH IRB-approved

protocol to make EHR-derived data available for the clinical and re-

search community to use for studying COVID-19 and for identifying

potential treatments, countermeasures, and diagnostics.

Data use request and approvals
The Data Partnership and Governance Workstream and NCATS

collaboratively developed a Data Use Request (DUR) framework,

with the dual aims of protecting patient data and ensuring a trans-

parent process for data access. Our approach to data access allows

us to reduce regulatory burden on investigators, while ensuring ap-

propriate regulatory approvals are in place. There are 3 tiers of ac-

cess—Synthetic, De-identified, and Limited Dataset—as described in

Table 1.

Investigators wishing to access the data must have an N3C user

profile linked to a public ORCID (Open Researcher and Contribu-

tor Identifier).41 Access requirements and approval processes vary

depending on the level of access requested. For each project for

which a user wishes to access data, they must submit a DUR with

their intended data use statement and include a nonconfidential ab-

stract of the research project that will be publicly posted within

N3C for transparency and to encourage collaborations. Data

requesters must also sign a User Code of Conduct to affirm their

agreement to the N3C terms and conditions. The N3C Data Access

Committee (DAC), composed of representatives from the National

Institutes of Health, will review the DUR and verify that the condi-

tions for access (see Table 1) are met. The DAC will regularly en-

gage with the N3C community members and other stakeholders to

provide an opportunity for feedback and dialogue. The DAC’s role

is to evaluate DURs; it does not exist to evaluate the scientific merit

of the project.
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Attribution and publication policy
N3C community members share a commitment to the dissemination

of scientific knowledge for the public good. The Attribution and

Publication Policy extends FAIR22,42 to encompass all contributions

to the N3C. Analyses posted within the N3C Enclave leverages the

Contributor Attribution Model43 to track the transitive credit44 of

all upstream contributors. A publication committee assists in track-

ing N3C outcomes. This first N3C manuscript was developed

through an open call for contributions from the entire N3C and is

an exemplar of the Attribution Policy.

N3C data linkage
Clinical data have high utility for COVID-19–related research; how-

ever, N3C recognizes the need to analyze clinical data along with

data from other sources. Therefore, a privacy-preserving strategy

has been established to enable linkages within and external to the

N3C dataset. In this way, genomic, radiology, pathology imaging,

and other data can be analyzed in conjunction with the N3C clinical

data. It will also lay the groundwork for future studies to dedupli-

cate patients.

PHENOTYPE AND DATA ACQUISITION

The purpose of this workstream is 3-fold: (1) to determine the data

inclusion and exclusion criteria for import to N3C (computable phe-

notype); (2) to create and maintain a set of scripts to execute the

computable phenotype in each of 4 CDMs—ACT, Observational

Medical Outcomes Partnership (OMOP), PCORnet, and TriNetX—

and extract relevant data for that cohort; and (3) to provide direct

support to sites throughout the data acquisition process.

Computable phenotype definition
Given our evolving understanding of COVID-19 signs and symp-

toms, it is challenging to define stable computable phenotypes that

can accurately identify COVID-19 patients from their EHR data. To

ensure that the data in N3C encompass these varied and fluctuating

perspectives, we chose to bring together existing inclusion criteria

and code sets from a number of organizations—for example, Cen-

ters for Disease Control and Prevention coding guidance,45,46

PCORnet,47 OHDSI,48 LOINC,49 etc.—into a “best-of-breed” phe-

notype. The draft phenotype was iterated within the N3C commu-

nity and remains open to public comment. The N3C phenotype24 is

designed to be inclusive of any diagnosis codes, procedure codes, lab

tests, or combination thereof that may be indicative of COVID-19,

while still limiting the number of extracted records to meaningful

and manageable levels (see Table 2). Notably, the N3C COVID-19

phenotype purposely includes patients who tested negative for

COVID-19; thus, inclusion in the N3C cohort is not equivalent to

“positive for COVID-19,” but rather “relevant for COVID-19–re-

lated analysis” as defined by their categorization as “lab-confirmed

negative,” “lab-confirmed positive,” “suspected positive,” or

“possible positive”—see the N3C phenotype documentation24 for

detailed definitions of these categories.

To encourage maximal community input into the phenotype def-

inition, we chose to use GitHub50 to host all versions of the pheno-

type definition in both machine-readable (SQL) format and human-

readable descriptions.24 The phenotype is updated approximately

every 2 weeks, reflecting, for example, when the emergence of new

variants of COVID-19 lab tests necessitate adding new LOINC

codes, or to incorporate suggestions from the community.

Data extraction scripts
Once the N3C community agreed on the initial phenotype logic, the

initial phenotype logic was translated into SQL to run against each

of 4 common data models at participating sites: ACT, OMOP,

PCORnet, and TriNetX. Multiple SQL dialects support the different

relational database management systems in use.

The use of existing CDMs allows for rapid startup and mini-

mizes the burden of participation by contributing sites. Most CTSA

sites and many other medical centers host 1 or more CDMs. In par-

ticular, the following 4 CDMs are frequent in these communities,

and form the basis for data submission to N3C:

• ACT Network: A federated network, data model, and ontology

for CTSA sites that consists of i2b2 data repositories that are in-

tegrated by the SHRINE (Shared Health Research Information

Network)51 platform, focused on real-time querying across

sites.4

• PCORnet: The official federated network and data model for the

Patient-Centered Outcomes Research Institute52 is a U.S.-based

network of networks focusing on patient-centered outcomes.
• OHDSI: A multistakeholder, open science collaborative focused

on large-scale analytics in an international network of research-

ers and observational health databases maintaining and using the

OMOP CDM.53

• TriNetX: An international network of clinical sites coordinated

by a commercial entity (TriNetX, Cambridge, MA) providing

clinical data for cohort identification, site selection, and research

to investigators in health care and life sciences.8,54

Contributing organizations are expected to submit data using

one of these models.

N3C’s SQL scripts serve 2 functions for participating sites: (1) to

identify the qualifying patient cohort in a site’s CDM of choice and

store that cohort in a table, and (2) to extract longitudinal data for

the stored cohort into flat files, ready for transmission to the central

N3C data repository. The scripts extract the majority of the tables

and fields in each of the CDMs, with the exception of tables and

fields that are unique to a single model and cannot be successfully

harmonized. At a high level, data domains extracted by N3C in-

clude: demographics, encounter details, medications, diagnoses, pro-

cedures, vital signs, laboratory results, procedures, and social

history; specific variables included in these domains for each of the

Table 1. Scale comparison of 3 sites’ positive COVID-19 cases, their

N3C-relevant cohort, and their denominator (number of patients

seen in a 1-year period)

Site 1 Site 2 Site 3

COVID-19–positive patients as

publicly reported by sitea

2550 5540 390

N3C-relevant cohortb 67 350 46 500 12 000

Denominatorc 1 271 510 1 259 330 172 000

All numbers rounded to nearest 10.

COVID-19: coronavirus disease 2019; N3C: National COVID Cohort Col-

laborative.
aThe number of COVID-19–positive patients publicly reported by this site

as of the week of June 8, 2020.
bThe number of patients qualifying for the N3C COVID-19–relevant phe-

notype at this site as of the week of 6/8/2020.
cThe number of unique patients seen in a 1-year period at this site.
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data models can be found in each model’s documentation.55–57 Like

the phenotype definition, all scripts are publicly posted on GitHub24

for community comment and peer review.

Data transfer process
The guiding principle for these scripts is to minimize customization

at the local site level. The workstream devised 4 different methods

of data extraction and transfer (see Table 3), allowing sites to use

the technology stack with which they are most comfortable, while

complying with our guiding principles.

Once a site joins N3C and is ready to contribute data, members

of the Phenotype and Data Acquisition workstream make them-

selves available via Web-based “office hours” to onboard the new

site and explain the process for script execution and data transmis-

sion.

DATA INGESTION AND HARMONIZATION

N3C aims to support consistency in the data acquisition process

across the 4 CDMs. Simply aggregating those data together is insuf-

ficient. Not only does each model have different structures and val-

ues, but heterogeneity exists within models. The goal of the Data

Ingestion and Harmonization workstream is to align and harmonize

the syntax and semantics of data from all contributing sites into a

single data model, retaining as much specificity and original clinical

intent as possible as well as data quality and transparency. These

steps support N3C’s ultimate goal of producing comparable and

consistent data to enable effective and efficient analytics.58,59

Target data model selection
A single data model enables scalable analytics. The emergent Health

Level Seven International Fast Healthcare Interoperability Resources

(FHIR)60 standard may form a pluripotent research data model in

complete synchrony with EHR source data.61 The CD2H62 has been

working through its Next Generation Data Sharing core and cata-

lyzing the formation of the Vulcan FHIR Accelerator for Transla-

tional Research63 to advance this strategic goal. However, FHIR is

not sufficiently mature in its specification and, more pertinently, its

development of “bulk” multipatient research data transfers. The

most expedient alternative was to select among the 4 contributing

CDMs. All the CDMs enjoy large, dedicated communities continu-

ously contributing to their development, and all are valuable to

COVID-19 research. As a tactical choice, OMOP 5.3.164 was se-

lected as the canonical model of N3C due to its maturity, documen-

tation, and open source quality monitoring library, data

maintenance, term mapping, and analytic tools.65,66

Model harmonization mappings
With OMOP 5.3.1 selected as the target data model, it was first nec-

essary to map tables, fields, and value sets from ACT 2.0, PCORnet

5.1, and TriNetX to OMOP 5.3.1 to serve as a foundation for

N3C’s ETL (extract-transform-load) processes. Fortunately, as part

of the Common Data Model Harmonization67 project, CD2H and

related federal projects had initiated mapping from each CDM to

the BRIDG68 and FHIR standards. N3C was able to leverage this

previous work to jump-start the required mappings between each

CDM and OMOP 5.3.1.

N3C worked with contractors and colleagues from the Common

Data Model Harmonization project to build 2 sets of harmonization

data for each source CDM:

1. Syntactic mapping for each CDM field to a corresponding table

or field in OMOP with conversion logic

2. Semantic mapping of in which in the OMOP vocabulary each

value in each value set should be mapped.

N3C hosted numerous review and validation meetings for each

set of source-to-target mappings. All meetings included subject mat-

ter experts (SMEs) from the source CDMs, and SMEs from the

Table 2. Data extraction and transfer methods that sites may use to submit data to N3C

Human (Manual) Steps Automated Steps

R Package 1. Download the R and SQL code.

2. Configure local variables (DB connection,

schema names, etc.)

1. Run phenotype and extract scripts.

2. Extract results to individual files, following

N3C naming and structure conventions.

3. sFTP extract to N3C.

Python Package 1. Download the Python and SQL code.

2. Configure local variables (DB connection,

schema names, etc.)

1. Run phenotype and extract scripts.

2. Extract results to individual files, following

N3C naming and structure conventions.

3. sFTP extract to N3C.

TriNetX (Automated step first)

1. Download data from TriNetX.

2. sFTP extract to N3C.

1. TriNetX runs phenotype and extract scripts

on the site’s behalf.

SQL 1. Download the SQL code.

2. Configure local variables (schema names,

etc.)

3. Run phenotype script.

4. Run extract scripts, one at a time.

5. Extract results to individual files using the

N3C directory structure, naming conven-

tions, file format.

6. sFTP extract to N3C.

None

DB: database; N3C: National COVID Cohort Collaborative.
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OHDSI community. All mappings at all stages of development are

publicly available on GitHub.69

Extract-transform-load
When a participating site submits a data payload to N3C, the data

submission flows through an ETL pipeline that leverages the afore-

mentioned mappings. The pipeline is powered by Adeptia,70 a

cloud-based Platform as a Service on the secure NCATS Amazon

Web Services production cloud. Prior to loading a given data pay-

load into the production N3C database, the payload must first un-

dergo a series of data quality checks as part of the ingestion process.

This process, described subsequently, ensures that any errors can be

corrected, and that site-specific idiosyncrasies can be accounted for

and known to downstream users.

Data quality processes
In large data aggregation projects, in which many sources combine to

form a larger dataset, there are issues caused by the data heterogeneity,

which impact data quality (DQ).71,72 DQ measures, including consis-

tency, correctness, concordance, currency, and plausibility, are impor-

tant to support analysis and computation.73,74 Many large-scale data

aggregation projects benefit from focusing on a set of contextual use

cases or a defined population research domain.75–77 For N3C, we devel-

oped an approach to DQ that addresses the downstream application of

the data for machine learning and statistical analytics.

In order to establish a starting point, the N3C Data Ingestion

and Harmonization workstream became familiar with a wide array

of available DQ tools and processes. They met with SMEs from

each of the source CDMs, focusing on the DQ approaches and tools

employed in their native implementations (see Table 4). These native

approaches became a foundation on which N3C could build its own

DQ processes.

N3C ingestion and harmonization data quality checks
The Data Ingestion and Harmonization workstream developed

strategies to assess and improve DQ within the N3C ingestion pipe-

line. This group considered (1) what DQ requirements were appro-

priate for N3C, (2) which tools and methods could be used to

support DQ, and (3) where in the ingestion pipeline DQ checks

should be instantiated.

In these discussions, the group agreed that a “light touch” was the

best approach to DQ for N3C; to pass along the data as they are, and

only in some cases make “cleaning” corrections. These cleaning steps

would seek to correct the data only to the extent required to support

computation and OMOP data model conformance. The exception to

this are data related to COVID-19 tests, as we anticipate variance in

how organizations code COVID-19 tests, particularly in the very early

stages of the pandemic. Owing to the criticality of these data for N3C,

we corrected erroneous coding using text data indicating COVID-19

status, which would otherwise be lost.85

To ensure that data loss was minimized in the data transforma-

tion process, we made the decision to retain the raw source data dur-

ing and after the mapping and transformation process to preserve

contextual details about the data for meta-analyses downstream.

Additional detail about the N3C Data Quality Checks and ingestion

process is provided in Figure 3.

COLLABORATIVE ANALYTICS AND THE N3C
ENCLAVE

The goals of the Collaborative Analytics workstream are to ensure

secure stewardship of N3C data; design and disseminate analyses;

integrate community tools and resources; provide tracking and attri-

bution of users, results, and contributions; and enable novel

approaches to data sharing (Figure 4).

A “data enclave” is a secure data and computing environment,

designed to facilitate virtual access to hosted data with safeguards to

prohibit or limit data export.86 The N3C Enclave meets this defini-

tion as a virtual, secure, cloud-based data enclave—controlling user

access with regulatory and technical protections, and prohibiting the

download of patient-level data from the N3C environment—while

enabling COVID-19 analysis by the research community. The N3C

Enclave is managed by NCATS, which serves as the legal custodian

of all data within the environment (see Governance). Hosted within

the N3C Enclave is Palantir Foundry, a data science platform en-

abling complex and reproducible analysis using standard open-

source, analytical packages in languages such as Python, R, SQL,

and Java, as well as point-and-click and dashboard-style analytical

tools. Standard packages for statistical analysis and machine learn-

ing, such as Tensorflow, scikit-learn, and others are available, and

backed by Apache Spark allowing operations at very large data

scales. Community-contributed tools and resources are also being

made available, the first deployments are listed in Table 5.

The platform is certified as FedRAMP (Federal Risk and Autho-

rization Management Program) Moderate,100 a government security

standard for unclassified but highly sensitive data. To enable re-

search collaboration on sensitive EHR data, the N3C Enclave sup-

ports fine-grained access controls and auditing mechanisms,

allowing multiple users to work securely in a single system. The sys-

tem provides “limited realms,” where users are granted access to

Table 3. Data quality tools and methods evaluated

Tool Type Tool

Native CDM DQ Processes PCORnet Data Check Scripts (v8.0)78

ACT “Smoke” tests79

TriNetX Focused Curation Process

Adeptia Platform Processes Process automation support80

Data & Map validation functions81

OHDSI Collaborative Tools Data Quality Dashboard Data quality tests of OMOP databases77

Atlas Design/execute analytics on OMOP databases82

Achilles Data characterization of OMOP databases83

White Rabbit ETL preparation and support84

Custom Scripts SQL, R

ACT: Accrual to Clinical Trials; CDM: common data model; DQ: data quality; ETL: extract-transform-load; OHDSI: Observational Health Data Sciences and

Informatics; OMOP: Observational Medical Outcomes Partnership; PCORnet: National Patient-Centered Clinical Research Network.
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specifically designated data and resources such as Limited Data Set

(LDS) and de-identified data. Additional security and auditing

mechanisms include the ability to limit patient-level data access;

read and write access to datasets; and user access, auditing, and trac-

ing.

As outlined in Figure 2, investigators have restricted access to

LDS data without project specific IRB reviews. This is mediated by

the designation of a few software agents, such as cross tabulation,

logistic regression, mapping and other related visualizations, as hav-

ing privileged access to the LDS data in a manner that (1) prohibits

users from seeing the underlying patient-level data and (2) inhibits

the display of tables or cells that comprise <10 patients. Through

this enclave functionality, secure analyses of data containing limited

Personal Health Information (PHI) (LDS) can proceed without

compromising privacy or confidentiality. The outputs from these

specially designated software packages are regarded as results, and

are not subject to human subjects data restrictions.

Transparency and reproducibility are fundamental to the pre-

scribed use of the N3C Enclave.101 The platform automatically

builds a provenance graph for every dataset and analysis. Each arti-

fact in the platform is stored as an immutable object, enabling full

Git-like traceability on all changes. Each workflow includes exten-

sive metadata describing all of the inputs, the user who triggered it,

the build environment, and the required packages. Researchers can

confidently share results as “reports,” which include a precise record

of how they were generated, allowing other researchers to replicate

and build on the analyses. Key capabilities are the following:

• Raw data provenance: Support for provenance capture of

imported data, and recording of metadata for understanding the

origins of each dataset.
• Data lineages: Data transformations recorded as a dependency

graph, enabling full (re)construction of data lineage.
• Versioning: Data versioning, allowing full analytical reproducibil-

ity.
• Validation and errors: Runtime characteristics monitored and

recorded.
• Attribution: Fine-grained attribution of individuals, groups, and

organizations and a record of their contributions according to

the Contributor Attribution Model (Figure 5).

SYNTHETIC CLINICAL DATA PILOT

The creation of synthetic clinical data represents a unique opportu-

nity for N3C to more widely disseminate and provide greater utility

for the N3C dataset. Current state-of-the-art approaches for the gen-

eration of synthetic clinical data can be broadly classified as:

Figure 3. National COVID Cohort Collaborative (N3C) Data Quality Checks. At the sites, the extraction script performs a check for duplicate primary keys; if dupli-

cate keys are found, the extraction fails until the site resolves the error. When extraction is successfully completed, a data “manifest” is created that contains

metadata about the site and the payload. Site personnel then sFTP the data to N3C to be queued for ingestion. The first step in the ingestion process checks that

the payload is consistent with the formatting requirements and the manifest file. Next, the payload is loaded into a database modeled after the payload’s native

common data model (CDM), which ensures source data model conformance. Next, a series of data quality checks including a subset of coronavirus disease 2019

(COVID-19)–specific code validations are performed, and if needed, minimal corrections are made. Any corrections are recorded and added to the payload docu-

mentation. Next, the payload is transformed to Observational Medical Outcomes Partnership (OMOP) 5.3.1 using the validated maps from the payload’s native

CDM. Once in OMOP 5.3.1, a subset of the Observational Health Data Sciences and Informatics (OHDSI) Data Quality Dashboard tests are run, and the results of

these are added to the payload documentation. The payload is then exported to a merged database containing all the previously harmonized site data payloads,

where it is then checked for conformance again before export to the analytics pipeline. DC: Data Characterization; DQD: Data Quality Dashboard.
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• Statistical simulation: Statistical models or profiles of normal hu-

man physiology or disease states are created based on real-world

data. The ensuing simulated patients and their data are generally

consistent with population-level norms.102–104

• Computational derivation: Computational models of real-

world data are produced on demand, which can be used to

produce novel data in a multidimensional space (eg, features)

that adhere to the quantitative distributions and covariance

Figure 4. National COVID Cohort Collaborative (N3C) Enclave. The analytical environment for N3C is a secure, virtualized, cloud-based platform. Within the N3C

Enclave, researchers have access to raw data, as well as transformed and harmonized datasets derived by other researchers. Analytical tools hosted within the

environment support complex ETL (extract-transform-load), generation of coronavirus disease 2019 (COVID-19)–specific data elements, statistical analysis, ma-

chine learning, and rich visualizations. Third-party tools contributed by the community can be integrated into the environment; current tools include Observa-

tional Health Data Sciences and Informatics (OHDSI) tools and the Leaf patient cohort builder. N3C is developing methods for integration of genomic, imaging,

and other data modalities.

Table 4. Examples of community contributed tools integrated within the N3C computing environment

Tool Description

OHDSI Atlas OMOP-optimized tools for cohort querying and analysis. Data quality; data and cohort definition; rapid

and reliable phenotype development87; phenotype performance evaluation88; integration of validated

phenotypes definitions into study skeletons that learn and validate predictive models89; and execute a

variety of comparative cohort study designs using empirically validated best practices.90–92

LOINC2HPO Mapping of LOINC-encoded laboratory test results to HPO. Interoperability for lab results or radio-

logic findings with OMOP CDM; phenotypic summarization for use in machine learning algo-

rithms, semantic algorithms, and knowledge graph-based applications.93

NCATS Biomedical Data Translator Translational integration with basic research data and literature knowledge. Symptom-based diagno-

sis of diseases linked to research-based molecular and cellular characterizations94–96; suite of

resources include the Biolink Model,97 a distributed API architecture, and a variety of KGs cover-

ing a range of biological entities such as genes, biological processes, and diseases; the KG-COVID-

1998 knowledge graph also includes literature annotation.

Leaf Web-based cohort builder. Study feasibility for clinician investigators with limited informatics

skills99; hierarchical concepts and ontologies to construct SQL query building blocks, exposed by

a simple drag-and-drop user interface.

API: application programming interface; CDM: common data model; HPO: Human Phenotype Ontology; KG: knowledge graph; N3C: National COVID Co-

hort Collaborative; NCATS: National Center for Advancing Translational Sciences; OHDSI: Observational Health Data Sciences and Informatics; OMOP: Ob-

servational Medical Outcomes Partnership.
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of the original source data. When generating these types of

models, data content and statistical features are a function of

the input dataset. The process can be repeated multiple times

with the same source data, enabling the production of multi-

ple derivative synthetic datasets. Further, such computation-

ally derived synthetic datasets do not share mutual

information with source data, minimizing the potential for

reidentification.35,36,105–107

N3C has launched a pilot to evaluate the creation of synthetic

data from the N3C LDS, and will focus on validating the synthetic

data for key analyses against those performed on the LDS in areas

such as identifying patients for whom COVID-19 testing can or

should impact clinical management; anticipating severity of disease,

risk of death, and potential response to therapies; and geospatial an-

alytics for enhanced insights into geographic hotspots and for quan-

tifying the contribution of zip code–level SDoH in predictive

analytics.

DISCUSSION

Analytical innovation and open science on sensitive

data

The N3C architecture, dataset, and analytic environment is a power-

ful platform for developing machine learning algorithms, statistical

models, and clinical decision support tools. Analytic models are able

to use time series, clinical, and laboratory information to predict pro-

gression, assess need and efficacy of clinical interventions, and pre-

dict long-term sequelae. Researchers are able to leverage both “raw”

EHR data, and carefully curated derivatives, building on the work of

prior or parallel studies. The platform also supports translational in-

formatics by making available basic research data and knowledge in

the form of knowledge graphs and related tools, mined and anno-

tated literature, and clinical EHR data in the same analytical space.

Semantic interoperability enables questions to aid drug and mecha-

nism discovery efforts such as, “What protein targets are activated by

drugs that show effectiveness among patients with COVID-19 infec-

tion? What genetic variants are associated with recovery from

COVID-19 infection? What biological pathways contribute to dis-

ease severity among patients infected with COVID-19?”

The N3C Attribution Policy130offers an innovative model for

deeply collaborative analytics on clinical data, promoting open and

transparent research practices on sensitive EHR data at scale. Recent

high-profile manuscript retractions in prominent journals underscore

the imperative for transparency and reproducibility in COVID-19 re-

search.20,21 Attribution is native to the system, and supports the no-

tion of transitive credit44 for all contributors. Investigators are

encouraged to prespecify hypotheses or other study goals in a publicly

available and versioned study protocol and to maintain full documen-

tation of all code and protocol revisions in order to mitigate the risk

of p-hacking and promote the legibility and traceability of all major

study design and analytic choices.108 The N3C Enclave allows and,

indeed, requires sharing of software, results, and methods. It is our

belief that by allowing the research community to work together in

this way, we are able to rapidly increase our collective understanding

of COVID-19 and identify effective approaches for prevention and

treatment, ultimately curbing the effects of this pandemic on our na-

tion and world.

Status of data availability within the N3C enclave
As of November 11, 2020, 72 sites have now executed data transfer

agreements (DTA’s); of these sites, 40 have deposited data in the

N3C Pipeline (10 OMOP, 13 PCORnet, 10 TriNetX, 7 ACT. Of

these 40 sites, 27 have Data Released in N3C Enclave. Additionally,

researchers from over 120 institutions can begin analyzing these

data as their institutional data use agreement (DUA) is in place. Col-

lectively these released data now contain more than 1.4 billion rows

and more than 200,000 COVID-positive patients.

Figure 5. The Contributor Attribution Model. In the National COVID Cohort Collaborative Enclave, the Contributor Attribution Model is used to aggregate all contri-

butions to any given workflow or report generated with a specific declaration of what exactly each person contributed, supporting the notion of transitive credit.44

ORCID identifiers are used to identify users. An example contributor to an artifact used in the National COVID Cohort Collaborative is shown on the lower panel.
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What kinds of analyses are enabled?
COVID-19 has proven to be a novel, heterogeneous disease, particu-

larly in terms of range of symptoms and signs, severity, and clinical

course. By integrating data from multiple sites, we enable research-

ers to explore questions with vastly more statistical power than is

achievable at individual sites and to use machine learning methods

at scale.

N3C enables us to address several important questions related to

the diagnosis and management of COVID-19. For example, how are

different types of antigen and antibody tests for SARS-CoV-2 being

used across the country? What other laboratory and imaging proto-

cols are being used in conjunction with viral testing in ambulatory,

urgent care, and emergency department environments? How effec-

tive is convalescent plasma in COVID-19 treatment? What are the

markers for and best practices to prevent COVID-19–related clot-

ting disorders? What are the best practices for inflammatory moni-

toring prior to cytokine storm syndrome? The first 3 of these might

be answerable in a federated network, but the last 2 require a cen-

tralized data resource such as N3C.

N3C is a well-suited resource to clinically characterize and

deeply phenotype a very large cohort of patients with COVID-19. In

addition to frequently reported metrics such as rates of hospitaliza-

tion and intensive care unit admission, ventilator, and renal replace-

ment therapy utilization, these analyses can assess variation in

duration of need for intensive clinical support. Detailed temporal

analyses of the progression of respiratory and other organ system

dysfunctions are possible. Prevalence and predictors of complica-

tions such as cardiomyopathy, thrombosis, acute kidney injury, hyp-

oxemia, stroke, and delirium can be evaluated. For populations with

rare complications, such as the emergence of Kawasaki disease-like

inflammatory symptoms, a centralized dataset provides the statisti-

cal power to characterize emerging adverse effects. Once accurate

models to predict complications are available, tools can be imple-

mented for prevention, early detection, and intervention. For predic-

tion tasks based on longitudinal data, a variety of methods based on

recurrent neural network architectures can be leveraged.109 To char-

acterize patient subtypes, tensor factorization approaches have been

shown to be quite effective for similar tasks.110 Accurate machine

learning–based CDS tool development requires algorithm optimiza-

tion, a process that is greatly facilitated by a centralized data re-

source.

Detailed medication and other clinical data in N3C also enable

analyses of treatment pathways and patient response. These analyses

can encompass medications received prior to and concurrent with

the disease course as well as specific drug therapies, such as antivi-

rals like remdesivir or hydroxychloroquine, tocilizumab, corticoste-

roids, broad-spectrum antibiotics, antifungals, and therapeutic

anticoagulation. They can also provide evidence for best practices in

clinical care such as supplemental oxygen, proning,111 noninvasive

positive pressure ventilation, invasive ventilation, and extracorpo-

real membrane oxygenation. N3C will be well-positioned to gener-

ate immediately testable hypotheses about combinations and

sequences of therapies, helping researchers to better design, priori-

tize, and analyze randomized trials. Analyses can take into account

known outcome predictors including (1) medical history, comorbid-

ities, and indicators such as hypertension, diabetes, and body mass

index; (2) progression of vital signs; and (3) laboratory data such as

electrolytes, markers of organ dysfunction, measures of inflamma-

tion, and indicators of possible thrombosis or approaching cytokine

storm.112 Investigators can develop tools to predict treatment re-

sponse based on these analyses. Clinicians could match a patient’s

phenotype to 1 or more distinct groups of patients in the N3C data-

set with known clinical outcomes. Such patient matching can be

done at the point of care and provide real-time precision reference

information for CDS, potentially based on patient similarity learn-

ing.113 Furthermore, N3C facilitates the use of specific algorithms

that can increase the unbiased selection of cohorts that have com-

plete data, and which can be applied to most EHR studies.114,115

The size and national coverage of N3C data make it a unique

source of COVID-19 data for population health segmentation and

risk stratification. Segmenting the population for the risk of various

outcomes (eg, clinical, utilization) allows more efficient and effective

resource allocation and interventions116 as well as enable healthcare

providers to measure and balance the risk of COVID-19 complica-

tions vs other clinical conditions and morbidities. For example, iden-

tifying patients who will benefit the most from the anticipated

COVID-19 vaccination is of utmost importance.117 Assessing het-

erogeneity of treatment and vaccine effect at the scale necessary is

facilitated by the centralized nature of N3C.

The pandemic has amplified and exacerbated the effects of sys-

temic racism and long-standing social and economic disparities on

health and healthcare.118–121 N3C-based studies can support health-

care providers to identify clinical outcome disparities and SDoH, as

well as to help public health officials and policy makers to identify

inequalities on a systemic level (eg, analyzing statewide claims or

EHR data using models developed based on N3C data). The N3C

can expedite analytics regarding the impact of COVID-19 on different

segments of the population, including racial and ethnic groups, rural

population, children, pregnant women and newborns, and residents

of communal living. Several sites are contributing structured data

about the SDoH (eg, race, ethnicity, zip code), and geo-derived SDoH

factors or environmental pollution can also be associated based on

the zip code. N3C also provides a unique opportunity to enhance the

role of data science and population health informatics in bridging the

gap between clinical care, public health, and social services122; thus,

collectively aiming for predictive models promoting equity for all mi-

norities123 in the current and potential future COVID-19 outbreaks.

Integrating data from multiple clinical research systems has

proven effective for estimating potential research cohorts, identifying

eligible patients, supporting current studies, and enabling new analy-

ses.61,124 However, there are a number of caveats and N3C is no ex-

ception. Patient care data and the processes that generate and capture

them differ from good research practices.125 EHR data captured in

real time are often wrong (eg, incorrect diagnosis) or may have origi-

nated from a different patient. The available data may not convey the

complete clinical picture due to fragmentation of patient care. For ex-

ample, a patient’s initial coronavirus test results may be performed

by a government laboratory and not transmitted to the patient’s

EHR. Finally, patient care data rarely have completeness, reliability,

granularity, and competent coding found in good, prospective clini-

cal studies. This is not to say that research using the N3C Enclave

will be flawed. The sheer magnitude of the dataset provides a buffer

against the effects of systematic reporting bias. A number of methods

can be used for considering data from multiple institutions, for exam-

ple, by applying methods used in meta-analysis.126

CONCLUSION

N3C has been driven by passionate individuals through a compli-

cated world of regulation and habituation by healthcare organiza-

tions. By opening the door to a broad analytic community, we bring

to the table new skill sets, diverse viewpoints, and additional oppor-
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tunities for novel approaches. N3C is driving new standards in

openness for collaboration on sensitive clinical data, and builds on

the infrastructure developed nationwide over the past decades.

Specifically, the N3C model will continue to be refined and

streamlined to provide a scalable approach that can be leveraged to

help manage future waves of COVID-19, unforeseen novel diseases,

and other major health crises, as well as long-standing challenges in

health care. While N3C is focused on the United States, this is a

global pandemic and we must identify ways to collaborate with

other international groups who are building similar infrastructure

for a global approach; such conversations are underway.127,128
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