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Qualitation and Quantitation 
on Microplasma Jet for Bacteria 
Inactivation
ChangMing Du1, Ya Liu1, YaNi Huang1, ZiMing Li1, Rui Men2, Yue Men2 & Jun Tang1

In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation 
of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the 
size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various 
parameters on inactivation effect was studied. The results showed that the majority of bacteria had 
been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air 
flow rate, and receded as the extension of treatment distance. The effect with different carrier gases 
showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of 
microplasma was studied in the optimum conditions (The flow rate was 5 L/min; inactivation distance 
was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation 
rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of 
thallus change proved that microplasma jet had etching effect on cell membrane. It also found that 
microplasma could degrade organic material like protein. Furthermore, the images of scanning 
electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of 
inactivation.

With the development of society, people pay more attention to the control of biological pollution, which leads to the 
rapid development of disinfection technology. At present, disinfection technologies have been throughout various 
aspects of society, such as environmental field, medical field, food and tableware disinfection in everyday life and 
so on. Some disinfection technologies like chemicals, high temperature, high energy electron beam, X-rays, and 
gamma ray radiation system have been commercialized. Nevertheless, the application of those systems will not 
solve all the problems at present on account of cost, efficiency, power consumption, toxic residue, personnel safety 
and so on1,2. Thus, a variety of new relevant technologies appear. In the emerged technologies, non-thermal plasma 
inactivation technology shows great application prospect due to the advantages of high efficiency, wide range of 
adaptation, no toxic residue, the effective control of gaseous by-products, safety, low cost, etc.

The temperature of non-thermal plasma is similar to room temperature, and there are kinds of active species 
(free radicals, reactive atoms, reactive molecules, etc.) in plasma. Such kinds of active species are unable to obtain 
from the general chemical reactions. Those strengths are the key to the rapid development of non-thermal plasma.

From 1980s, non-thermal plasma started to flourish in surface modification3, environmental governance4–8, 
clean energy9,10, biomedicine11–13 and many other fields. So the research direction of multi-disciplinary cross has 
formed14,15. Especially in the field of biomedicine, non-thermal plasma has made encouraging achievements, and 
is developing continuously.

Microplasma is of small size and generated from minimum breakdown-voltage under atmospheric pressure 
based on the theory of Paschen’s law. The gap between electrodes is generally micron-level, which is smaller than 
that between the conventional plasma source electrodes16. The form of microplasma jet can realize accurate posi-
tioning and fine operation, which is a promising form of plasma in the field of microplasma.

Microplasma jet, as a new generation of non-thermal plasma inactivation technology, has the characteristics 
of low power consumption, high density, and high stability, etc. In addition, microplasma generator is smaller, 
more economical and more portable compared with other sterilizers. Thus, the technology arouses concern of the 
researchers at home and abroad.

1Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School 
of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China. 2Guangdong 
Experimental High School, GuangZhou, 510375, China. Correspondence and requests for materials should be 
addressed to C.M.D. (email: glidarc@163.com)

Received: 24 June 2015

accepted: 03 November 2015

Published: 06 January 2016

OPEN

mailto:glidarc@163.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:18838 | DOI: 10.1038/srep18838

Changming Du et al.6,7 have proved that the Escherichia coli on the surface of materials or in water could be inac-
tivated by non-thermal arc efficiently. Besides, they have also explored the deactivation mechanism of non-thermal 
on Escherichia coli and found that the active species in plasma was the key factor in inactivation.

In this work, a self-made microplasma jet system was used to conduct the qualitative and quantitative researches 
of inactivation to explore the optimum parameters. In addition, different devices of separation were used to 
study the effect of components in plasma on inactivation. And the main factor of inactivation was determined in 
microplasma.

Materials and Methods
Portable microplasma jet. The experimental device of the work is shown as Fig. 1, which is mainly com-
posed of the power supply system, gas supply system and the microplasma generation system. The power sup-
ply system is mainly a single-phase ac transformer and the input voltage is the standard voltage (220 V, 50 Hz). 
The gas supply system mainly includes air pump, gas cylinder and flow meter. They are used to provide air for 
microplasma generator, provide other types of carrier gases (oxygen, nitrogen and argon) and control the gas flow 
rate, respectively.

Microplasma jet generator, the core component of the experiment system, is composed of two copper electrodes. 
The inner electrode is hollow copper pipe; the outer electrode is a cylinder with a nozzle (The diameter is 1 mm.) 
at the top. Besides, the transformer provides ac voltage to the inner and outer electrodes, between which there is 
discharge. Gas ionization occurs when gas enters the discharge gap and disruptive discharge takes place. Then the 
ionized gas is carried out, forming the visual microplasma jet.

Experiment methods. Standard strains of E. coli ATCC 25922 (Gram-negative bacteria) were used 
throughout the study to prepare specimens. The expanding training process of primitive bacterium solution is 
as follows: take a ring of E. coli from the slope to inoculate into the conical flask containing 50 mL LB broth, and 
then put it in water-bathing constant temperature vibrator (120 r/min, 37 °C) to cultivate for 14–16 hours. Next 
bring 10 mL bacterium solution described above to the 50 mL sterile centrifuge tube and centrifuge for 10 min-
utes (4000 rpm, 20 °C). Then remove the supernatant and add 10 mL sterile water to confect primitive bacterium 
solution.

In qualitative inactivation experiments, take 0.1 mL of the primitive bacterium solution and coat on the pre-
pared plate evenly. Then conduct the microplasma inactivation treatment once the bacterium solution is absorbed 
completely. Eventually put the treated plates in the incubator of 37 °C for 24 hours.

In quantitative inactivation experiments, cut the mixed cellulose ester membrane filte (diameter: 0.5 mm; 
aperture: 0.22 μ m) into membrane filter pieces of 1 ×  1 cm. Then put the velum block to dry and sterile culture 
dishes, and open them under the UV lamps to sterilize for 5 minutes. Next take 10 μ L (bacterial counts: 107–109) 
of the primitive bacterium solution on the membrane filter block. Then conduct the microplasma inactivation 
treatment once the bacterium solution is absorbed completely. Put the membrane filter block into the 50 mL screw 
centrifuge tube containing 10 mL sterile water immediately after the treatment and then conduct dilution plating 
procedure. Each plate is inoculated 100 μ L bacteria solution. Eventually put the treated plates in the incubator of 
37 °C for 24 hours.

Quantitative experimental method is convenient, quick and easy to operate, but the volume of bacterium 
solution is only 10 μ L, which limits the experiments of mechanism. So the experimental method of mechanism is 
improved. Draw square grids of 1 ×  1 cm on the mixed cellulose ester membrane filte (diameter: 47 mm; aperture: 
0.22 μ m). Then cover the membrane on the filter and take 5 mL sterile water to clean it. Next connect to vacuum 
pump until water disappears. Add 10 mL of the primitive bacteria solution when the pressure becomes zero, and 
then conduct the suction filtration until the membrane surface is completely dry. The whole process takes no 
more than 20 s. Cut the membrane into a 1 ×  1 cm velum along with the grids in sterile conditions. Then treat the 
velum blocks subpackaged in the sterile and dry plates in different conditions. Put the membrane filter block into 
the 50 mL screw centrifuge tube containing 10 mL sterile water immediately after treatment and then conduct 
dilution plating procedure.

Figure 1. The experimental device: it is mainly composed of the power supply system, gas supply system 
and the microplasma generation system. 
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Count the bacterial colonies after training for 24 hours. The counting results are expressed in bacteria concen-
tration, namely plate colony number multiplied by the dilution ratio, and inactivation effect mainly shows as the 
logarithmic reduction value and the inactivation rate. The specific formula is as follows:
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Where R is logarithmic reduction value; n is bacteria inactivation rate; N0 and N respectively represent the 
bacterial concentration before and after the plasma treatment (unit: CFU/mL).

Methods of mechanism analysis
Inductively coupled plasma atomic emission spectrometry (ICP-AES). ICP-AES is a spectral 
analysis method which takes inductively coupled plasma moment as the excitation light source. The method 
possesses the advantages of high accuracy and low limitation of detection. It has the capability to determinate 
multi-element simultaneously. In the experiments, ICP-AES was used to detect the content of K+ and Mg2+ in 
bacteria solution after treatment, which can characterize the permeability change of cell membrane of the treated 
bacterial. Test conditions are as follows: incident power =  1300 W; plasma gas flow =  12 L/min; atomizing gas 
flow =  0.55 L/min; detection is based on JY–T 015-1996 (general principles of ICP-AES).

Three-dimensiona excitation-emission matrix spectroscopy (3D-EEM). 3D-EEM possesses 
high sensitivity and selectivity, which can be used for classification and quantitative determination of dissolving 
organic matter in water. The detection principle is as follows: the soluble organic matter in water is exposed to 
light irradiation with specific wavelength from 3D-EEM (Aqualog-UV-800, France), and the electron will be 
excited to jump. But due to that state is unstable and electron will eventually return to the ground state. Thus the 
energy emits in the form of fluorescence. And then 3D-EEM is obtained through the intensity of the excitation 
and emission.

Cold Field Emission Scanning Electron Microscope (SEM). SEM can be used to observe the images 
of secondary electron and scattering electron, which can be applied to the surface observation of morphology in 
the fields of biology, physics, chemistry, material and so on. The most obvious advantages of cold field emission 
are the relatively small diameter of electron beam, high brightness and high resolution. The research adopts SEM 
(JSM-6330F, Japan) to characterize exterior morphology of the bacteria so as to analyze the etching effect of 
microplasma on bacterial cells.

Results and Discussion
Basic researches of microplasma jet inactivation. Volt-ampere characteristic. Volt-ampere charac-
teristic is one of the most important electrical parameter characteristics of microplasma jet generator. It has to 
do with gas flow rate, gas type, voltage and electrode distance, etc17. Through the analysis of current and voltage 
change, the ionization characteristics of microplasma and energy consumption can be understood more clearly. 
And that is related to the inactivation efficiency and application prospect of the device.

In the experiments, tektronix oscilloscope, high pressure probe and current probe were used to measure the 
current and voltage change of the plasma generator. Volt-ampere characteristics with different air flow were studied 
in order to explore the influence. The results are shown in Fig. 2.

As can be seen from Fig. 2, the microplasma jet discharge is unstable, but the voltage and current cyclically 
change and the cycle frequency is 50 Hz. The current changes with sinusoidal characteristics, and there are two 
current pulses in a voltage cycle. And positive current pulse value is greater than the negative current pulses.

In Fig. 2a–d, the air flows are 3 L/min, 5 L/min, 7 L/min and 9 L/min, respectively. It can be found that the ser-
rated fluctuation increases significantly with increasing air flow through the comparison. It proves that improving 
air flow will lead to an unstable discharge. It may be due to that the effect of the turbulence of high-speed air flow 
leads to the frequent occurrence of the suspension of discharge and once more breakdown. Thus it can be seen 
breakdown occurs more frequently at high air flow, which is beneficial to the generation of active species through 
air ionization. But the bigger is not the better. Because the growth rate of ionization producing active species cannot 
keep up with the increase of gas flow. So the unit flow rate of the active species reduces actually. What is more, high 
velocity causes that airflow containing active species goes through the target area quickly. That may weaken the 
efficiency as well. Therefore, the suitable flow needs to be founded to ensure enough generation of active species 
so as to realize satisfactory inactivation effect.

Through computing the integral for the data of current and voltage within 0.1 s, the discharge power can be 
obtained under different air flow rates (3 L/min, 5 L/min, 7 L/min, 9 L/min). Those are 21.57 W 23.03 W, 18.61 W 
and 16.58 W, respectively. The results show that the discharge power increases and then decreases with the augment 
of flow, and it reaches the maximum at the flow rate of 5 L/min. Uhm, H. S. et al.18 have studied the inactivation 
effect of radio frequency plasma jet device with different discharge power and found that with the increase of 
operating power, inactivation quantity increased as well. In the following study it found that the optimum air flow 
rate is 5 L/min, which is chosen in the follow-up experiments.

The state of microplasma ionization also has relationship with gas type. Different types of gas lead to different 
degrees of ionization. And it will affect the inactivation effect. So the diagrams of volt-ampere characteristics were 
measured with air, oxygen, nitrogen and argon gas as carries gases at the flow rate of 5 L/min (as shown in Fig. 3).
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As can be seen from Fig. 3, the current of oxygen microplasma fluctuates most intensely in the same condition. 
It indicates that the frequency of gas breakdown is the highest. Surely the degree of ionization is the highest at the 
same flow rate. And air ionization degree is slightly higher than that of nitrogen. The worst is argon plasma among 
air, nitrogen and argon plasma and the range of voltage and current variation is the narrowest, correspondingly 
the energy consumption is the smallest. Different ionization degree mainly results from different bond energy. 
Some studies have showed that the order of bond energy is as follows: oxygen <  nitrogen <  argon, and nitrogen 
and oxygen is the most abundant in the air, so its ionization degree is in between19,20. The difference of ionization 
degree decides the inactivation efficiency of various kinds of plasma. It will be discussed in the subsequent paper.

Figure 2. Volt-ampere characteristics with different air flow (3 L/min, 5 L/min, 7 L/min, 9 L/min): the 
serrated fluctuation increases significantly with increasing air flow. 

Figure 3. The diagrams of volt-ampere characteristics with air, oxygen, nitrogen and argon gas as carries 
gases: the current of oxygen microplasma fluctuates most intensely; the smallest is that of argon plasma. 
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Effect of air flow. It can be known that air flow influence the stability of discharge from the analysis of 
volt-ampere characteristic. So it is necessary to explore the effect of air flow on microplasma jet inactivation. In 
the experiments, the inactivation distance was set to 2 cm, and the research of single factor was conducted with 
the air flow as a variable. The inactivation effect of different treatment time with various air flow rates is shown 
in Fig. 4.

The experimental results show that the inactivation effect with air flow of 5 L/min is the best, and 7 L/min is a 
bit worse. Nevertheless both can make the bacteria inactivated completely within 60 s, and the inactivation rate is 
similar. While the inactivation effect with air flow of 9 L/min is far away from the former two, and the logarithm 
reduction of bacteria is only 3.06 within 60 s. It suggests that the greater air flow rate does not mean the better 
inactivation effect. And it can be concluded that greater flow will leave more air ionized, thus the ionization material 
increases accordingly. However, inactivation effect is worse conversely. That is mainly because the increment of air 
ionization matter caused by the increase of flow cause is far behind the pace of the increase of air. It results in that 
the active species in the unit of flow in the microplasma jet does not rise in fact. Besides, high flow rate under high 
velocity leads to that a lot of active species has no enough time to act on bacterial but has be taken away.

The logarithm reduction of bacteria is only 1.06 within 60 s with the air flow of 3 L/min, which shows that too 
small flow cannot improve the efficiency of inactivation as well. That is because the airflow is not able to blow the 
active species generated in the discharge area to the target from the nozzle in time. So the appropriate air flow is 
an important guarantee to achieve the ideal effect. Gas flow of 5 L/min is selected in the subsequent experiments.

Effect of distance. Inactivation distance refers to the distance between the microplasma generator nozzle 
and the target. In the experiments, the air flow rate was set at 5 L/min, and the distance was made as to the single 
factor variable to study the inactivation effect. The result is shown in Fig. 5.

The experimental results show that with the increase of the distance, inactivation effect is poorer. The best is 
the distance of 1.5 cm, in which condition the bacteria can almost be inactivated completely within 45 s. Besides, 
the distance of 2 cm can realize that in 60 s as well. Compared with the logarithm reduction of 6.36, the distance 

Figure 4. The inactivation effect of different treatment time with various air flow rates: that of air flow of 
5 L/min is the best, and that of air flow of 7 L/min is a bit worse; the inactivation effect with air flow of 9 L/
min is the worst. 

Figure 5. The effect of inactivation distance: Inactivation effect becomes poorer with the increase of 
inactivation distance. 
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of 2.5 cm can achieve to 5.36 in 60 s. And 3.0 cm is poorer, of which is only 4.67. Varieties of active particles gen-
erated from plasma ionization are the key of inactivation. But many of the active particles have no long lifetime 
in the environment. They are easy to decay or react with other components. Some active particles only have a life 
of millisecond and even microsecond21. And the longer treatment distance causes the longer time from the gen-
eration of active particles to working on the bacteria. The lower concentration of active particles, the smaller the 
etching effect on bacteria is. What is more, shorter-lived active substance has higher inactivation effect than the 
longevity22. So it appeared that with the increase of distance, the inactivation efficiency weakened. But the shorter 
is not the better. It is due to that the shorter distance means the stronger heating effect, which is much adverse to 
the temperature sensitive material and the operating personnel.

Effect of carrier gas type. Inactivation effect of microplasma jet was studied with air, oxygen, nitrogen and 
argon as carrier gases with the flow of 5 L/min and inactivation distance of 2 cm. The result is shown in Fig. 6.

According to the results, the order of inactivation ability of the four types of gas microplasma is as follows: 
oxygen >  air >  nitrogen > argon. The oxygen plasma could inactivate almost all the bacteria within 30 s, while air 
plasma needed 60 s, and nitrogen needed 120 s. The worst was the argon plasma, of which there still remained a 
lot of survived bacteria even in two minutes. Compared to the volt-ampere characteristic of different gas in Fig. 3, 
the following conclusions can be drawn.

In these gas molecules, molecular oxygen is most easily ionized. It is due to that oxygen plasma can produce a 
large number of oxidizing substances. And compared with active species produced by other gases, reactive oxygen 
species produced by oxygen is more competitive in inactivating bacteria. So the inactivation ability of oxygen 
microplasma is much higher than air plasma. Current research has affirmed that in the substances of plasma, 
oxygen ionization accounts for a large part, mainly including atomic oxygen (O)23–27, ozone (O3)24, metastable 
O2

24 and oxygen anion (O2−)28.
Air composition is complicated, containing nitrogen, oxygen, inert gas, water vapor and so on. So the ionization 

process is complicated, which leads to the formed compositions of active species are relatively more. The main 
active species includes short-life radicals like OH•, NO• and O•, and longevity reactive molecules like ozone and 
hydrogen peroxide21. The collection of active species equips air plasma with strong inactivation ability.

The inactivation effect of nitrogen microplasma is much less than oxygen and air. It results from that the 
nitrogen-nitrogen triple bond of nitrogen molecules is very stable and difficult to ionize19. Therefore it is difficult 
to produce enough active species relative to oxygen. Some researchers have verified that the radical of nitric oxide 
(NO·) is the main inactivation material of ionized nitrogen plasma with nitrogen as carrier gas19.

Argon, a kind of inert gas, is extremely difficult to ionize. The results show that the inactivation effect is the 
poorest taking argon as carrier gas It is because argon cannot be effectively ionized to produce enough active 
species in the same conditions. The reason is also be that inactivation ability of a small amount of active particles 
produced by ionization is limited.

In conclusion, the bond energy of gas molecules determines the ionization degree in the discharge region of 
microplasma with the same gas flow, resulting in different concentration of active components in the microplasma 
jet. Furthermore, the inactivation effect of every kind of active species is different, which leads to different inacti-
vation effect of gas microplasma. That is consistent with the results of volt-ampere characteristics in Fig. 3, which 
indicates that ionization degree determines the inactivation effect.

In the study, the inactivation effect of air microplasma is less than oxygen, but it can also fully meet the require-
ments. In addition, it is much cheaper and easier to get. So air was used as carrier gas in the follow-up experiments.

Effect factors of microplasma jet inactivation
Physical factors. Among the physical factors, mechanical force refers to the impact of the gas flow. But many 
studies have shown that the bactericidal function of the impact is quite small. Thus, it can be almost negligible 
and only has inactivation effect under very high speed of air flow. So in this study, the effect of mechanical force 
on bacteria was not considered due to that the flow velocity is relatively small.

Figure 6. The inactivation effect of microplasma jet with different types of carrier gases: the order of 
inactivation ability of the four gas microplasma is as follows: oxygen > air > nitrogen >argon. 
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Heating effect. In the experiments, the infrared thermometer was used to determine the heating effect of the 
microplasma jet. It has found that the temperature increased rapidly within the first 30 s, and the change was not 
obvious after 30 s. Besides, as can be known from the previous experiments, the first 30 s was the key to inactivat-
ing, and the inactivation rate achieved to 98.4%, while the measured temperature was 28 °C at that time. Studies 
have shown that in most cases, heating effect can cause cell irreversible damage when the temperature is more 
than 43 °C29. That is to say, microplasma jet has realized high efficient inactivation in 30 s, while the temperature 
has not reached the extent of inactivating E. coli effectively. It suggests that heating effect is not the main cause of 
microplasma inactivation.

Mohamed et al.30 used air, nitrogen and oxygen as the carrier gases to study microplasma jet. And it found that 
the temperature of plasma airflow mainly depended on the gas flow velocity and discharge current. It has shown 
that high inactivation temperature could be obtained through controlling the air flow rate, inactivation distance 
and discharge current so as to improve the efficiency of inactivation.

Ultraviolet radiation. Separating experiments were conducted to explore the effect of ultraviolet radiation 
in microplasma jet on inactivation. In the experiments, put the circular quartz glass (diameter: 10 cm; thick-
ness: 1.5 mm) onto the culture dish (diameter: 9 cm; height: 1.7 cm) to let ultraviolet radiation in but block other 
microplasma components. The device is as shown in Fig. 7, of which Fig. 7a,b are qualitative and quantitative 
research, respectively. The changes of antimicrobial rings and the logarithm reduction of concentration are shown 
in Fig. 8(a–c) and Fig. 9(a) before and after the separation.

As can be seen from Fig. 8(c), there is not antimicrobial ring after the ultraviolet radiation treatment for 
120 s as the untreated one. But an obvious antimicrobial ring appeared on the agar plate directly exposed to the 
microplasma. In Fig. 9(a), the logarithmic reduction of control group remains basically the same, the change of 
which is not obvious compared with the untreated. The results of qualitative and quantitative analysis show that 
ultraviolet radiation generated by the microplasma jet almost has no function of inactivation.

Many teams have studied the effect of ultraviolet radiation in plasma on inactivation. Boudam etc.31 have proved 
that ultraviolet radiation plays a major role in the process of plasma inactivation in certain conditions. But the 
carrier gas is very special, which is composed of a large number of N2 and small amounts of oxidizing gas (N2O). 
And it was also found that the effect of ultraviolet radiation disappeared in the discharge with air as carrier gas.

Charged particles. Separating experiments were conducted to explore the effect of charged particles in 
microplasma jet on inactivation in the way of qualitative and quantitative measurement. In the experiments, put 
the metal mesh screen with good conductivity (500 mesh) onto the culture dish (diameter: 9 cm; height: 1.7 cm) 
to filter out charged particles in microplasma. The device is as shown in Fig. 7 (c - qualitative analysis; d - quan-
titative analysis).

The changes of antimicrobial rings and the results of logarithm reduction of concentration are as shown in 
Fig. 8(d–f) and 9(b) before and after the separation. What calls for special attention is that the result is not the 
inactivation effect of charged particles but that of the removal of charged particles.

There is no big difference between the antimicrobial rings of the unseparated and separated treatment from 
Fig. 8. But some colonies appear in the latter ring (as shown in Fig. 8(f), which shows that inactivation effect of the 
latter was slightly inferior to the former. As can be seen in Fig. 9(b), inactivation effect of the separation group is 
almost the same as the control one. And only subtle difference exists in the process of inactivation in the first 30 s. 
With the extension of time, the two groups both achieved the effect of inactivating almost all the bacteria within 
60 s. It shows that microplasma jet still have very strong inactivation ability even though the charged particles are 
separated. The main effect of inactivation in the microplasma jet is neutral active species, and charged particles 
may play a positive role.

That is mainly related to the structure of the jet device. In the experiments, the formation area of microplasma 
is restricted inside the generator, and bacteria to be processed are only exposed to the outside. That is to say, 
plasma is not directly exposed to the bacteria. But in the process of plasma transmission, the rapid restructuring of 
electrons and ions leads to the low concentration of charged particles in the jet32. And that makes the inactivation 
effect not obvious.

Chemical fators. Chemical factors mainly refer to the active species. The main active species in oxygen 
plasma is reactive oxygen species and that in nitrogen plasma is reactive nitrogen species. Both of them exist in air 
plasma. Furthermore, as a result of the existence of water vapor, there is some active species that the former two 
do not have. Essentially active species mainly includes oxygen radical (O·), hydroxyl radical (OH ·), superoxide 
anion (H2O2) and ozone (O3), etc33. The active species is produced through different reactions, such as electron 
impact excitation and decompose34. They can be divided into two types in the existence time, namely longevity 
and short-lived active species. Short-lived active species mainly include oxygen (O·), hydroxyl radical (OH ·), 
hydrogen peroxide ion (H2O2 -), etc. Longevity active species mainly include hydrogen peroxide (H2O2), ozone 
(O3), neutral molecules, etc21.

Active species. It has proved in the previous experiments that the most important effect factor is the neutral 
active species rather than the ultraviolet radiation and charged particles in the process of microplasma inactiva-
tion. To further explore the inactivation effect of active species in microplasma jet, the qualitative and quantitative 
experiments were conducted. To separate the active species, nylon tube was connected to the end of the generator 
nozzle to ensure that the gas is not a direct object. In addition, a piece of metal mesh was covered on the culture 
dish to block charged particles and ultraviolet. The other side of the tube was set above the dish to ensure that the 
distance between the nozzle and the center of the dish is 2 cm. The separation device is shown in Fig. 7 (e - quali-
tative analysis; f - quantitative analysis).
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Because the device removed the charged particles and ultraviolet radiation and only active species existed, also 
the nozzle and the catheter were sealed, the microplasma jet can be effectively prevented from reacting with the 
material in environment in the process of transmission. The changes of antifungal rings and bacteria quantity are 
shown in Figs 8(g,i) and 9(c).

In Fig. 8(i), the diameter of antifungal ring generated by the active species is slightly less than that generated by 
the unsegregated microplasma. It is mainly due to that the inactivation range is limited by the duct transporting 
the active species to the agar board. And in Fig. 9(c), there is not big difference between the inactivation effects 
of active species separated by the duct and sieve within 30 minutes before. Only at 45 s, there is 0.62 log CFU/mL 
apart between the separation group and control group. That indicates that the synergy inactivation effect of the 
ultraviolet radiation and charged particles in microplasma jet can be negligible, and that of active species is the 

Figure 7. The separating devices of ultraviolet radiation (a,b), charged particles (c,d) and active species 
(e,f): a, c and e were used in qualitative; b, d and f were used in quantitative research. (1 - The body of the 
plasma generator, 2 - Microplasma jet, 3 - Petri dish, 4 - The sample, 5 - Quartz glass, 6 - The metal mesh screen, 
7 - Nylon tube)
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main factor. In order to explore what component played main role exactly, different length of ducts were used to 
separate the active species, and the result is shown in Fig. 9(d).

As can be seen from Fig. 9(d), longer spreading distance of plasma leads to worse inactivation effect. Active 
species separated by the catheter of 2 cm can inactivate almost all the bacteria in 60 s, while that of 4 cm still 
remained 3.9 log CFU/mL even after 120 s.

That is because too long catheter leads to the unstable active species partly wear down before contacting with 
the bacteria. It means that either longevity or short-lived active species has intense inactivation effect, and that of 
the short-lived active species is higher relatively. Of course, more longevity active species is expected in practice, 
which can provide sustained inactivation effect.

Due to the complexity of the composition in air microplasma, it is difficult to explore the inactivation effect of 
a certain component in active species. Thus, with two of the main compositions-oxygen and nitrogen in the air as 
carrier gases, longevity active species was made further study on the basis of separation by the duct of 4 cm. The 
experimental results are shown in Fig. 10.

Figure 8. The qualitative analysis of ultraviolet radiation, charged particles and active species (a, d,  
g- untreated, b, e, h - treated with microplasma for 120 s, c - treated with ultraviolet radiation isolated for 
120 s, f - c-treated with microplasma rid of charged particles for 120 s, i - treated with active species for 120 s) 
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Figure 9. The quantitative analysis of ultraviolet radiation (a), charged particles (b), active species (c) and the 
inactivation effect with different length of ducts (d). (a) The logarithmic reduction of control group remains 
basically the same; (b) Inactivation effect of the separation group are almost the same as the control one; (c) 
There is not big difference between the control and separating group within 30 minutes before, and the bacteria 
of both can almost be inactivated completely in 60 s; (d) Longer spreading distance of plasma leads to worse 
inactivation effect.

Figure 10. The inactivation effect of active species in microplasma of different types of gas: the inactivation 
effect of oxygen plasma is the best; that of air and nitrogen are approximately the same. 
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It can be found from Fig. 10 that among the three different carrier gases, the inactivation effect of oxygen plasma 
is the best. While that of air and nitrogen are approximately the same. The logarithm concentration is 3.9 and 4.2, 
respectively. The main reasons for that case are as follows:

O2 and N2 can both disintegrate and produce radicals and charged particles under the high-energy electron 
bombardment in plasma discharge area. The dissociation reactions are as follows:

+ → + + ( )– –O e O O e 32

+ → + + ( )– –N e N N e 42

O radical possesses strong oxidizability. That equips it with the ability of reacting with other components in 
the plasma to generate free radicals or other reactive molecules. So the O2 microplasma jet has strong inactivation 
performance. While air contains 21% O2, so strong inactivation effect does it have.

The bonding energy of N ≡  N is higher (9.8 eV), nevertheless that of O =  O is only 5.2 eV. So compared with O2, 
N2 is difficult to dissociate19,35. It results in that the concentration of active species in the microplasma jet is lower 
with N2 as carrier gas in the same condition, making worse inactivation effect than O2 microplasma.

Ozone. Ozone (O3) is a kind of important inactivation material among the active species in air plasma. It 
attains the goal of inactivation through damaging the membrane structure and changing the permeability of 
microorganism cell by oxidation24. What is more, O3 is a kind of longevity active component. It has significant 
advantages of continuous inactivation. The involving reactions of O3 production are as follows:

+ → + + ( )– –O e O O e 52

+ → ( )O O O 62 3

In the experiments, the change of O3 concentration under different air flow rates was detected with the handheld 
ozone detector setting below the jet. And the distance between the gas import of the instrument and the nozzle 
was 2 cm. It found that with the increase of air flow rate, the O3 concentration rised and then decreased 2 cm below 
the nozzle. It is consistent with the previous studies of inactivation effects with varying air flows. And both of that 
reach the peak at about 5 L/min. That suggests the concentration of active species represented by ozone achieves 
the maximum in the plasma, so as to obtain the best inactivation effect. It can also be seen that exorbitant air flow 
leads to intense fluctuation of O3 concentration. That reflects that the discharge is unstable, which is accordant 
with the volt-ampere characteristic diagram in Fig. 2.

Meanwhile, the ozone concentration 2 cm below the microplasma jet was measured with O2 and N2 of 5 L/min 
as carrier gases in the same way. It has showed that the concentration of ozone is different in microplasma jet of 
different types of gas. Below the nozzle of 2 cm, the concentration of ozone generated by oxygen is 108 ±  4 ppm, 
which is much higher than air and nitrogen. And that of air microplasma is slightly higher than N2, of which the 
wave range is 60.5 ±  1.5 ppm. It is the same with what reflects in Fig. 9(d), which indicates O3 plays an important 
role in microplasma inactivation. Interestingly, O3 appears in the microplasma with N2 as carrier gas, and the 
concentration range is 56.5 ±  0.5 ppm. It shows that some active species in N2 microplasma ejected from the nozzle 
can react with O2 quickly in the air to generate O3. The related equation is as follows:

+ → + + ( )– –N e N N e 72

+ → + ( )N O NO O 82

+ → ( )O O O 92 3

It suggests that the ionization product of O2 and N2 in the discharge area can react with O2 to generate the 
persistent inactivation material, O3. Besides, the degree of gas ionization and the oxygen concentration in the 
surrounding environment determine the ozone concentration.

Mechanism analysis
Inactivation effect analysis. Due to having changed the preparation method of dye bacterium, it is neces-
sary to carry on the research of inactivation effect firstly. The results of logarithm concentration and inactivation 
rate of the live bacteria under different processing time are shown in Fig. 11.

The experimental results show that the process of microplasma jet inactivation is mainly divided into two stages 
of 0 to 30 s and 30 s − 120 s. The former is the stage of rapid inactivation. The bacteria logarithmic reduction is 
1.54 within 30 s, and the inactivation rate reaches 97.1%. The latter is the stage of slow inactivation. The bacteria 
logarithmic reduction is only 1.75 within 60 s, and it only inactivates 2.9% of the total number of bacteria actually. 
It can be known from the figure that with air as carrier gas, inactivation process appears first quick back slow trend.

Analysis of intracellular content escaping
Change of ion concentration. K and Mg element is the important components of bacteria cells. They exist 
in the bacterial cytoplasm mainly in the form of inorganic salt. In order to explore the changes of the permeability 
and rupture of cell membranes, the concentration changes of K+ and Mg2+ in supernatant of the samples were 
studied.
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Figure 11. The inactivation effect of microplasma: the inactivation process appears first quick back slow 
trend. 

Figure 12. (a) The change trend of K+ concentration during the inactivation process: 0 to 30 s is the fastest 
rising stage of ion concentration; (b) The change trend of Mg2+ concentration during the inactivation process: 
0 to 30 s is the fastest rising stage of ion concentration; (c) The changes of protein and polysaccharide in 
the supernatant: the concentrations of the polysaccharide and protein grow in the 90 s, and after 60 s, the 
concentrations both grow exponentially.



www.nature.com/scientificreports/

13Scientific RepoRts | 6:18838 | DOI: 10.1038/srep18838

In the experiments, ICP-AES was used to detect the ion concentration in the supernatant. The concentration 
changes of K+ and Mg2+ are shown in Fig. 12(a,b).

From Fig. 12(a,b), 0 to 30 s is the fastest rising stage of ion concentration. In that stage do most bacteria inac-
tivate, which proves that the selective permeability of cell membrane has failed. As for inactivation rate, the stage 
of fastest change is 5–10 s.

The reason for that case is as follows: cell membrane has certain protective effect36. The etching effect of 
microplasma jet can change the permeability of bacterial cell membrane, or even destroy the structure of cell 
membrane. When the selective permeability of cell membrane has failed, K+ and Mg2+ can escape. But if plasma 
does not continue to function, the structure of cell membrane will not be destroyed, and bacteria can also “revive”. 
That explains well the permeability of cell membrane changes in the first 5 s. It is due to that the effect of plasma 
and element concentration in the supernatant fluid rise rapidly. But the inactivation effect shows “delayed” due to 
the protective function of cell membrane. The structure of cell membrane is severely damaged through the further 
etching effect of plasma from 5 s to 10 s. And the failure of protection mechanism makes cell cracking and 60% of 
the bacteria be inactivated. In addition, the “delayed” phenomenon is more obvious for gram positive bacteria and 
spores which have stronger protection mechanism.

Change of protein and polysaccharide. It has be learned that the cell membrane has protection mech-
anism. In order to further explore the etching effect of the microplasma jet on the cell membrane of E. coli, the 
changes of protein and polysaccharide in the supernatant were detected after inactivation treatment. Protein 
was detected by Folin-phenol method (also called Lowry method), and polysaccharide was detected by sulfuric 
acid-phenol method. The experimental results are shown in Fig. 12(c).

Figure 12(c) shows that the concentrations of the polysaccharide and protein grow in the 90 s. The growth is 
relatively stable during 0–60 s. But after 60 s, the concentrations both grow exponentially, making the concentration 
of protein and polysaccharide close to 30 mg/L and 10 mg/L, respectively.

The main structure of E. coli includes cell wall, cell membrane, cytoplasm and ribosomes. The major compo-
nents of them are protein and polysaccharide. When microplasma imposes on the bacterial, the permeability of 
cell wall and cell membrane increases or they directly burst. It results in the cytoplasm and the ribosome escaping, 
which accounts for the rising concentration of polysaccharide and protein in 60 s. As can be seen from Fig. 11, 
almost all bacteria have been inactivated after 60 s. And compared with the content changes of K+ and Mg2+, it 
can be known that the structure of cell wall and cell membrane is destroyed as well and the cytoplasm has escaped 
largely. Furthermore, the fragmentization of cell wall and cell membrane will appear with continuous treatment 
by microplasma. That leads to the sharp increase of the concentrations of protein and polysaccharide during the  
60 s–90 s. So it can be concluded that the microplasma jet can not only inactivates microorganisms but also remove 
the body like other plasma37.

Change of soluble organic matter. The content change of soluble organic matter was studied by 3D-EEM 
with high sensitivity and selectivity. The result is shown in Fig. 13.

As can be seen from the six pictures of Fig. 13, the peaks of fluorescence intensity are located in the same 
position, namely the Ex/Em being 265–280/325–345. It is because the samples treated by microplasma is from 
the same kind of E. coli. Within the first 30 s, the peak height of fluorescence intensity increases with the extension 
of treatment time. It suggests that intension gradually strengthens. Compared to the inactivation rate of Fig. 13, it 
can be thought that during this period, the plasma jet leads to the cell membrane rupture and cytoplasm escaping. 
That causes the concentration of soluble organic matter in bacterium solution increase. After 30 s, the fluorescence 
intensity gradually reduces with the extension of treatment time. It is mainly on account of the oxidation of soluble 
organic matter by microplasma jet38. And the result of Fig. 12(c) indicates that the concentration of organic matter 
continuously growth during the 90 s, especially during the 60 s–90 s. That may be due to that cell wall and cell 
membrane of the bacterial is in continuing fragmentation. And fragmentation of cell wall and cell membrane is 
not necessarily soluble organic matter. That leads to that the concentration of protein and polysaccharide increases 
but the soluble organic matter reduces after 30 s.

That means microplasma jet can not only inactivate the microbes but oxygenize and decompose the residual 
organic matter after the death of microbial. It has the function of cleaning the surfaces contaminated by organic 
matter22,37.

Change of cell morphology. The experiments of K+ and Mg2+ and proteins and polysaccharides have 
proved the microplasma can lead to the cell membrane rupture, resulting in the death from the side. In this part 
SEM was used to study the change of cell morphology of E. coli in the process of microplasma treatment39.

It can be found from the SEM images before and after treatment that cell morphology of E. coli changes a lot. 
Bacterial cells before treatment presented full status, complete morphology, smooth surface, showing regular 
rhabditiform (as shown in Fig. 14(a). But after treatment for 60 s, the cell morphology occurred serious deforma-
tion, and single cells were elongated. In addition, they appeared dry and imperfect (as shown in Fig. 14(b). That 
is due to that the microplasma treatment led to cell membrane rupture and cytoplasm escaping. It proved again 
from the angle of morphology that the inactivated mechanism of E. coli in the process of microplasma treatment 
is primarily therupture of cell membrane. In order to learn the detailed changes of cell morphology during the 
processing of 60 s, the samples treated for 0 s, 15 s, 30 s, and 60 s were observed by electron microscopy. The more 
clear SEM images of single cell were obtained with greater magnification as shown in Fig. 15.

It can be found from the SEM that the bacterial cells before treatment presented complete morphology and 
smooth surface, showing regular rhabditiform (as shown in Fig. 15(a). After the treatment, the microplasma had 
etched on the cell wall and cell membrane of bacterial. And there were mainly three different etching conditions: 
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cell membranes occurred only rupture slightly and it is no longer the original regular rhabditiform (as shown in 
Fig. 15(b); cells occurred much rupture in the cell membrane, cell morphology was severely incomplete, and the 
size was also smaller due to the cytoplasm massively outflowed (as shown in Fig. 15(c); bacterial cytoplasm com-
pletely outflowed, and cell morphology occurred serious deformation, only remaining the dry pieces (as shown 
in Fig. 15(d). That explains the phenomenon that the concentrations of protein and polysaccharide of bacterium 
solution dramatically increase in Fig. 12(c).

Those three different etching conditions can also be regarded as three different stages of E. coli treated by 
microplasma. And the cell morphology of E. coli changed step by step as the etching effect changed. It proves that 
the etching effect of microplasma jet resulted in the cell membrane rupture and bacteria death as well.

Conclusions
In this paper, with E. coli as the target microorganisms, the qualitative and quantitative researches were conducted 
to study the inactivation effect of microplasma jet. The main conclusions are as follows:

The discharge of microplasma jet is extremely unstable, but both periodically change. And the discharge shows 
greater instability with higher gas flow rate. For air microplasma, with the increase of air flow rate, inactiva-
tion effect improves first and then weakens; with the increase of inactivation distance, the inactivation effect of 
microplasma weakened gradually; the comparison of inactivation effect with different carrier gases shows that 
oxygen microplasma jet has the strongest inactivation ability, followed by air, nitrogen and argon.

Figure 13. The results of 3D-EEM treated with different times (a-0 s, b-10 s, c-15 s, d- 30 s, e-45 s, f-60 s). 
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Heating effect and ultraviolet radiation in air microplasma jet basically do not possess inactivation ability alone. 
Within the first 30 s, the vast majority of bacteria have been dead, but the temperature on the bacterial carrier 
is still less than 43 °C. Though charged particles have certain ability of inactivation, there is no obvious change 

Figure 14. The SEM images before and after treatment: Bacterial cells before treatment presented full 
status, complete morphology, smooth surface, showing regular rhabditiform; cell morphology occurred 
serious deformation, appearing dry and imperfect after treatment for 60 s. 

Figure 15. The SEM images of different treatment times: (a) bacterial cells before treatment presented 
complete morphology and smooth surface, showing regular rhabditiform; (b) cell membranes occurred only 
rupture slightly and it is no longer the original regular rhabditiform; (c) cells occurred much rupture in the cell 
membrane, cell morphology was severely incomplete; (d) bacterial cytoplasm completely outflowed, and cell 
morphology occurred serious deformation. 



www.nature.com/scientificreports/

1 6Scientific RepoRts | 6:18838 | DOI: 10.1038/srep18838

compared with the control group. That means charged particle is not the main factor of microplasma inactivation 
but the neutral active species is.

The active species in air microplasma are mainly generated by the ionization of oxygen and nitrogen. Taking 
ozone as an example, with the increasing air flow, ozone concentration increases first and then decreases. The 
change trend is highly consistent with the inactivation effect. That proves that the concentration of the active 
species determines the strength of the inactivation effect.

Microplasma jet has etching effects on cell membranes of E. coli. With the extension of treatment time, the 
cell membrane permeability of bacterial begins to change. And finally cell membrane cracking occurs, leading to 
various ions, proteins and polysaccharides escaping. And cell morphology is transformed from originally full and 
smooth to irregular and dry.
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