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Abstract: Smart wearable robotic system, such as exoskeleton assist device and powered lower limb
prostheses can rapidly and accurately realize man–machine interaction through locomotion mode
recognition system. However, previous locomotion mode recognition studies usually adopted more
sensors for higher accuracy and effective intelligent algorithms to recognize multiple locomotion
modes simultaneously. To reduce the burden of sensors on users and recognize more locomotion
modes, we design a novel decision tree structure (DTS) based on using an improved backpropagation
neural network (IBPNN) as judgment nodes named IBPNN-DTS, after analyzing the experimental
locomotion mode data using the original values with a 200-ms time window for a single inertial
measurement unit to hierarchically identify nine common locomotion modes (level walking at three
kinds of speeds, ramp ascent/descent, stair ascent/descent, Sit, and Stand). In addition, we reduce the
number of parameters in the IBPNN for structure optimization and adopted the artificial bee colony
(ABC) algorithm to perform global search for initial weight and threshold value to eliminate system
uncertainty because randomly generated initial values tend to result in a failure to converge or falling
into local optima. Experimental results demonstrate that recognition accuracy of the IBPNN-DTS
with ABC optimization (ABC-IBPNN-DTS) was up to 96.71% (97.29% for the IBPNN-DTS). Compared
to IBPNN-DTS without optimization, the number of parameters in ABC-IBPNN-DTS shrank by 66%
with only a 0.58% reduction in accuracy while the classification model kept high robustness.

Keywords: wearable robotic system; locomotion mode recognition; inertial measurement unit (IMU);
decision tree structure (DTS)

1. Introduction

In recent years, with the rapid development of wearable robotic system, many new
intelligent products have been introduced, e.g., exoskeleton assist device and powered
lower limb prosthesis. These products can effectively improve the athletic ability of healthy
people and recover the daily life ability of the disabled.

The intelligence of wearable robotic system is reflected in the fact that such devices,
e.g., Rewalk Personal 6.0 from Rewalk Robotics and Genium X3 from Ottobock can un-
derstand human thoughts and realize corresponding functions according to human intent.
Therefore, the development of locomotion mode recognition determines the upper limit of
wearable robotic system, which is the most critical link relative to elevating a machine into
a robot.

Obtaining valid data from sensors is the first step in human locomotion mode recog-
nition. Current studies generally consider electromyographic (EMG) signals [1–5], which
can reflect neuromuscular activity to a certain extent, and mechanical signals [6–9], which
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can be collected using various sensors, e.g., inertial measurement unit (IMU), located
throughout the body and load cells placed at the bottom of the foot. Several studies have
combined EMG and mechanical signals to realize locomotion mode recognition [10–12].
In addition, environmental information has been proven effective relative to improving the
accuracy of locomotion mode recognition [13–15].

After obtaining reliable data, the performance of algorithms is always key to locomo-
tion mode recognition. For three common human locomotion modes, i.e., level walking,
ramp ascent, and ramp descent, Uriel et al. used wearable sensors on healthy humans to
identify locomotion modes based on a probabilistic Bayesian approach with a sequential
analysis method [16]. Feng et al. developed the strain gauge potential in locomotion
mode recognition, and the average accuracy reached 92.53% using a convolutional neural
network to evaluate the movement state with the original data as input [17]; however, three
locomotion modes are not representative of the total range of human locomotion. Thus,
two additional locomotion modes, i.e., stair ascent and descent, were added to the research.
Liu et al. [1] employed a kernel principal component analysis algorithm to perform dimen-
sionality reduction on the EMG eigenvalues of five lower limb muscles in a healthy human
body. Then, they designed a classification model based on a relevance vector machine
for identification, and the accuracy of this method reached 96.67%. Zhao et al. placed
an IMU and two load cells in the receiving cavity of an active lower limb prosthesis to
collect locomotion information, and they adopted a hidden Markov model (HMM) [18] for
analysis and identification. The experimental results demonstrated a total recognition rate
of 96%, which provided a basis for the development of an active prosthesis.

Based on steady-state motion, some studies have focused on transitional motion.
Wang, Liu, and Sheng used a support vector machine (SVM) [19], long short-term mem-
ory [20], and a Gaussian mixture model-hidden Markov model [21], respectively to rec-
ognize locomotion modes using three IMUs positioned on the lower limbs, and all three
algorithms demonstrated high recognition rates. Zheng et al. [22] used quadratic discrim-
inant analysis (QDA) and an SVM as recognition models to distinguish 10 transitional
motions using data from an IMU and a load cell on six transtibial amputees’ ankle pros-
theses. The experimental results demonstrated that the accuracy of both algorithms was
greater than 94%. Ali et al. adopted a unique ear-mounted sensor for data collection. They
applied a recursive map classification algorithm to identify different transitional motions.
Their experimental results proved that a framework for the categorization and analysis of
transitions in manifold space [23] has good application in damage and post-surgery recov-
ery research. Parri et al. [24] applied a time-based approach based on gait kinematics data
to classify steady-state and transitional motion, and they designed event-based fuzzy-logic
rules triggered by a minimal set of relevant biomechanical features of a load cell to classify
transitional motions. The recognition results demonstrated that this algorithm provides an
effective reference value for locomotion mode recognition of lower limb wearable robots.
By analyzing experiments performed by transtibial amputees, Su [9] and Young [25] found
that user-dependent classification was more accurate than user-independent classifica-
tion, proving that locomotion mode recognition algorithms are more effective in terms of
individual training.

For using a single IMU, in [26], translational signals which were derived from the
inertial signals including accelerations, velocities, and displacements of a transtibial pros-
thesis, can enhance the walking task identification with an error reduction of 6.8% in five
locomotion modes. Bartlett and Goldfarb [27] proposed to identify the gait activities based
on a feature set extracted from a phase-variable-based coordinate system. This method
was more effective than linear discriminant analysis (LDA) when using nonsubject-specific
training data of three locomotion modes from an IMU wore on the thigh. Gao [28] pro-
posed a terrain geometry-based algorithm with an elliptical boundary as trigger condition
using the inclination grade of the ground to classify five locomotion modes with an IMU
estimating the foot trajectory.
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In summary, previous studies have generally used multiple sensors to collect EMG and
mechanical signals for one-time recognition of locomotion modes. Increasing the number
of sensors can improve locomotion mode recognition accuracy [18,22]. However, using
too many sensors on wearable robotic system, especially power lower limb prosthesis,
will impose extra burden on the user’s body and affect the effectiveness of movement.
In addition, when using a small amount of sensors like an IMU, the number of locomotion
modes increases and similar locomotion modes occur, e.g., level walking at different
speeds [27] and ramp motions at small angles [28] may lead to significant errors and
reduced model accuracy.

In this study, we placed a single IMU under the knee joint to monitor nine locomotion
modes of the participants. In addition, to identify the nine locomotion modes, we designed
a new multi-layer decision tree structure (DTS) based on experimental data, and we
improved the backpropagation neural network (IBPNN), which has obtained certain results
in the artificial intelligence field [29,30]. The IBPNN algorithm was used as the judgment
node of the DTS to constitute an IBPNN-DTS classification model. Finally, the ABC-IBPNN-
DTS classification model, which has similar accuracy but fewer number of parameters than
the IBPNN-DTS, was constructed after optimizing the number of neurons in the hidden
layer of the IBPNN and selecting the optimal initial weight and threshold value using the
ABC algorithm. The experimental results demonstrated that the ABC-IBPNN-DTS model
has high-accurate identification ability. As a result, the ABC-IBPNN-DTS classification
model based on a single IMU is of great guiding significance for the intelligentization of
wearable robotic system, especially active lower limb prosthesis.

2. Proposed Methods
2.1. Definition of Locomotion Modes

When users employ smart wearable robotic system, e.g., exoskeleton boosters and
powered lower limb prostheses, they must convey their ideas to the wearable device,
and the effectiveness of the device depends on whether it can realize corresponding
movements according to the user’s intent. Therefore, classification models based on
intelligent algorithms can provide signals for wearable robotic system to identify nine
common locomotion modes to realize rapid and accurate man–machine interaction.

Human movement is periodic and regular; therefore, it is helpful to select the nine
typical human locomotion modes for pattern recognition to distinguish the current locomo-
tion modes. In this study, the nine locomotion modes were defined as slow level walking
(SLW), medium-speed level walking (MLW), fast level walking (FLW), ramp descent (RD),
stair descent (SD), sit, stand, ramp ascent (RA), and stair ascent (SA). The velocity and
experimental platform of each locomotion mode are shown in Table 1.

Table 1. Velocity and experimental platform of locomotion modes.

Locomotion Modes Velocity Platform

SLW 3 km/h Treadmill
MLW 4.2 km/h Treadmill
FLW 6 km/h Treadmill
RD 4.2 km/h 9 degrees ramp on treadmill
SD Slow Stairs
Sit Slow Chair

Stand Slow Chair
RA 4.2 km/h 9 degrees ramp on treadmill
SA Slow Stairs

2.2. Locomotion Mode Data-Based DTS Design

A decision tree (DT) is a basic regression and classification method. In classifica-
tion problems, the DT represents the process of classifying samples according to their
characteristics and can be considered a set of if-then. A DT has a clear structure and
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low computational complexity; however, DT results are prone to overfitting. Represen-
tative examples of DT algorithms [31] include ID3, C4.5, CART, and the stochastic forest
algorithm [32] derived from the DT, which are widely used in pattern recognition tasks [33].

Through observing the collection of human movement data and preliminary exper-
iments, we found that the data within each categorie (a: SLW, MLW, FLW; b: RD, RA; c:
SD, SA; d: sit, stand) has strong similarity and the data among four categories have certain
differences. Given that, we have designed two DTSs to distinguish the nine locomotion
modes hierarchically under the constraint of the minimum number of nodes, as shown
in Figures 1 and 2. The input to the DTS was IMU data, and the IBPNN algorithm was
employed to determine the node evaluation criterion. In addition, the ABC algorithm was
employed to optimize the initial weight and threshold value of the IBPNN algorithm.

Figure 1. Decision tree structure (DTS) A: two layers and five judgment nodes based on locomotion
mode data.

Figure 2. DTS B: four layers and five judgment nodes based on locomotion mode data.
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2.3. IBPNN for DTS Judgment Node

The BPNN algorithm is one of the most important artificial neural network algorithms
due to its unique mechanism of neural connections and its theoretical ability to fit any
nonlinear function with a sufficient number of neurons. The BPNN algorithm has been
widely used in pattern recognition and system modeling [34,35]. Compared to other
algorithms, e.g., SVM, QDA, and LDA, the BPNN algorithm has a better effect in locomotion
mode recognition [36]. In this study, the BPNN algorithm was improved by adaptive
learning rate and forgetting factor which can accelerate the convergence, and the IBPNN
algorithm as the DTS node has good identification ability and convergence speed.

The IBPNN consists of an input layer, a hidden layer, and an output layer, which are
expressed as follows.

x = {x1, x2 · · · xi} i = 1, 2 · · · n (1)

hj = f (
n

∑
i=1

wij∗xi − θj) j = 1, 2 · · ·m (2)

yk = f (
m

∑
j=1

wjk∗hj − θk) k = 1, 2 · · · l (3)

Here, n, m, l represent the number of neurons in the input layer, the hidden layer,
and the output layer. xi is the input to the IBPNN. wij and θj are the weight and threshold
value of the hidden layer, and wjk and θk are the weight and threshold value of the output
layer, respectively. In addition, the sigmoid function, f (x) = 1/1 + e−x, is employed as the
activation function for both the hidden and output layers.

We consider the error function for the iteration of the weight and threshold value
as follows:

Ek =
1
2

l

∑
k=0

(yk − ŷk)
2, (4)

where yk and ŷk are the actual and theoretical outputs of the IBPNN, respectively.
The iteration of the weight and threshold value in the BPNN employs the traditional

backpropagation algorithm with a low convergence rate. Thus, to accelerate the conver-
gence speed of the BPNN, we improved the traditional backpropagation algorithm with
adaptive learning rate α(t), and forgetting factor β which is a constant, where α(t) is
expressed as follows.

α(t) = 0.99 ∗ α(t− 1) Ek(t) > 1.04 ∗ Ek(t− 1)
α(t) = 1.01 ∗ α(t− 1) Ek(t) < Ek(t− 1)
α(t) = α(t− 1) else

(5)

The value of forgetting factor β was obtained by trial and error and parameters of
adaptive learning rate α(t) were based on the number of iterations. With α(t) and β,
the iteration formulas of the weight and threshold value in the output and hidden layers
are expressed as follows:

∆wjk(t) = α(t) ∗ [hj ∗ (ŷk − yk) ∗ yk∗(1− yk)](t) + [hj ∗ (ŷk − yk) ∗ yk∗(1− yk)](t− 1)

∗ β ∗ α(t)

∆θk(t) = α(t) ∗ [(ŷk − yk) ∗ yk∗(1− yk)](t) ∗ (−1) + [(ŷk − yk) ∗ yk∗(1− yk)](t− 1)

∗ (−1) ∗ β ∗ α(t)

(6)


∆wij(t) = α(t) ∗ xi(t) ∗ [hj ∗ (1− hj) ∗ wjk ∗ (ŷk − yk) ∗ yk∗(1− yk)](t) + β ∗ α(t)

∗ xi(t) ∗ [hj ∗ (1− hj) ∗ wjk ∗ (ŷk − yk) ∗ yk∗(1− yk)](t− 1)

∆θj(t) = α(t) ∗ (−1) ∗ [hj ∗ (1− hj) ∗ wjk ∗ (ŷk − yk) ∗ yk∗(1− yk)](t) + β ∗ α(t)

∗ (−1) ∗ [hj ∗ (1− hj) ∗ wjk ∗ (ŷk − yk) ∗ yk∗(1− yk)](t− 1)

(7)
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2.4. ABC for Optimizing Initial Parameters

ABC is a swarm intelligence optimization algorithm that simulates the foraging be-
havior of bees [37–39]. The ABC algorithm is frequently used for system identification and
parameter optimization. Compared to other swarm intelligence algorithms, e.g., genetic
algorithms, the ant colony algorithm [40], and particle swarm optimization algorithms [41],
the most significant advantage of the ABC algorithm is that it combines global and local
search in each iteration, which can help avoid falling into local optima. In this study,
the ABC algorithm was employed to select the optimal initial weight and threshold value
of the IBPNN.

The ABC algorithm comprises collecting, following, and scout bees. Collecting bees,
which have the same location as nectar sources, search in the neighborhood for the optimal
location of all nectar sources. Note that the degree of nectar sources depends on the value
of a fitness function, and then the information of the nectar sources is transmitted to other
bees. Following bees select correct nectar sources according to the value of a fitness function
of nectar sources sent by the collecting bees. The main role of scout bees is to randomly
search for a new location. The ABC algorithm can be realized in five steps.

1. Initialize the bee colony. For a D-dimension vector to be optimized, N feasible solu-
tions are generated randomly, where N is the number of collecting and following bees.
Feasible solutions X j

i are expressed as follows:

X j
i = X j

min + rand(X j
max − X j

min) j = 1, 2, 3 · · · D, (8)

where X j
max and X j

min are the maximum and maximum of the D-dimension vector,
respectively.

2. Calculate fitness function f it. The fitness function f it is used to evaluate the quality
of nectar sources based on the error function of the IBPNN.

f it = min Ek =
1
2

l

∑
k=0

(yk − ŷk)
2 k = 1, 2, 3 · · · l (9)

3. Conduct local search at optimal nectar source locations. The search function is ex-
pressed as follows.

newX j
i = X j

i + rand(X j
i − X j

k) k = 1, 2, 3 · · · N (10)

The bees replace a nectar source with a new location according to a greed criterion to
ensure that the entire evolution process does not recede. The greedy selection operator
is expressed as follows.

P{newXi} =
{

1 f (newXi) >= f (Xi)
0 f (newXi) < f (Xi)

(11)

4. A following bee chooses to follow a collecting bee according to the nectar source
information it receives based on a certain probability proportional to fitness.

Pi =
f iti

N
∑

n=1
f itn

(12)

5. If a better nectar source is not found after collecting bees have finished the finite limit
iterations (i.e., the local search), the first step is repeated until the total number of iter-
ations (i.e., the global search) is completed to obtain the optimal D-dimension vector.
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3. Experiments
3.1. Experimental Protocol

Six healthy subjects varied in age (24–30 years), height (1.63–1.83 m), and weight
(40–80 kg) participated in this experiment. Here, a single IMU was placed below the
knee joint of the experimental subject, which is a common sensor position in active lower
limb prostheses [42]. To facilitate data collection, the wireless socket communication of
a Raspberry Pi was used to transmit data to the visualization platform (processing) on
a computer terminal. The six subjects performed the nine locomotion modes (i.e., SLW,
MLW, FLW, RD, SD, sit, stand, RA, and SA) in turn, as shown in Figure 3. Each locomotion
mode lasted 120 s with a sampling frequency of 100 Hz, and each group of data involved
six parameters, i.e., X-axis acceleration, Y-axis acceleration, Z-axis acceleration, X-axis
angular acceleration, Y-axis angular acceleration, and Z-axis angular acceleration. During
the experiment, owing to the wiring harness direction problem of Raspberry Pi, it needs
to be mounted on the fixed structure connected with the lower limb using the binding to
make sure the IMU is parallel to the lower limb. At this time, the X-axis is parallel to the
lower limb and perpendicular to the ground. The Z-axis is parallel to the ground and same
with the face direction. The Y-axis is perpendicular to the X-axis and Z-axis simultaneously.

Six subjects participated in this experiment to perform the nine locomotion modes in
turn. The subjects were informed of the purpose and procedures of the study before signing
the informed consent, and each subject gave consent for the use of their identifiable images.
The experimental design was approved by the Ethics Committee of the Second Hospital
of Jilin University, and the study was conducted in accordance with the Declaration
of Helsinki.

Figure 3. Data collection for locomotion modes.
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3.2. Data Preprocessing

In this study, time windows of 100, 150, and 200 ms were used to sample the data,
and the total data of six subjects were 50,000, 35,425, and 31,625, respectively. The data of six
subjects were randomly divided into training and testing sets at a ratio of 8:2. The training
sets needed to be reclassified before training the weight and threshold value of each IBPNN
because the same locomotion mode had different labels in different IBPNNs. The testing
sets did not participate in training the model to validate the recognition ability of the
classification model facing completely new data.

For the data from the 200-ms time window, we performed time domain analysis
(Figure 4) and selected the most representative and commonly used eigenvalues, including
the maximum, minimum, average, and standard deviation. Note that the original values
and eigenvalues after time domain analysis needed to be normalized before being input to
the pattern recognition model.

Figure 4. Time domain analysis for the 200-ms time window data (each locomotion mode included
approximately 3500 samples arranged from left to right according the order in Figure 3).

3.3. Classification Model

We designed three classification models based on the waveform and time domain
analysis of the original data obtained in the experiment to identify the nine locomotion
modes, and the data were split at a ratio of 8:2 training and testing sets to train and validate
the model. Here, the initial value of the IBPNN for each classification model was selected
randomly, and the number of hidden layer neurons was set to 100. Each classification
model is summarized as follows.

• IBPNN: Here, IBPNN is employed to identify all locomotion modes simultaneously.
The input to the model is the original values and eigenvalues from the 200-ms time
window, the number of IBPNN is only one, and the output is the nine locomotion
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modes. This type of model, which identifies all results once, has been applied in most
locomotion mode recognition studies and has achieved good results [2,34,36].

• IBPNN-DTS A: Here, DTS A is employed with five IBPNNs as nodes to identify the
nine locomotion modes hierarchically (Figure 1). The input to the model is the original
values in the 200-ms time window, and the five IBPNNs can be trained simultaneously
based on these original values. The first node divides the nine locomotion modes into
four categories (a: SLW, MLW, FLW; b: RD, RA; c: SD, SA; d: sit, stand), and the other
four nodes divide these four categories into the nine specific locomotion modes.

• IBPNN-DTS B: Here, DTS B is used with five IBPNNs as nodes to identify the nine
locomotion modes hierarchically (Figure 2). The input to the model is the original
values in the 100-ms, 150-ms, and 200-ms time windows, and the five IBPNNs can be
trained simultaneously based on the original values, i.e., the same as DTS A. The first
node divides the nine locomotion modes into two categories (a: sit, stand; b: others).
The second node distinguishes the sit and stand modes, and the third node divides
the class b into three categories (c: SD; d: SA; e: others). The fourth node divides class
e into three categories (f: RA; g: RD; h: others), and the final node distinguishes SLW,
MLW, and FLW from class h.

3.4. Structure and Parameter Optimization

We selected each IBPNN with 100 initial neurons in the hidden layer to improve
the recognition effect of each classification model; however, too many neurons needed to
optimize more number of the weight and threshold value, and the iteration time increased.
Therefore, based on the 100 neurons, we performed experiments to reduce the number of
neurons in the IBPNN and reduce the iteration time of the classification model without
loss (or only small loss) of identification accuracy.

Generally, in the IBPNN algorithm, the initial weight and threshold value are gener-
ated randomly with uncertainty, and it is easy to make the classification model obtain a
local optimal solution after several iterations at the initial position, which reduces identifi-
cation performance. Here, we employed the ABC algorithm in this study to optimize the
initial weight and threshold value of the IBPNN. The global search times were set to 10,
the total number of bees was set to 200, and the times of local search was set to 1000 after the
optimal value of each global search was identified. The combined global and local searches
in the ABC algorithm allow the IBPNN to avoid falling into the local optimal situation in
this iterative process, which improves the classification model’s identification performance.

4. Results and Discussion
4.1. Input to Classification Model

The eigenvalues of the collected data are frequently used as the input to a system
model in most locomotion mode recognition studies. To the best of our knowledge, few
studies have selected the original values. A single IMU with a short sampling time window
was used in the current study; thus, it is impossible to assess the merits of the original
values and subjective selection of eigenvalues. Therefore, we designed a comparative
experiment to determine the best input to the model. First, the time window was 200 ms,
and the IBPNN classification model used the original values and eigenvalues to identify
the nine locomotion modes. Here, the selected eigenvalues (Figure 4) were the maximum,
minimum, average, and standard deviation. After analyzing the confusion matrix in
Figure 5, the accuracy and F1-Score (the higher value means the better robustness) of the
IBPNN (Figure 6) based on the eigenvalues was 61.42% and 0.3821, while that based on the
original values was 67.11% and 0.4356. From the confusion matrix shown in Figure 5a,b,
we observe that the sit and stand modes could not be distinguished by the IBPNN based
on the original values; however, overall accuracy was higher than the IBPNN based
on eigenvalues.

The IBPNN based on the original values with the simultaneous identification of the
nine locomotion modes could not distinguish the sit and stand modes. There are two
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possible reasons for this phenomenon. The first reason is that the IBPNN classification
model is unable to distinguish carefully between sitting and standing in the identification
of nine locomotion modes. The other is that the original value of sit is much similar to
that of stand with no feature. As a result, we classified these two motions based on both
the eigenvalues and original values, and the accuracy and F1-Score of the IBPNN based
on eigenvalues were 97.66% and 0.9536, while those based on the original values were
98.86% and 0.9774. These experimental results prove that the main reason for the inability
to distinguish the sit and stand modes was that feature extraction for these modes was not
sufficiently accurate enough when the IBPNN was used to identify all nine locomotion
modes simultaneously. However, these two locomotion modes could be distinguished
effectively based on the original values and had good robustness. As shown by the ROC
curve in Figure 7, the IBPNN classification model demonstrates certain identification effects;
however, some parts remain below the dashed line (completely random classification),
which reflects failure of the IBPNN when identifying some data. Therefore, the original
values were selected as the input to the classification model. In addition, the IBPNN
classification model needed to be changed for better recognition ability.

Figure 5. Confusion matrix for different inputs (all values are proportional).

4.2. Comparison of Classification Models

Unlike previous studies that only identified three to five locomotion modes [16,17],
increasing the number of locomotion modes will make the features between different
modes become less obvious. According to the analysis of the confusion matrix shown in
Figure 5b, it was very easy to generate incorrect identifications between (SLW, MLW, FLW)
and (RA, RD) and (SA, SD) and (sit, stand).

Therefore, based on using five IBPNNs as judgment nodes, we designed IBPNN-
DTS A, as shown in Figure 1, to hierarchically identify the nine locomotion modes. The
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IBPNN-DTS A classification model effectively improved identification accuracy up to
85.28% and F1-Score up to 0.7204 (Figure 6). Although IBPNN-DTS A outperformed the
IBPNN, the IBPNN-DTS A classification model was not sufficiently precise compared with
existing methods [6,9], which have demonstrated accuracy of greater than 93%, and there
is still failure of the part which is under the dashed line according to the ROC curve shown
in Figure 7. As a result, the IBPNN-DTS A classification model did not completely satisfy
the requirements of locomotion mode recognition.

The confusion matrix for the IBPNN-DTS A is shown in Figure 5c, and the results
indicate that miscalculation between level walking, RA, RD, sit, and stand persists. Thus,
without increasing the number of nodes, we designed the IBPNN-DTS B classification
model (Figure 2). The experimental results shown in Figure 6 demonstrate that the IBPNN-
DTS B classification model obtained overall accuracy of 97.29% and high F1-Score of 0.9465,
which is more precise than both the IBPNN-DTS A and IBPNN models. The IBPNN-DTS B
confusion matrix shows Figure 5d illustrates that this model can effectively and accurately
identify all nine locomotion modes and has high robustness.

Figure 6. The evaluation index of different models with different input.

4.3. Time Window Selection

According to the selection of the time window problem, we conducted simple pre-
liminary experiments using the 200, 400, 600, 800, 1000, and 1200-ms time windows that
are less than a gait cycle. The experiments show that when a time window is less than
1000 ms, with the longer time the window, the accuracy of the classification model showed
an ascendant trend, and when the time window is more than 1000 ms, the accuracy of
the classification model began to decline. The results indicate that lengthening the time
window is helpful in improving accuracy. The time window of the locomotion mode recog-
nition system also depends on the requirements of the control system, which is generally
less than 200 ms for better system performance. In this study, an initial time window of
200 ms was selected, which is less than the 250-ms time window employed in a previously
reported backpropagation neural network [31]. Here, to verify the identification effect of
different time windows on the classification model, the length of the time window was
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reduced to 150 and 100 ms under the condition that the original values were taken as input
and the classification model adopted the IBPNN-DTS B with the highest accuracy. The ROC
curve shown in Figure 7 indicates that the curve of IBPNN-DTS B under different time
windows is entirely above the dashed line. As shown in Figure 6, the accuracy and F1-Score
of IBPNN-DTS B with a 150-ms time window were 86.57% and 0.7659, while those with a
time window of 100 ms were only 73.48% and 0.5379. The experimental results shown in
Figure 5e,f indicate that the data in the 150-ms time window resulted in misjudgment of sit,
stand, and RA, while that in the 100-ms time window had a large number of misjudgments
in seven locomotion modes with the exception of the sit and stand modes.

Since the accuracy of locomotion mode recognition algorithms is closely related to
human safety, it is acceptable to extend the time window to ensure human safety. Therefore,
for a single IMU, the data in the 200-ms time windows are considered the most effective
and safe for human movement relative to the assessment of locomotion modes.

Figure 7. ROC curve of different models with different input (dashed line indicates completely
random classification).

4.4. Structure and Parameter Optimization Results

A large number of neurons, which means higher weights and threshold value, have
significant impact on the system relative to storage, transfer, or iteration of these param-
eters. In this study, the number of initial hidden layer neurons was set to 100 to ensure
sufficient recognition ability for each classification. While maintaining sufficient precision,
the number of neurons was reduced to reduce the number of the weight and threshold
value in order to improve the performance of the overall classification model system.
The experimental results shown in Figure 8 demonstrate that the accuracy of each IBPNN
has an inflection point as the number of neurons is reduced. If the number of neurons is
less than this inflection point, accuracy will be reduced rapidly, and the model will lose its
recognition ability. The optimized results of the number of hidden layer neurons for the
five IBPNN with different functions are listed in Table 2.

Table 2. Function and number of neurons for five improved backpropagation neural net-
works (IBPNNs).

IBPNN Function Number of Neurons

IBPNNa Distinguish between (sit, stand)and (others) 10
IBPNNb Distinguish between sit and stand 30
IBPNNc Distinguish between SD, SA and (the others) 30
IBPNNd Distinguish between RD, RA and (the others) 60
IBPNNe Distinguish between SLW, MLW, FLW 40
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Figure 8. Neuron number optimization.

During the experimental process, we found that some randomly generated initial
weight and threshold values made the system not converge after only a few iterations,
which increased system uncertainty. To address this problem, we employed the ABC
algorithm to optimize the initial weight and threshold value of five optimized IBPNNs.
During this optimization process for the IBPNNa to IBPNNe shown in Figure 9, the weight
and threshold value of the five IBPNNs were globally searched 10 times (refer to the
different colored curves) and locally searched 1000 times after determining the optimal
value in each global search to avoid falling into a local optimal situation. The optimization
result curve is shown in the last picture in Figure 9.

The confusion matrix for the ABC-IBPNN-DTS classification model obtained with
a reduced number of neurons in the hidden layer, initial weight, and threshold value
optimization is shown in Figure 10. As can be seen, accuracy reached 96.71% and F1-
Score achieved the value of 0.9355. Compared to the IBPNN-DTS B without optimization,
the number of parameters in the classification model shrank by 66% based on structure
optimization; however, accuracy was reduced by only 0.58% keeping high robustness
(Figure 11). Meanwhile, from the ROC curve shown in Figure 12, the curve of ABC-IBPNN-
DTS is above than the dashed line.

In addition, we simulated the running state of the classification models in practical
application by using Visual C++ 6.0 on a computer (Intel Core i5-9400F CPU 2.90 GHZ).
The running speed of IBPNN-DTS A, IBPNN-DTS B, and ABC-IBPNN-DTS are 423 µs,
986 µs, and 437 µs, respectively. The simulation results show that ABC-IBPNN-DTS
can satisfy the real-time requirements of the system with the similar running speed of
IBPNN-DTS A.
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Figure 9. Initial weight and threshold value optimization with artificial bee colony (ABC) (each color
represents a single global search).

Figure 10. Confusion matrix for IBPNN-DTS B models before and after optimization (all values
are proportional).
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Figure 11. The evaluation index of IBPNN-DTS B models before and after optimization.

Figure 12. ROC curve of IBPNN-DTS B models before and after optimization.

5. Conclusions

In this paper, to reduce the burden of sensors on users and realize the identification of
more locomotion modes at high accuracy, we analyzed the locomotion mode experimental
data and proposed the ABC-IBPNN-DTS classification model based on the original values
of a single IMU to hierarchically identify nine common locomotion modes, i.e., SLW, MLW,
FLW, RD, SD, sit, stand, RA, and SA. Table 3 shows the comparison between our method
and state-of-the-art methods in the field of locomotion mode recognition. We only used
a single IMU rather than multiple sensors, as conventionally used [6–8]. This strategy
can avoid the increased computation cost due to the fusion of mixed signals and reduce
extra burden on a user’s body. Since feature extraction can seriously affect the accuracy of
the model [28], our method can automatically extract the features in the data, which can
reduce subjective error. In addition, on the basis of achieving high-accuracy, the DTS we
designed can hierarchically identify up to nine locomotion modes more than the methods
with one-time recognition [6–8,17,28].
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In an experiment, we compared the influence of the original values and eigenvalues
of IMU on identification accuracy. We found that the effect of using the original values
is better than that based on subjective selection of the eigenvalues. After determining
the original values as the model input, we compared the identification ability of different
classification models (IBPNN, IBPNN-DTS A, and IBPNN-DTS B), and the experimental
results demonstrated that the recognition accuracy of IBPNN-DTS B was the best. To ensure
good results under different time windows, time windows of 200, 150, and 100 ms were
investigated in a comparative experiment, and the results demonstrated that a shorter
time window with the fewer features makes more miscalculation in locomotion mode
recognition. We found that the IBPNN-DTS classification model with IBPNN-DTS B based
on the original values with a time window of 200 ms demonstrated the best recognition
accuracy (97.29%).

Table 3. Comparison with state-of-the-art methods.

Reference Sensors
Feature

Extraction Classifier
Number of
Locomotion

Modes
Accurary

Young et al. 2014 [6] 3 IMUs and
1 pressure sensor

Manual LDA 5 93.9%

Young et al. 2014 [7] 1 IMU and
1 axial load cell.etc

Manual Dynamic Bayesian
Network

5 94.7%

Liu et al. 2017 [8] 1 IMU and
2 pressure sensors

Manual HMM 5 95.8%

Feng et al. 2019 [17] 1 strain gauge Automatic CNN 3/5 92.53%/89.11%
Gao et al. 2020 [28] 1 IMU Manual Terrain Geometry 5 98.5%

Our Method 1 IMU Automatic IBPNN-DTS B/
ABC-IBPNN-DTS

9 97.29%/
96.71%

By adopting the ABC-IBPNN-DTS classification model with structure optimization
for reducing the number of parameters in IBPNN and initial weight and threshold value
optimization by ABC algorithm for eliminating system uncertainty and avoiding randomly
generated initial value tend to result in a failure to converge or falling into local optima, it
achieved better performance when detection accuracy and F1-Score stay the same level.
The experimental results have demonstrated that the recognition accuracy of ABC-IBPNN-
DTS can reach up to 96.71%, and compared to IBPNN-DTS without optimization, the
number of parameters in ABC-IBPNN-DTS shrank by 66% with only a 0.58% reduction in
accuracy while the classification model kept high robustness. Thus, with the ABC-IBPNN-
DTS classification model based on a single IMU with low burden located under the knee
joint, wearable robotic system, especially active lower limb prostheses, can rapidly and
effectively realize man–machine interaction, which is expected to bring convenience to
people. In our future work, we will focus on the implementation of on-board training for
real-time locomotion mode recognition to adapt to complex actual conditions.
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