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Tumorigenesis is a complex multifactorial and multistep process in which tumors can
utilize a diverse repertoire of immunosuppressive mechanisms to evade host immune
attacks. The degradation of tryptophan into immunosuppressive kynurenine is considered
an important immunosuppressive mechanism in the tumor microenvironment. There are
three enzymes, namely, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-
dioxygenase 1 (IDO1), and indoleamine 2,3-dioxygenase 2 (IDO2), involved in the
metabolism of tryptophan. IDO1 has a wider distribution and higher activity in catalyzing
tryptophan than the other two; therefore, it has been studied most extensively. IDO1 is a
cytosolic monomeric, heme-containing enzyme, which is now considered an authentic
immune regulator and represents one of the promising drug targets for tumor
immunotherapy. Collectively, this review highlights the regulation of IDO1 gene
expression and the ambivalent mechanisms of IDO1 on the antitumoral immune
response. Further, new therapeutic targets via the regulation of IDO1 are discussed. A
comprehensive analysis of the expression and biological function of IDO1 can help us to
understand the therapeutic strategies of the inhibitors targeting IDO1 in malignant tumors.
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INTRODUCTION

Tryptophan (Trp) depletion and kynurenine (Kyn) production promote immunosuppression in
different tumor types (1, 2). Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first and rate-
limiting enzyme of the essential amino acid Trp catabolism and degrades Trp along a pathway
known as the Kyn pathway. In this cascade of enzymatic reactions, several biologically active
metabolites are produced, such as Kyn, an immunosuppressive metabolite. Finally, nicotinamide
adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) in this process are produced to
fuel cellular metabolism (3, 4). The main theory about the function of IDO1 is that Trp availability is
locally reduced while bioactive metabolites such as Kyn are increased, which mediate immune
regulation and immune tolerance involved in the pathological mechanisms of tumor immune
escape. In recent years, with the deepening research, the IDO1 function is more complex than
org December 2021 | Volume 12 | Article 8006301
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initially assumed. IDO1 is not only an enzyme but also a
mediator of a signaling pathway to sustain the regulatory
phenotype of a specific set of immune cells (5), which may be
associated with the protein conformations of IDO1 in the cells
responding to the distinct context (6). Therefore, a full
understanding of the expression of IDO1 and biological
function may provide more effective immunotherapeutic
approaches for a wide range of malignant tumors. Besides
IDO1, it has been shown that the other two types of
isoenzymes, tryptophan 2,3-dioxygenase (TDO) and
indoleamine 2,3-dioxygenase 2 (IDO2), catalyze the same
biochemical reaction. However, TDO and IDO2 show higher
tissue specificity and much lower enzyme activity than IDO1 that
significantly restrict their function in immune regulation. The
main role of TDO is involved in maintaining the homeostasis of
Trp level and plays a key modulator in brain disease (4, 7, 8).
IDO2 was identified as its high homology with IDO1, but the
expression and precise activity of IDO2 have not been well
elaborated in human tissue due to lower enzyme activity and
complexity of human IDO2 transcription (9). Accordingly, this
review mainly describes the immunosuppressive mechanisms of
IDO1 in tumors.
BASIC FEATURES OF INDOLEAMINE
2,3-DIOXYGENASE 1

IDO1, also known as IDO in the literatures (5, 10), was first
identified in rabbit small intestines in 1967. In 1998, IDO1 was
described as a molecule associated with immunosuppression in
maternal–fetal tolerance (11). It was not until 2006 that the
crystal structure of human IDO1 (hIDO1) was first reported
(12). In 2017, Lewis-Ballester et al. reported that the crystal
structure of the hIDO1–Trp complex and revealed interaction
sites of hIDO1 with Trp substrate (13). The resolution of the
crystal structure of hIDO1 has shown that it is folded into two
domains, including a catalytic large C-terminal domain and a
non-catalytic small N-terminal domain, which was connected by
a long loop. IDO1 protein contains 403 amino acids, which are
intracellular heme-containing dioxygenases (also known as
metalloproteins) and encoded by INDO (human chromosome
8p22). Its catalytic activity requires the prosthetic group heme.
Along with inactive heme-Fe3+ being reduced into active heme-
Fe2+, IDO1 catalyzes the oxidative cleavage of Trp to produce the
intermediate product N-formylkynurenine, which is further
hydrolyzed to Kyn. By using Trp depletion and Kyn
production, IDO1 is considered as an immunomodulatory
enzyme involved in anti-inflammation, tumor immune escape,
and immunoregulation to promote maternal tolerance toward
the allogeneic fetus, suppressing transplant rejection, regulating
autoimmune disorders, and so on. In addition to its enzyme
activity, a signaling function has recently been described for the
phosphorylated form of immunoreceptor tyrosine-based
inhibitory motifs (ITIM1 or ITIM2), located at sites in the
small non-catalytic domain and the interconnecting loop of
IDO1 protein. Albini et al. confirmed that ITIM-related
Frontiers in Immunology | www.frontiersin.org 2
phosphorylation could upregulate or downregulate IDO1
expression in interleukin-6 (IL-6) or transforming growth
factor-b (TGF-b)-dominated environments, which suggest
that the ITIMs in IDO1 not only control its own stability
but also participate in a self-maintaining immunological
modulation (14). Therefore, the appropriate regulation of
the phosphorylation of ITIMs of IDO1, leading to either
enhancing or terminating the expression of IDO1, may provide
some innovative strategies in treating malignant tumors.
Recently, a separate study confirmed that IDO1-dependent
signaling events would activate class IA phosphoinositide 3-
kinases (PI3Ks) to produce immunoregulatory phenotype in
plasmacytoid dendritic cells (pDCs), accompanied by IDO1
shifting from the cytosol to early endosomes (15). In
conclusion, the available evidences indicate that the IDO1 is
not only an enzyme in the Kyn pathway but also a moonlighting
protein that mediates non-catalytic functions through different
mechanisms (16).
THE EXPRESSION AND ACTIVITY OF
INDOLEAMINE 2,3-DIOXYGENASE 1

The Constitutive/Intrinsic Expression of
Indoleamine 2,3-Dioxygenase 1
IDO1 is not or weakly expressed under physiological states. It is
constitutively expressed in a restricted set of tissues, including
the placenta, the mucosa, and lymphoid organs (https://www.
proteinatlas.org/ENSG00000131203-IDO1/tissue). For example,
IDO1 is mainly expressed in the endothelial cells of the placenta,
epithelial cells of the fallopian tube, interstitial cells of the lymph
node, and so on (17). Interestingly, some data confirmed that
IDO1 expression was increased in select tissues with age (18).

Although IDO1 expression is often silent in normal tissues, the
IDO1 expression/activity has been observed in malignant cells.
The loss of Bridging Integrator 1 (BIN1; with the features of
immunosuppression) or overexpression cyclooxygenase-2 (COX-
2) in malignant cells is usually the reason for high constitutive/
intrinsic expression of IDO1. The deletion or downregulation of
BIN1 in malignant cells enhances IDO1 expression depending on
signal transducer and activator of transcription 1 (STAT1) and
nuclear factor-kappa B (NF-kB) (19). On the contrary, high BIN1
expression has a favorable prognosis in cancer (20). The up-
expression of COX-2 increases its product prostaglandin E2
(PGE2) binding to the EP receptor through the autocrine
signaling pathway, which activates IDO1 via the protein kinase
C (PKC) and PI3K pathways (21). Indeed, genetic studies of IDO1
in the mouse suggested there was genetic overlap between COX-2
and IDO1 (22). Litzenburger et al. suggested that constitutive
IDO1 expression in human tumor cells was sustained by an
autocrine aryl hydrocarbon receptor (AhR)-IL-6-STAT3
signaling loop (23), although the clinical data revealed that
the upregulated expression of IDO1 in various human tumor
tissues, such as esophageal cancer, thyroid carcinoma, and
leiomyosarcoma, was considered to be a worse prognostic factor
and a more aggressive tumor phenotype (24–26). However, there
December 2021 | Volume 12 | Article 800630
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was still controversy about the relationship between high
expression of IDO1 in tumor-draining lymph nodes (TDLN)
and poor clinical outcomes (17, 27).

In summary, there may be some discrepancies in IDO1
expression profiles in different tumor types. Nonetheless,
constitutive IDO1 expression in tumor cells is still a key factor
to mediate immune evasion, and thus exploring the mechanism
of up-expression may guide and pre-evaluate the efficacy of
therapeutic approaches by targeting IDO1.

The Induced/Extrinsic Expression of
Indoleamine 2,3-Dioxygenase 1
As noted above, the IDO1 expression is constitutive in some
tumor cells. However, it could be also induced to express in
tumor cells and intratumoral cells, including DCs, macrophage,
endothelial cells, cancer-associated fibroblasts (CAFs), and
mesenchymal stem cells (MSCs) (28–34), by a variety of
inflammatory stimuli, such as interferon-g (IFN-g), tumor
necrosis factor-a (TNF-a), IL-32, and IL-6 (33, 35–37).
Among the multiple mediators of IDO1 induction, IFN-g is
considered the main inducer of IDO1. Interestingly, tumor-
infiltrating lymphocytes (TILs) of the tumor microenvironment
(TME) represent the major source of IFN-g secretion (38–40).
IFN-g inducing IDO1 expression has been extensively studied.
For instance, IFN-g mediates STAT1 to form a homodimer and
then binds to the gamma activation sequence (GAS) in IDO1
gene. Meanwhile, IFN-g also mediates NF-kB and STAT-1-
dependent synthesis of IFN-g-regulated factor 1 (IRF1), which
binds to the IFN-stimulated elements (ISREs) in IDO1 gene
promoter to induce the transcription of IDO1 (41).

In addition to IFN-g, there are other cytokines involved in the
induction of IDO1. Multiple myeloma cell-derived IL-32g
significantly induced the production of the IDO1 in
macrophages through proteinase 3 (PR3) and the downstream
STAT3 and NF-kB pathways (33). However, the role of IL-6 in
inducing the expression of IDO1 is controversial. It was reported
that constitutive IDO1 expression in SKOV-3 and NSCLC
human cancer cell lines was sustained by autocrine IL-6 (23).
Hepatic CAF-derived IL-6 also differentiated DCs into a
regulatory subtype through STAT3 activation (42). In contrast,
IL-6 induced IDO1 proteasomal degradation by selectively inducing
the interaction between SOCS3 and ITIM of IDO1 in DCs (14, 43).
The conflicting results of the IL-6 effect on IDO1 expression suggest
that there are different signals in different cells or the complicated
environment involved in its expression, which need to be well
illustrated in the future.

So far, there are other factors and signaling events involved in
IDO1 expression/activity in DCs that have been extensively
analyzed. It was reported that tumor cells promote tolerization
of DCs through paracrineWnt5a-mediated signaling. Melanoma-
derived Wnt5a promotes the transcriptional expression of IDO1
in nearby DCs by Wnt5a-b-catenin signaling and activates
peroxisome proliferator-activated receptor-g (PPAR-g) signaling
pathway, culminating in enhanced IDO1 activity to establish an
immunosuppressive microenvironment (44). Cytotoxic T
lymphocyte-associated protein-4-immunoglobulin (CTLA-4-Ig)
Frontiers in Immunology | www.frontiersin.org 3
interacts with B7 molecules as receptors to induce IDO1
expression in DCs (45). TGF-b could trigger immunoregulatory
signaling in IDO1, which did not require the catalyst function of
IDO1 to induce pDCs for long-term tolerance (5, 14).
Interestingly, spermidine, a main arginase 1 (Arg1) product, is
required for IDO1 expression and activity by TGF-b in DCs (46).

In addition to the inducers described above, type I IFNs
(IFN-a and IFN-b), IL-10, soluble CD83 (sCD83), and toll-like
receptor (TLR) ligands such as bacterial lipopolysaccharides
(LPSs) are still involved in the modulation of IDO1
expression/activity (47–52). When mitochondrial Lon is
overexpressed in oral cancer cells OEC-M1, mitochondrial
DNA (mtDNA) is damaged, and then oxidized mtDNA is
released into the cytosol to induce IFN-b signaling via
cytosolic DNA sensors, which upregulates the programmed
death ligand-1 (PD-L1) and IDO1 expression (50). Aside
from all this, miRNAs are also involved in the regulation of
IDO1 expression. In vitro, cervical cancer cells secreted exosomal
miR-142-5p, which induces IDO1 expression via targeting
lymphatic AT-rich interactive domain-containing protein 2
(ARID2) to enhance IFN-g transcription by suppressing
promoter methylation (53). On the contrary, miR-153
expression in bladder cancer cells could exert antitumor
activity by targeting IDO1 3′-UTR and inhibiting cancer cell
Trp metabolism subsequently (54).

Collectively, a great variety of stimuli can affect either directly
or indirectly IDO1 expression and activity in different cell types
in TME. However, the proportion of these cell types may differ in
different tumors and tissues, the exact mechanisms for the
distinct expression patterns of IDO1 are only partially revealed,
and the functions of overexpressed IDO1 in these cell types are
far from completely understood. It is notable that the complex
interaction between tumors cells and other cells, especially
immunity cells in TME, contributes substantially to exploring
the strong IDO1 expression and its particular function.

Indoleamine 2,3-Dioxygenase 1
and Tryptophan Metabolism
Trp is one of the eight essential amino acids that cannot be
synthesized in the human body. In addition to being a building
block for proteins synthesis, Trp undergoes complex metabolic
pathways, resulting in the production of many active compounds.
Less than 2% of Trp is hydroxylated to produce 5-
hydroxytryptophan, which is then decarboxylated by an aromatic
amino acid decarboxylase to produce 5-hydroxytryptamine (5-
HT), an essential neurotransmitter. A very small percentage of Trp
can be decarboxylated to produce tryptamine to control the
balance between excitatory and inhibitory functions of 5-HT.
About more than 95% of the Trp is catalyzed by IDO1 or the
other two isoenzymes (IDO2 or TDO), which catalyzes the Trp via
the Kyn pathway to produce Kyn (55). Kyn is a key component
in the synthesis of a number of metabolites, which could convert
into 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid
(3-HAA), and quinolinic acid. Quinolinic acid finally undergoes
a series of chemical reactions to produce NAD+, an important
cofactor for redox reactions in mitochondria, while excess carbon
December 2021 | Volume 12 | Article 800630
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skeletons from the Kyn pathway eventually participate in the citric
acid cycle to produce ATP. The depletion of Trp and production of
Kyn through the Kyn pathway affect the immune cell metabolism
and tumor characteristics. It has been confirmed that the IDO1–
Kyn–ligand-activated transcription factor (AhR) pathway in
thyroid cancer cells would facilitate epithelial-to-mesenchymal
transition (EMT) (56), while Kyn depletion in vivo would reverse
IDO1-mediated cancer immune suppression in an animal
model (57).

Although IDO1, IDO2, and TDO may catalyze the same
biochemical reactions in the metabolism of Trp, they have
different tissue distribution and physiological functions. Unlike
IDO1, TDO is mainly found in the liver and neuronal cells and is
regulated by glucocorticoid hormones and Trp levels. The main
role of TDO is to maintain homeostasis of dietary Trp levels, and
there is also evidence that TDO plays a role in immune-related
diseases and central nervous system disorders (58, 59).
Nevertheless, the recent studies revealed that TDO could be
involved in modulating antitumor immune responses and the
antitumor immunotherapy efficacy (60, 61), but it did not
colocalize with IDO1, at least, in human glioblastoma (62). In
most cancers, such as glioblastomas, melanomas, colon
carcinomas, lung carcinomas, and endometrium carcinomas,
TDO could be detected in pericytes that belonged to
morphologically abnormal vessels in the intratumoral rather
than tumor cells themselves (62), although the mechanism that
triggers TDO expression in tumor pericytes and the relationship
between TDO-expression pericytes and abnormal vessels are all
unclear, which suggests that TDO may play a proangiogenic role
depending on its expression site in certain cancer types. IDO2 is
directly adjacent to IDO1 on the same chromosome, is more
narrowly expressed, and has much less catalytic efficiency for Trp
than IDO1 (63). Although IDO2 was also detected at high levels
in some human tumors, the function of IDO2 in tumors is still
far from being understood (64, 65). The available evidences
support that IDO1, TDO, and IDO2 may be all involved in
malignant tumor, but the three differ in the expression,
regulatory mechanism, and the role in different TME.
INDOLEAMINE 2,3-DIOXYGENASE
1 IN MODULATING THE
IMMUNOSUPPRESSIVE TUMOR
MICROENVIRONMENT

Initially, the function of IDO1 was described as an innate
mechanism of defense against microbial invasion (66, 67),
because IDO1 could induce depletion of Trp, an essential
amino acid for microbial and parasite proliferation (66–68). In
1998, Munn et al. performed a pioneering experiment showing
that elevated IDO (namely, IDO1) expression at the maternal–
fetal interface was crucial to prevent immune rejection of fetal
allografts (11). Subsequently, extensive studies have
demonstrated the immunological regulation role for IDO1 in
physiological and pathological states including pregnancy,
obesity, transplantation, infectious diseases, autoimmune
Frontiers in Immunology | www.frontiersin.org 4
diseases, neurological diseases, and neoplastic diseases (69–72).
In clinical researches, the expression of IDO1 has been found in
various tumors such as breast cancer, melanoma, and bladder
cancer, which inactivates surrounding immune cells in TME
primarily through abnormalities of Trp metabolism (54, 73, 74).
Here, the mechanisms reported in the literatures are summarized
about IDO1 in the establishment of tumor immune
escape (Figure 1).

Dysfunction and Apoptosis of Effector
T Cells and Differentiation and Activation
of Regulatory T Cells
The effect of IDO1 on T cells is based on the Trp “starvation”
theory. 1) T cells are especially sensitive to low Trp
concentrations, which arrest T cells in the mid-G1 phase of the
cell progression cycle (75). 2) The Trp depletion can inhibit T-
cell proliferation through the activation of kinase general control
non-derepressible 2 (GCN2), a molecular sensor of Trp
deprivation, and its downstream phosphorylated eukaryotic
initiation factor 2 (eIFa) (76). Furthermore, activation of
GCN2 also promotes Treg differentiation, enhances Treg
activity, and collaborates with phosphatase and tensin homolog
(PTEN) signaling to maintain the suppressive phenotype of
Tregs (77). Paradoxically, GCN2 does not mediate suppression
of antitumor T-cell responses by Trp catabolism in experimental
melanomas (78), and GCN2 is required for normal cytotoxic T-
cell function (79), which suggests that the immune regulatory
role of GCN2 in subsets of T cells may depend on the complex
context in different types of tumors. 3) The Trp shortage can also
inhibit the mTOR signaling pathway, which leads to impairment
of T-cell function (80). In addition to the depletion of Trp,
accumulation of Trp catabolite, including Kyn and downstream
derivative metabolites, would also inhibit T effector cell
activation and induce Treg differentiation. For instance, Kyn
could promote AhR nuclear translocation and then increase the
transcription of Foxp3, a marker of Tregs (81). And the
activation in Tregs could modulate M2-like macrophage
activity, which contributes to the establishment of a myeloid-
enriched immunosuppressive TME (82).

Tolerance of Dendritic Cells and Myeloid-
Derived Suppressor Cells and Suppression
of Natural Killer Cells Proliferation
and Functions
In addition to suppressing the immune effects of T cells, it is
generally considered that IDO1 also exerts immunosuppressive
effects by regulating the function of innate immune cells, such as
DCs, myeloid-derived suppressor cells (MDSCs), and natural
killer (NK) cells. IDO1 normally has low basal expression in DCs
but is rapidly induced such as by IFN-g in inflamed tissues,
especially in mature, immunogenic myeloid DCs, which are
involved in the regulation of immune homeostasis (83, 84).
However, in the tumor region, there is a set of DCs highly
expressed IDO1 with a high capacity to support immune
tolerance. Especially, under the presence of TGF-b in TME, the
ITIM1 motif of IDO1 is phosphorylated, which reprograms DCs
December 2021 | Volume 12 | Article 800630
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to the immune tolerance phenotype and leads to sustained IDO1
expression through a positive feedback loop (14). And IDO1-
expressing DCs also induce Treg proliferation (85). MDSCs are
composed of multiple myeloid cells that are arrested at different
stages of lineage development, which would be recruited to the
TME by IDO1 overexpressing tumor cells, and then MDSCs
inhibit T-cell function and reduce tumor response to
immunotherapy in an IDO1-dependent manner (86–89).

NK cells are known as one of the most important innate
immune cells with potent antitumor activity. In TME, however,
tumor cells would suppress NK cell cytotoxicity and inhibit the
expression of activating receptors on the surface of NK cells, such
as NKG2D and NKp46, by IDO-induced Kyn production (90).
But against this, Nafia et al. demonstrated that the proliferation
and granzyme B production of NK cells were inhibited by GDC-
0919 (an innovative IDO1 inhibitor) through upregulation of
inhba (encoding for the inhibin—a member of the Tgfbeta
signaling) (91). Certain IDO1 inhibitors unexpectedly impair
NK cell-mediated killing in tumors, which suggests that we
consider the inhibitory mechanisms of different IDO1 inhibitors
and their effects on others cells, especially immune cells.

Neovascularization of Tumor
Tumor growth depends on continuous and extensive
angiogenesis, which is a major pathway for tumor metastasis.
Among them, vascular endothelial growth factor (VEGF) plays
an important role in tumor angiogenesis. It has been found that
IDO1 could increase angiogenesis through IL-6/STAT3/VEGF
signaling (54). The expression of IDO1 in MDSCs has been
implicated in promoting neovascularization through GCN2,
which shifts the balance between the inflammatory cytokines
IFN-g and IL-6 (92). In vivo experiments also showed that the
blood vessel density in the tumor was significantly reduced, and
Frontiers in Immunology | www.frontiersin.org 5
the tumor growth and metastases were impeded in IDO1-
deficient mice (93, 94).

Furthermore, IDO1 can be induced in endothelial cells, CAFs,
and MSCs, which could participate in mediating an
immunosuppressive TME, for instance, supporting cancer cells
to evade tumor dormancy (95), impairing NK cell function (96),
and inducing Treg expansion (28). However, accumulating
evidences about the mechanism of IDO1 action in
immunosuppression indicate that not all immunosuppressive
effects of IDO1 can be explained through the Trp depletion/Kyn
accumulation theory (97). Besides, contrary to what is generally
hypothesized in suppressing the immune effects of T cells, IDO1
would supply the required energy for T-cell survival and
proliferation by increasing free fatty acid oxidation (98).

In conclusion, IDO1 is a key mediator in the establishment of
tumor immune escape. Nonetheless, a greater understanding is
needed about the exact mechanisms in the immunosuppressive
effects of Trp catabolism by IDO1 derived from different cells
in the different TME. Besides, detailed information about the
differences related to the catalytic and non-catalytic functions
of IDO1 is needed to elucidate this.
THE SIGNIFICANCE OF TARGETING
INDOLEAMINE 2,3-DIOXYGENASE 1
IN TUMOR THERAPY

Recently, wide use of immune checkpoint inhibitors (ICIs),
which mainly target CTLA-4 and the programmed death
receptor/ligand 1 (PD-1/PD-L1) in cancer immunotherapies,
improved durable responses in some advanced cancer patients
(99). Nevertheless, these existing checkpoint inhibitors have
FIGURE 1 | The regulation of IDO1 overexpression and the establishment of immune escape in the tumor microenvironment. IDO1, indoleamine 2,3-dioxygenase 1;
Trp, tryptophan; Kyn, kynurenine; TGF-b, transforming growth factor-b; CTLA-4-Ig, cytotoxic T lymphocyte-associated protein-4-immunoglobulin; TILs, tumor-
infiltrating lymphocytes; COX-2, cyclooxygenase-2; BIN1, Bridging Integrator 1; AhR, aryl hydrocarbon receptor; IL-6, interleukin-6; CC cells, cervical cancer cells;
MM cells, multiple myeloma cells; Teffs, effector T cells; Tregs, regulatory T cells; TolDCs, tolerogenic dendritic cells; MDSCs, myeloid-derived suppressor cells; NK
cells, natural killer cells; M2, M2 macrophage.
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shown substantial benefit to only some of the patients, while the
majority of patients do not respond to this approach, and even
treatment-induced resistance would arise in the initial treatment
responders, and life-threatening adverse effects would occur after
ICI treatment (100–102). Therefore, it is very important to
develop a reasonable immunotherapy strategy targeting
different immunosuppressive points in TME. Several
studies suggest there may be the non-T-cell-inflamed TME
(so-called cold tumors) where checkpoint inhibitors are not
effective in this group of patients (103). Brown et al. provided
evidence of adaptive resistance to anti-CTLA-4 treatment due to
upregulation of IDO1 in HCC (104). That is, ICIs in
combination with inhibiting IDO1 may improve therapeutic
benefit in tumors overexpressed IDO1, which could also drive
inflammation in the TME and transform “cold” tumors
to “hot” tumors.

So far, there are many small molecule compounds such as
IDO1 inhibitors that have been reported to treat cancers alone or
in combination with ICIs. 1-Methyl-D-tryptophan (D-1-MT),
considered as a first-generation IDO1 enzyme inhibitor, is an
analog of Trp. In addition to terminating immune tolerance, D-1-
MT can also block the dormancy of tumor-repopulating cells
(TRCs) and induce apoptosis through the IDO1-blocking/P53/
reactive oxygen species (ROS)-mediated pathway (105). In a
phase II trial, the combination of indoximod (D-1-MT) and
pembrolizumab (PD-1 checkpoint inhibitor) showed
encouraging safety and efficacy in patients with advanced
melanoma (106). Controversially, in another independent
phase III trial, the efficacy of epacadostat (direct inhibitor of
IDO1 enzyme activity) in combination with pembrolizumab was
not superior to pembrolizumab monotherapy in patients with
unresectable or metastatic melanoma (107). In addition, a series
of studies by Zhai et al. showed that in tumor cells, IDO1
suppressed the antitumor immune response by increasing the
expression of complement factor H (CFH) and factor H-like
protein 1 (FHL-1) instead of its association with Trp metabolism
in human glioblastoma, and there was a survival advantage
mediated by ICIs requiring non-tumor cell IDO1 enzyme
activity in mouse glioblastoma. Oppositely, the combination of
radiation and PD-1 antibody treatment efficacy required
to inhibit IDO1 enzyme activity in non-tumor cells from
another study of mouse glioblastoma model (97, 108, 109).
The reason for the controversial conclusion may be that the
immunosuppressive effects of IDO1 in the organism are not
isolated, and there are multiple factors involved, such as
the differentiation degree, the invasion degree, lymph
node metastasis, clinical stage of the tumor, the different
combinations of inhibitors, the infiltration of T effector cells in
the tumor lesion, the host cell IDO1 origin, the enzyme activity
versus non-enzyme effects of IDO1 in tumor lesion or TDLN,
and age of the subject, all of which need to be considered
comprehensively in order to better apply and develop IDO1-
targeted drug and new combined therapeutic strategies in the
clinical setting.

In addition to targeting IDO1 inhibiting, blocking the AhR
pathway would overcome the limitation of single IDO1 targeting
Frontiers in Immunology | www.frontiersin.org 6
agents, particularly in combination with ICIs (82). Therefore, the
targeted blockade of IDO1 or IDO1-driven metabolism pathway
represents a promising therapeutic pathway. Meanwhile, IDO1
inhibitors combined with other therapies should be considered
as an effective strategy in tumor immunotherapy, such as
effectively suppressing tumor growth by synergizing
photothermal therapy (PTT), radiotherapy, or chemotherapy
(110–112). With the discovery of cancer tissue expression
IDO1 or TDO or both, IDO1/TDO combined inhibitors have
become a study focus (113–115). However, at odds with IDO1
inhibitors, TDO inhibitors are effective in synergistic
immunotherapy with ICIs even though there is little or no
TDO expression in cancers, which may be because the
inhibitor of TDO could block hepatic TDO to increase
systemic Trp levels (60, 113). More surprisingly, in viral
hepatitis, the inhibition of TDO or IDO (both IDO1 and
IDO2) separately leads to dichotomous outcomes. TDO could
participate in the Kyn pathway as IDO1 does, but both also differ
in mediating inflammation (116, 117). In regard to TDO in the
tumor, although the mechanisms to regulate the TDO expression
and its separate role in maintaining Trp homeostasis are all
unclear as yet, TDO could be regarded as a candidate after
resistance to IDO1 inhibitors, as well as the circulating level of
Trp may be an indicator to evaluate the efficacy of inhibitors of
TDO in tumor immunotherapy. Anyway, one thing should be
confirmed that the mechanism of their expression and activation
in the different cell types needs to be understood first, which
could guide the development and applications of IDO1
inhibitors and IDO1/TDO combined inhibitors.

Due to the short half-life of small molecule inhibitors, the lack
of patient stratification based on IDO1 expression, the option of
combination with therapy ICIs, and inhibitors targeting IDO1
have so far failed to show therapeutic benefit in the animal model
research or even in clinical trials (118–120). For instance, IDO1
inhibitor combination with PD-L1 blockade did not cause a
synergistic effect in sarcoma (91). Therefore, more and more new
strategies of inhibiting the expression of IDO1 have been
explored. Phan et al. found that attenuated Salmonella
typhimurium (ST) delivering an shRNA plasmid targeting
IDO1 can reduce intratumoral IDO1 levels more effectively
than epacadostat (121), while locked nucleic acid (LNA)-
modified antisense oligonucleotides (ASOs) could inhibit IDO1
expression in cancer cells, exhibiting longer exposure times and
more engaged targets than epacadostat (122). Besides, there may
be other Trp metabolizing enzymes involved in tumor immune
escape, such as interleukin-4-induced-1 (IL4i1), but at this
point, the biology and expression of IL4i1 are still poorly
understood (123).

In addition to being a target of antitumor therapy, targeted
IDO1 can be considered as an independent prognostic value and
predictive biomarker. High proportions of PD-L1+ and IDO1+
TAMs are associated with unfavorable outcomes in classical
Hodgkin ’s lymphoma patients treated with standard
chemotherapy (34). Moreover, there is clinical evidence that
IDO1 gene expression in the urine of men indicates a high risk of
prostate cancer development (36, 124). And in non-small cell
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lung cancer, the high serum Kyn/Trp levels are also associated
with early progression and a low prognosis (125). Even though,
as mentioned above, the up-expression IDO1 has been described
in various human tumor tissues not only in tumor cells but also
in other components of the TME, and the IDO1 expression
status in patients has also been explored in some clinical trials to
assess its relevance with poor prognosis (126), not all tumor
progression or poor prognosis has a positive correlation with
high IDO1 expression (127, 128). Also, the current clinical trial
data of IDO1 activity assessment are mainly derived from serum
Kyn or Trp levels. In fact, the consumption of Trp and the
accumulation of Kyn do not always happen simultaneously in
human cancers, and the immunosuppression effects of IDO1 in
TME do not just depend on its enzyme activity. On the contrary,
its enzyme activity may also contribute to the response to ICI
therapy (97, 108, 129, 130). Therefore, the high IDO1 expression
is not a single indicator to decide whether to choose IDO1
inhibitors, and the IDO1 activity assessment may also need
multiple factors, including the concentrations of Trp and Kyn
as well as the Kyn/Trp ratio in human cancers.
CONCLUSION

Overall, the important role of IDO1 in tumoral immune escape
renders the IDO1 pathway a potential target for adjuvant
treatment. IDO1 inhibitors are widely studied in various
cancers as monotherapy or in combination with other
therapies in preclinical and clinical trials. It is remarkable,
however, that the complex mechanism of regulating IDO1
Frontiers in Immunology | www.frontiersin.org 7
expression and its different biological effects depending on the
context or cell types may render its clinical development
complicated. So more researches are needed to elucidate the
mechanisms of immunotherapy against IDO1 and how IDO1
works in combination therapy. And further understanding of the
immunobiological properties of IDO1, individual IDO1
expression levels, the optimal drugs targeting IDO1, and
combination therapy strategies would lead to favorable
treatment for patients with malignant tumors. Besides, it is
important to explore the exact role of other Trp metabolizing
enzymes, Kyn, and its downstream metabolites in tumoral
immune escape.
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