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ABSTRACT: Atrial fibrillation (AF) is the most prevalent arrhythmia in the world, due both to its tenacious 

treatment resistance, and to the tremendous number of risk factors that set the stage for the atria to fibrillate.  

Cardiopulmonary, behavioral, and psychological risk factors generate electrical and structural alterations of 

the atria that promote reentry and wavebreak.  These culminate in fibrillation once atrial ectopic beats set the 

arrhythmia process in motion.  There is growing evidence that chronic stress can physically alter the emotion 

centers of the limbic system, changing their input to the hypothalamic-limbic-autonomic network that 

regulates autonomic outflow.  This leads to imbalance of the parasympathetic and sympathetic nervous 

systems, most often in favor of sympathetic overactivation.  Autonomic imbalance acts as a driving force 

behind the atrial ectopy and reentry that promote AF. Careful study of AF pathophysiology can illuminate 

the means that enable AF to elude both pharmacological control and surgical cure, by revealing ways in which 

antiarrhythmic drugs and surgical and ablation procedures may paradoxically promote fibrillation.  

Understanding AF pathophysiology can also help clarify the mechanisms by which emerging modalities 

aiming to correct autonomic imbalance, such as renal sympathetic denervation, may offer potential to better 

control this arrhythmia.  Finally, growing evidence supports lifestyle modification approaches as adjuncts to 

improve AF control. 
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For many medical professional’s atrial fibrillation may 

bring to mind a slight twist on a famous quote by late US 

Supreme Court Justice Potter Stewart: “I can’t explain 

atrial fibrillation, but I know it when I see it.”  Although 

the pathophysiology of atrial fibrillation (AF) may seem 

somewhat impenetrable, the arrhythmia itself is 

diagnostically all but unmistakable, so most medical 

professionals would indeed “know it when they see it.”  

And they see it with alarming frequency as AF is such a 

pervasive problem; it is the most common cardiac 

arrhythmia across the globe [1 - 3], causing 1/3 of all 

arrhythmia-related hospitalizations [4].  The 2010 Global 

Burden of Disease study reported 33.5 million AF cases 
worldwide [5].  The ATRIA study estimated that 2.3 

million people in the US alone had AF in 2001 [6]; by 

2009, that number was above 3 million [7].  With the 

aging of the post-war “baby-boom” generation [3, 8], over 

5 million Americans are projected to have AF by the year 

2050 [9], although some projections take that number 

much higher [3].   

The high prevalence of AF is partly due to the 

treatment resistance of this arrhythmia -- often it may 

seem subdued by medical interventions, only to resurge 

again.  Refractoriness to therapy, combined with the 

tremendous number of risk factors that drive AF 

occurrence, and the increased longevity of patients with 

cardiovascular disease in general, have yielded a steadily 
expanding pool of AF cases.   
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Odds of developing AF increase dramatically with 

aging:  from age 40 onward, the lifetime risk is 26% [3]; 

above age 60, prevalence doubles with the passage of each 

additional decade of life [10].  Men are more likely to 

develop AF than women [11, 12].  Incidence varies 

between racial groups, with whites more frequently 

affected than blacks [13].  And some families may carry 

inherited genetic predisposition for AF [14 - 16]. 

Higher rates of AF occur in extreme endurance 

athletes [17], and with many medical problems including 

hypertension [18, 19], gastroesophageal reflux (GERD) 

[20], asthma [21, 22], chronic obstructive pulmonary 

disease (COPD) [23, 24], hemodialysis [25 - 27], diabetes 

[28], anxiety and depression [29], mitral regurgitation 

[30], and stenosis [31, 32].  10-15% of patients with 

hyperthyroidism will develop AF [33].  And 1/3 of 

congestive heart failure patients manifest AF [1], together 

with 30% of those who undergo bypass surgery for 

coronary artery disease [34 - 36], up to 20% of those who 

undergo lobectomy for lung cancer, and 40% of those who 

have full pneumonectomy [37]. 

Obesity increases the risk of AF 49% [38], with a 4% 

rise in incidence for each 1-point BMI elevation above 

normal [8].  Sleep apnea, despite its association with 

obesity and hypertension, is an independent risk factor for 

AF [39, 40].  Roughly ½ of AF patients have sleep apnea 

[39, 40], and AF is up to 18 times more likely to initiate 

within 90 seconds of an apneic hypoxic episode [41].   

Alcoholic beverages [42, 43], cigarettes [44], 

nonsteroidal anti-inflammatory drugs (NSAIDs) [45], and 

theophylline [46], a stimulant found in black and green 

tea, sometimes used as a pulmonary medication, are 

reported to increase AF incidence. Interestingly though, 

caffeine, which was long assumed to be proarrhythmic, 

appears to have been exonerated from triggering AF in 

both the Framingham Study [47] and the Women’s Health 

Study [48].  In fact, low-dose caffeine may even be 

protective against AF [49, 50]. 

In almost ¾ of cases, AF occurs with risk factors as 

mentioned above [51, 52], but it can also sometimes rear 

its head in younger patients, without any known risk 

factors [53].  Genetic predisposition may play an 

important role in such cases of “lone AF” [14 - 16]. 

Even more alarming than the pervasiveness of the risk 

factors are the potentially catastrophic complications.  

Coexisting AF doubles mortality in patients with coronary 

artery disease [54], doubles risk of dementia [55], triples 

risk for heart failure [55], and quintuples risk for stroke 

[3, 54].   

Given the impact of AF, it is not surprising that 

enormous resources are poured into the effort to suppress 
or cure this arrhythmia.  Unfortunately though, AF 

remains defiant, stubbornly refractory to pharmacological 

and surgical attempts at management.  Much has been 

discovered about the underlying pathophysiology of AF 

and this can shed light on why so many risk factors 

predispose to it.  But more importantly, understanding 

AF’s underlying cellular mechanisms can reveal why AF 

has so successfully eluded cure, and can point toward 

future approaches that may prove more successful at 

curbing this tenacious arrhythmia. 

 

Deconstructing the Pathophysiology of AF 

Decades of research have yielded alternative hypotheses 

for the mechanism underlying AF [56].  The focal source 

hypothesis [57] argues that a single area of rapid ectopic 

action potential firing can bombard the atria with so many 

electrical impulses that the resulting chaos initiates 

fibrillation [58].  The multiple wavelet hypothesis posits 

that several simultaneous self-sustaining waves of 

abnormal conduction, called reentry loops, emit an array 

of depolarizing prompts in all directions, leading to 

fibrillation [59].  

Newer experimental data suggest that features of both 

theories might synergize [60],  yielding a hybrid 

mechanism of AF, in which a focal source of ectopy 

initiates a solitary reentry wave which electrically 

shatters, in a process called wavebreak, to trigger 

fibrillation.  

  

STEP 1: ECTOPY 

 

All atrial cells do not repolarize at the exact same 

moment [58, 61].  Autonomic innervation of the heart is 

punctate [1, 62], so some atrial cells will inevitably be 

located closer to autonomic nerves and will experience a 

higher concentration of autonomic neurotransmitters than 

neighboring cells.  This results in small differences in 

degrees of neurotransmitter-mediated channel 

modification, yielding slight differences in channel 

conductance and therefore slight repolarization time 

disparities.  In the normal heart, repolarization 

heterogeneities “all come out in the wash.”  Every cell 

repolarizes before the SA node re-depolarizes them during 

the following cardiac cycle.   

But, if an atrial cell misbehaves, launching its own 

ectopic action potential, then repolarization disparities 

become enormously significant [53].  The electrical 

impulse propagating from the ectopic beat would find 

some atrial cells with slower repolarization speeds 

refractory to conducting another action potential at that 

time. Refractory cells provide areas of unidirectional 

conduction block [63], deflecting away the depolarization 

impulse created by the ectopic beat.  But nearby atrial 
cells with slightly faster repolarization speeds would be 

able to use the ectopic electrical impulse to launch their 

own action potentials.  In this manner, an ectopic beat can 
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set in motion an aberrant depolarization wave, triggering 

action potentials in any cells in its path that are recovered 

and ready to fire again [53].  

 

STEP 2: REENTRY 

 

If conduction velocity of the aberrant depolarization 

wave is slow enough, the wave’s path length is long 

enough, and refractory periods of originally blocked cells 

are brief enough, then the aberrant wave may loop around 

and discover that the previously blocked cells have 

finished repolarizing, and can now fire and incorporate 

into the wave.  If the wave survives this long, it may circle 

back on itself a second time, re-encountering its earliest 

participant cells, and triggering action potentials in those 

cells yet again.  In this way, the depolarization wave may 

establish a reentry conduction loop that can sustain itself 

potentially indefinitely [52, 64].   

Alternatively, if the conduction of the wave is too 

quick or the refractory periods of the originally blocked 

cells are too long, then the wave will run out of cells to 

depolarize, and will dissipate rather than entrenching in a 

sustained loop [65, 66].   

 

STEP 3: WAVEBREAK 

 

When an ectopic beat does trigger reentry, AF may 

onset when the reentry wave encounters an area of abrupt 

conduction slowing -- either functional slowing, due to 

slight variations in individual cells’ ion channel 

conductance, or structural slowing due to fibrosis.  Like 

an ocean wave slamming into a rock jetty, the electrical 

wave shatters into uncountable wavelets that fan out in all 

directions to trigger the disorganized atrial electrical 

hyperactivation of AF [52, 56, 67].     

This mechanism explains the onset of AF, but to 

understand what makes onset possible in the first place, it 

is necessary to examine how AF risk factors create the 

substrate that triggers ectopy and enables reentry. 

 

Promoting Ectopy  
 

In contracting atrial cells the very substantial IK1 current, 

which largely determines the resting membrane potential, 

swamps out the effects of the funny current leak channels, 

so that atrial cells do not normally display automaticity 

[2].  (Fig. 1) The SA node, unencumbered by IK1, initiates 

each cardiac cycle by self-depolarizing and then passing 

the depolarization wave to the remainder of the atrial cells 

[63, 68, 69].  (Fig. 2) 

However, if the SA node becomes dysfunctional or 
the funny current depolarization rate of a latent pacemaker 

accelerates [65] in response to increased sympathetic or 

decreased vagal drive to the heart [65, 70], an alternative 

site in the atria may “outrun” the SA node [53] and fire an 

ectopic beat, via abnormal automaticity.  

Ectopic beats can also occur by triggered activity: 

abnormal depolarization events occurring in between the 

firing of two consecutive action potentials [65].  One 

triggered activity variant, called early 

afterdepolarizations, EADs, can occur if action potential 

repolarization is prolonged [52], because of genetic 

mutation of one of the repolarizing K+ channels (in Long 

QT Syndrome) [71], K+ channel blocking drugs, acidosis 

or hypokalemia, all of which diminish the repolarizing K+ 

current.  Slow repolarization can allow the L-type Ca2+ 

channels to reopen a second time, creating an inward 

positive current spike, the EAD, during repolarization.  

The other triggered activity variant, delayed 

afterdepolarizations, DADs, occur with cardiac cell Ca2+ 

overload. During diastole, ryanodine receptors should 

stay closed and Ca2+ ions should remain within the 

sarcoplasmic reticulum (SR) and not enter the myocardial 

cell cytosol.  However, if the SR becomes overfilled, 

some Ca2+ can escape into the cytosol [52] during 

diastole, triggering inappropriate activation of the 

contractile apparatus, and impairing diastolic relaxation. 

To preserve chamber relaxation and filling, “diastolic 

Ca2+” is promptly removed from the cell by the Na+/Ca2+ 

exchanger [52], which brings 3 Na+ ions into the cell for 

each solitary Ca2+ ion pumped out.  This 3+ in: 2+ out 

stoichiometry yields a net +1 inward current that creates 

the DAD, a positive spike in the membrane potential after 

action potential repolarization has already concluded [2].  

If sufficient in size, a DAD or EAD can take the cell back 

to threshold and launch an ectopic action potential [52]. 

Where the pulmonary veins (PVs) meet the left 

atrium (LA), “sleeves” of atrial muscle cells extend to 

envelop the blood vessels [56, 72], possibly acting as an 

external valve system, preventing backflow of blood into 

the PVs during atrial contraction [73].  The sleeve cells 

receive extensive innervation from parasympathetic [72] 

and sympathetic [74] nerves, and they have histological 

similarities to the pacemaker cells of the SA node [73].  

Likely due to these factors, the PV sleeves can emit focal 

ectopy, possibly by abnormal automaticity given the cells’ 

similarity to SA cells, but also potentially due to EADs 

[75], making this vascular-cardiac interface a frequent 

initiation source for lone AF [76 - 78].  A similar situation 

has been noted in the right side of the heart, around the 

vena cava-right atrial junction [79].  Thyroid hormone has 

been reported to augment ectopic activity by PV cells, 

which begins to explain AF promotion by 

hyperthyroidism [80]. 
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Figure 1. Atrial Action Potential Ion Currents. While the SA cells are depolarizing, the surrounding 

contractile cells of the atria are at their resting membrane potential of approximately -90mV, due to the 

IK1 current. Once the SA depolarizes, it promptly passes depolarizing positive ions to the atrial cells 

through low resistance gap junction channels. These positive ions bring the atrial cells to their own 

threshold potential, opening voltage-gated sodium channels (INa) in the atrial cell membranes, so that the 

atrial cells fire their own action potentials. At the peak of the upstroke in the atria, transient outward (Ito) 

potassium channels open; positively-charged potassium ions exit the cell, beginning the process of 

repolarization. Their attempt to repolarize the atrial cells is short-lived however, because inward calcium 

current, conducted through voltage-gated L-type calcium channels (Ica(L)) keeps the cells in a state of 

depolarization just a bit longer, depicted as a plateau in the middle of the action potential waveform. The 

SA action potential does not need a calcium-based plateau current because SA cells are not responsible for 

contracting. Atrial cells, on the other hand, use the electrical depolarization from the action potential as the 

signal to contract. The “trigger” calcium entry through L-type channels during the plateau acts as a bridge 

between the electrical depolarization and mechanical contraction. The L-type channels inactivate rapidly, 

calcium current ceases, and then potassium exit, through multiple channels including the “ultra-rapid”-

opening IKur, the “rapid” opening IKr (also called hERG channels) and the “slowly” opening IKs channels, 

fully repolarizes the cells. 

 

 

However, over 70% of AF cases are not lone, but 

instead are associated with cardiopulmonary disease [51, 

52].  In this larger subgroup, focal ectopy may come from 

DADs due to abnormal Ca2+ handling.  Angiotensin II, 

upregulated in hypertension, promotes ryanodine receptor 

phosphorylation, potentially contributing to SR Ca2+ 

overload [52].  Coronary artery disease is known to 

increase Na+/Ca2+ exchanger function, also a player in 

generation of DADs [52].  In heart failure, the SR can 

become Ca2+ overloaded by digitalis glycosides [65], 

which inhibit the Na+/K+ ATPase pump, triggering the 

Na+/Ca2+ exchanger to run “in reverse,” moving Na+ ions 
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out and bringing additional Ca2+ into the cell to improve 

cardiac contractility, yet creating risk for DADs [52]. 

SR Ca2+ overload can also occur during very rapid 

heart rates, including persistent sinus tachycardia or 

reentry tachycardias [81], which allow larger amounts of 

Ca2+ to enter, due to increased frequency of L-type 

channel openings [81].  (Fig.1) In addition, with increased 

sympathetic tone (typical during tachycardias and a 

frequent feature of cardiac disease), elevated 

norepinephrine levels mediate higher degrees of L-type 

channel phosphorylation, increasing channel conductance 

and Ca2+ entry, which then can promote DADs [82]. 

 

 

 

 

 

 
 
 

 

Figure 2. Sinoatrial Node Depolarization. Under normal conditions, the heart’s electrical rhythm is 

generated by the cells of the sinoatrial (SA) node. At the beginning of each cardiac cycle the membrane 

potential of the SA cells is approximately -60 mV, with the interior of the SA cells negatively charged 

relative to the cell exterior. Unlike contractile cardiac cells, SA cells do not have a stable resting 

membrane potential, so they remain poised at -60 for just the briefest moment, because “funny 

channels” (If) promptly spring open, allowing positively charged ions to leak from the extracellular 

space into the interior of the SA cells. As positive ions enter, the SA cell interiors become progressively 

less negatively charged (depolarized). The funny channel leak current (soon joined by Ca2+ current 

through T- and L-type channels, ICa(T), ICa(L)) -- and the change in the membrane potential that results 

from it -- is represented in the graph of the SA node action potential as the diagonal upslope at the start 

of action potential waveform, also referred to as “phase 4.” The positive ion influx quickly brings the 

SA cells toward the “threshold potential,” at approximately -40 mV, at which point voltage-gated 

calcium channels suddenly open, enabling a sudden massive surge of positive charge entry into the cell. 

This is the upstroke of the SA action potential, also called “phase 0.” Following the upstroke, there is 

an exodus of positively-charged potassium ions (IK) which restores the cell interior to its original 

negatively-charged baseline electrical potential during phase 3 repolarization. 
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Promoting Reentry    
 

Slow conduction and long path length 

 

Voltage-gated sodium channels mediating the action 

potential upstroke require the cell to fully repolarize in 

order to reset their gates.  In partially repolarized cells, 

some sodium channels fail to reset and thereby remain off-

line which functionally slows conduction. If these 

partially repolarized cells are re-excited by an ectopic beat 

or aberrant depolarization wave, their slower conduction 

increases the likelihood that reentry will be established 

[65].  Hyperkalemia [65] and the NSAID ibuprofen [83] 

have also been shown to promote reentry by functionally 

slowing conduction. 

Anatomic disturbances, such as scar tissue from a 

healed myocardial infarction site or fibrosis due to aging, 

will disrupt myocardial cell contact points, slowing 

conduction [65].  Conduction is fastest down the long axis 

of a cardiac myofibril [65].  When a wavefront must round 

a curve, to accommodate small veins or changes in 

myocardial fibril orientation, then conduction slows.  The 

PV/LA junction has irregular fibril orientations that can 

delay conduction and support reentry [81, 84, 85], further 

enhancing its ability to act as a source of lone AF. 

Atrial dilation -- from cytotoxicity due to excess 

alcohol use [86], or from volume-pressure overload of the 

atria caused by diastolic dysfunction [87], extreme 

endurance training [88], valve regurgitation [30] or 

stenosis [31] -- provides longer pathlength for a 

propagating wavefront, promoting reentry.  Dilation also 

increases atrial chamber diameter, augmenting wall stress. 

This triggers compensatory collagen deposition in the 

extracellular matrix to strengthen the wall [87], but it also 

slows conduction which facilitates reentry. 

 

Short refractory period and conduction block 

 

Atrial stretch from volume-pressure overload shortens 

action potential duration, secondary to altered K+ channel 

expression [89].  In addition, PV/LA junction cells exhibit 

greater shortening of action potential refractory periods in 

response to vagal stimulation than do the other left atrial 

cells [56, 90, 91],  creating neighboring areas of unequal 

repolarization that promote conduction block and reentry. 

Hyperthyroidism promotes AF by shortening action 

potential duration [33, 92].  Hyperthyroidism has been 

reported to exert more pronounced action potential 

shortening in cells of the right atrium, relative to those of 

the left, augmenting conduction heterogeneities that favor 

conduction block and reentry [92, 93]. 
Most genetic mutations implicated in familial AF 

increase the activity of K+ currents and thereby shorten 

action potential duration and refractory period [14].  An 

inherited reentry predisposition such as this correlates 

with clinically-observed data from the Framingham 

Study, which revealed significantly increased risk of AF 

in study participants whose parent(s) also had AF [15, 94]. 

Inflammation has been implicated in promoting AF 

[95, 96], particularly in the setting of cardiac surgery [36, 

97, 98].  Although post-bypass AF is likely multifactorial, 

local inflammation from surgical cannulation of the 

atrium has been reported to exacerbate atrial conduction 

heterogeneities [98, 99], which may facilitate reentry.  

Both branches of the autonomic nervous system have 

reentry-promoting potential. The sympathetic transmitter 

norepinephrine shortens refractory period by increasing 

the IKs current [100], (Fig. 1) because faster heart rates 

mandate a shorter repolarization time, in order to fit more 

action potentials into a given time frame.  Acetylcholine 

(ACh) from parasympathetic nerves opens ACh-sensitive 

K+ channels, generating IKACh current to speed up action 

potential repolarization [65].  This is likely a protective 

mechanism:  if vagally-mediated slower heart rates 

actually prolonged repolarization time, then EADs could 

be promoted, leading to arrhythmia. There is mounting 

evidence that imbalance between the two arms of the 

autonomic nervous system plays an important role in AF 

[1, 75, 81, 101].   

 

Autonomic Imbalance  

 
Autonomic imbalance has been reported in many 

conditions linked to AF, including obesity [102], sleep 

apnea [103, 104],  depression [105], diabetes [106], 

asthma [107], cardiovascular disease [108], heart failure 

[109, 110], and extreme endurance activities [111 - 113].  

Animal models provide supporting evidence:  in dogs, 

intravenous epinephrine or acetylcholine enabled AF 

induction in 21% and 100% of the animals respectively 

[101, 114].  Again in dogs, augmented sympathetic tone, 

via electrical stimulation of either stellate ganglion, was 

shown to increase incidence of AF; surgical removal of 

either ganglion decreased rates of fibrillation [115].   

AF is postulated to have two autonomic subtypes:  

vagally-predominant, in younger patients, with onset 

typically at night when vagal tone is higher, and 

adrenergically-predominant, in older patients, with 

episodes more common during daytime when sympathetic 

tone is at its circadian peak [116, 117].  Episodes of 

paroxysmal lone AF, originating from the pulmonary 

veins, have been reported to begin after a shift toward 

higher vagal tone [118].  But in persistent AF, increased 

sympathetic tone was detected, correlating with fewer 

parasympathetic neurons but increased numbers of 
sympathetic neurons in cardiac nerve bundles innervating 

the atria [56, 119, 120].  One study reported that 

significant abrupt sympathetic stimulation, in the 
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presence of previously elevated vagal tone, could elicit 

focal ectopy [121].  Other studies report the opposite 

pattern, elevated sympathetic tone followed by abrupt 

increase in parasympathetic tone, preceding AF onset 

[101, 122].  Thus the interplay between the two autonomic 

divisions might be even more important than their 

individual roles [75], rendering appropriate balance 

between them critical.  But since 70% of AF cases 

correlate with risk factors [51, 52], sympathetic 

predominance is the more widespread problem.  

Sympathetic overactivation is a well-established risk 

factor for cardiac morbidity and mortality [123, 124], 

since the cardiovascular system is essentially trapped in 

the high-energy-utilizing sympathetic-dominant mode, 

leading to premature “burnout” of the system [125].  

Sympathetic overactivation may be driven by many 

factors, including obesity and cardiovascular dysfunction 

[126], but there is also evidence to suggest that chronic 

stress may play a role [127].   

Autonomic preganglionic neurons receive regulatory 

input from a web of higher brain centers called the central 

autonomic network [128], to appropriately deploy 

autonomic drive during basal conditions, or to modulate 

autonomic activity during a stress response to threat or 

injury [129, 130].  The network includes the 

paraventricular nucleus (PVN) of the hypothalamus, an 

integration hub for homeostasis and stress response 

functions [131]; the rostroventrolateral medulla (RVLM), 

whose pre-sympathetic pacemaker neurons provide tonic 

sympathetic drive [132]; and the nucleus tractus solitarius 

(NTS) in the medulla, which integrates peripheral 

reflexes, including the baroreflex and chemoreflex, to 

modulate autonomic outflow [128, 133].   

In addition to cathecholamine- and cortisol-

modulated cardiorespiratory responses to immediate 

threat, survival requires learning to avoid future danger 

[134 - 137], so emotion/memory centers of the limbic 

system, including the amygdala, are integrated into the 

central autonomic network, to activate fight-or-flight 

responses [138, 139].  The stress response is intended to 

be short-term [129]; chronic cortisol elevation from 

chronic stress alters the amygdala, producing dendrite 

hypertrophy and hyperexcitability [140 - 142], which may 

alter limbic contribution to the network [143] to then alter 

sympathetic drive [144]. 

Although it appears that there are no published 

articles directly linking AF with hypercortisolism, 

indirect evidence does exist.  There is a clear link between 

hypercortisolism and physical or psychological stressors 

[145, 146].  Furthermore, human and animal studies 

reveal autonomic imbalance associated with multiple 
psychological stressors that can provoke anxiety and 

depression [147 - 150].  Anxiety and depression in turn 

have been reported to increase AF incidence [29] and AF 

recurrence rates after cardioversion [151] and ablation 

[152] procedures.     

 

Exploring Treament Resistance 
 

The broad range of risk factors detailed above plays an 

important role in making AF the most common 

arrhythmia in the world [153], but there is another side to 

the story.  Once AF starts, it quickly becomes harder and 

harder to stop, because its pathophysiology becomes self-

reinforcing, altering the atria to make them much more 

likely to continue fibrillating.  The pathophysiology of AF 

can now be used as a lens to bring into clearer focus the 

means that have enabled AF to evade pharmacological 

suppression and surgical or interventional attempts at 

cure. And it can provide insight into emerging approaches 

that may more effectively silence this tenacious 

arrhythmia. 

 

Entrenching AF:  Electrical and Structural 

Remodeling 

 

In the 1990s, Wijffels and colleagues coined the phrase 

“atrial fibrillation begets atrial fibrillation” [154], 

indicating that AF causes electrical, structural, and 

autonomic alterations of the atria which make the atria 

more likely to remain in AF.  This atrial remodeling 

appears to play a role in the clinical progression of AF 

from paroxysmal to persistent to permanent [155] and in 

AF’s resistance to treatment [96].  

Autonomic remodeling briefly appeared in the 

discussion of autonomic imbalance: in persistent AF, 

fewer parasympathetic and increased sympathetic nerves 

innervate the atria [120].  However, this is a later step in 

the remodeling process; the earliest atrial alteration due to 

AF is electrical remodeling.  During rapid heart rates 

characteristic of AF, atrial myocytes attempt to shield 

themselves from the toxic effects of excess Ca2+ entry by 

reducing L-type Ca2+ current amplitude [81].  

Unfortunately this narrows the action potential plateau 

[70], and shortens refractory period, thereby promoting 

reentry.  Thus the atrial cells’ attempt to protect 

themselves from Ca2+ overload paradoxically perpetuates 

AF.  In tachypacing animal models, evidence of electrical 

remodeling appears on day one of the arrhythmia [64].  In 

goats subjected to burst pacing, the atrial effective 

refractory period decreased by 35% within the first 24 

hours and took almost a week to resolve after the 

arrhythmia ceased, creating a prolonged window of time 

with increased susceptibility to recurrence [64, 156, 157]. 

AF-induced physical alteration of the atria, called 
structural remodeling, follows suit [81].  Rapid heart rates 

[64] and chronic volume overload from ineffective atrial 

emptying during AF [52] cause atrial dilation and fibrosis 
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[64].  These atrial changes further promote reentry by 

increasing pathlength and slowing conduction.  Although 

contractile cardiac myocytes take up 75% of the cell 

volume of the heart, they are outnumbered by fibroblasts 

[158, 159].  During development, fibroblasts build the 

cardiac skeleton, which maintains the heart’s structural 

integrity [158, 159]. With normal aging, but exacerbated 

by pathological conditions including heart failure [160] 

and hypertension [161], cardiac fibroblast content and 

collagen crosslinking increase [158], initiating a 

progressive decline in cardiac relaxation [87] that perturbs 

pressure-volume relationships.  The age-related atrial 

geometry alteration and impaired conduction promote 

reentry and provide substrate for wavebreak, helping 

illuminate the powerful correlation between AF and 

aging:  in Framingham study participants, AF prevalence 

was 2% between age 60 and 69, but rose to 5% between 

age 70 and 79, and 9% between age 80 and 89 [162, 163].   

Angiotensin II activates NADPH oxidase which 

promotes fibrosis by generating reactive oxygen species 

[155], playing a role in the increased incidence of AF in 

hypertension.  Chronic sympathetic overstimulation also 

increases fibroblast proliferation and promotes cardiac 

structural remodeling [158, 159], contributing to AF in a 

wide array of conditions including heart failure [110] and 

sleep apnea [132, 164].  As a result, autonomic imbalance, 

which helps initiate AF, also helps to maintain AF over 

the long term, via structural remodeling. 

Some studies suggest that inflammation may play a 

causative role in the initiation of AF. For instance, mice 

that overexpress Tumor Necrosis Factor (TNF) alpha 

have increased likelihood of AF [96].  And in a dog 

pericarditis model, suppression of inflammation by 

corticosteroids significantly decreased AF incidence [96].  

Increased levels of the inflammatory mediator C-Reactive 

Protein (CRP) correlate with increased likelihood of 

developing AF [95, 96, 165]. However, it is important to 

note that CRP levels have been shown to decline after 

cessation of AF upon successful radiofrequency ablation 

procedure [95, 166].  This latter finding suggests that 

increased inflammation might be the result of AF, rather 

than the cause. 

While a role for inflammation in the original onset of 

AF remains subject to debate, inflammation does appear 

to play a significant part in AF persistence [96]; for 

example, continually elevated CRP levels correlate with 

increased likelihood of AF recurrence after cardioversion 

[95, 167].  Promotion of structural remodeling by 

inflammatory mediators has been suggested as the 

mechanism for this:  higher levels of pro-fibrotic TNF 

alpha [95, 168] and CRP [96, 169] have been found in 
persistent AF, compared to paroxysmal AF.  

In the subset of post-cardiac surgery AF patients, 

evidence is the most convincing that acute inflammation, 

from surgical trauma to the atria and exposure of blood to 

extracorporeal circulation, does play a role in triggering 

AF onset [36, 95, 98].  Elevated CRP levels after cardiac 

surgery were predictive of increased post-operative AF 

incidence [96, 170].  Moreover prophylactic 

corticosteroids help to reduce, although not eliminate, the 

arrhythmia in this population [171].  However, even in 

post-surgery patients, AF remains most likely to occur in 

patients with prior risk factors that alter atrial structural 

and electrical properties and thereby promote fibrillation, 

including age-related fibrotic changes, diastolic 

dysfunction, and atrial dilation [36, 98].     

 

Antiarrhythmic Drugs 

 

While remodeling contributes markedly to AF treatment 

resistance, some aspects of the treatment regimens 

themselves also limit their effectiveness.  The Vaughn 

Williams system classifies antiarrhythmic drugs 

according to their primary target channel.  But many of 

these drugs have crossover effects at multiple channels 

[172, 173], yielding combined arrhythmia-suppressing 

and arrhythmia-promoting effects (as well as potentially 

dangerous side effects) [174] which contribute to the low 

overall success rate of these drugs against AF [162].  

Class Ia drugs procainamide [175] and quinidine 

[176], and class Ic drug flecainide [177], suppress reentry 

by a secondary channel effect, inhibiting IKr (the hERG 

channel), which results in elongation of refractory period.  

However, the primary effect of these drugs, inhibition of 

INa, actually promotes reentry by slowing conduction 

velocity [174].  Although prolonging repolarization in the 

atria confers some protection from AF, the very same 

effect in the ventricles prolongs the QT interval, putting 

patients at risk for torsades, which can lead to ventricular 

fibrillation [178].  The proarrhythmic effects of class I 

drugs increase mortality, by triggering lethal ventricular 

arrhythmias, particularly in post-infarction patients [179, 

180] and in those with reduced left ventricular function 

[181].  A meta-analysis assessing quinidine for sinus 

rhythm maintenance after cardioversion of AF found that 

use of the drug increased death rates [182]. Similarly, 

flecainide was shown to increase ventricular tachycardia 

and ventricular fibrillation when used for AF suppression 

[178].  As a result, class Ic drugs are now restricted by 

AHA guidelines to AF patients with at least near-normal 

left ventricular systolic function, age below 75 years and 

no known ischemic coronary disease [183]. 

Beta-blockers, Vaughn Williams class II 

antiarrhythmics, are used to blunt the rapid ventricular 

response to AF, due to their ability to slow AV Node 
conduction.  On paper, these drugs should have some 

arrhythmia suppression potential, by blocking 

norepinephrine-mediated augmentation of IKs and ICa 
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currents [81], and the resultant action potential narrowing.  

However, this does not translate into clinically significant 

suppression of AF, except after cardiac surgery, when 

beta-blockers have been shown to significantly reduce 

post-operative AF [36, 184 - 186].   Class IV agents, L-

type Ca2+ channel blockers, are also used to blunt the 

ventricular rate response to AF, but are reported to 

prolong AF episodes [174, 187], probably because L-

channel blockade shortens refractory period.  These drugs 

have not been shown effective for AF suppression [188, 

189].   

Class III agents inhibit K+ currents, particularly IKr, 

so they delay repolarization and prolong the refractory 

period, which resists reentry [53].  Sotalol came to market 

as a racemic mixture combining D-isomer anti-reentry 

class III effects with L-isomer class II beta-blocking 

effects [174], but its class III QT prolongation effect was 

found to increase mortality in post-infarction patients 

[190].  A retrospective review found sotalol superior to 

conventional beta-blockers in preventing post-cardiac 

surgery AF [191], but it was demonstrated inferior to 

amiodarone in maintaining sinus rhythm after electrical 

cardioversion [174].  

Early studies suggested that dofetilide, regarded as a 

pure class III agent [192], was superior to placeibo [193, 

194] and to sotalol [194] for achieving pharmacological 

cardioversion of AF to sinus rhythm, and for maintaining 

sinus rhythm after cardioversion [192 - 194].  A later 

study confirmed dofetilide’s efficacy for cardioversion 

but also reported that initial cardioversion success was not 

predictive of long-term sinus rhythm maintenance [195].  

Successful conversion to sinus rhythm is less likely in 

longer-duration AF cases [192], consistent with the role 

of atrial remodeling in AF treatment refractoriness.  

Dofetilide therapy must begin in-hospital, with 

continuous cardiac monitoring, due to its QT prolongation 

effect [195]; in the DIAMOND-CHF study, greater than 

3% of dofetilide recipients developed torsades [196].  

Rates of torsades appear to be lower when dofetilide 

dosing is adjusted based upon creatinine clearance, as the 

drug is approximately 80% renally excreted [197]. 

Amiodarone has effects within all four Vaughn 

Williams classes, so it has arrhythmia-promoting and 

suppressing potential.  It inhibits INa, beta receptors, IKr, 

IKs, Ito, IK1, and ICa-L [174], but the effects of the drug 

apparently evolve over time, with class I and IV effects 

present early and class III effects becoming more 

prominent through long-term use [174, 198].  The class III 

effects make amiodarone the most successful drug 

available to suppress AF [174], decreasing AF after 

cardiac surgery by meta-analysis [199], and decreasing 
arrhythmia-related death in randomized trials [198].  

However, amiodarone’s efficacy is severely limited by its 

side-effect profile, which forces 20-50% of patients to 

discontinue its use [198].  Amiodarone can precipitate 

digoxin toxic reactions [198], and it inhibits metabolism 

of warfarin derivatives, exacerbating their anticoagulant 

effect [198].  Amiodarone’s high iodine content [198] can 

interfere with multiple steps in the synthesis and release 

of thyroid hormone, leading to either hypo- or hyper-

thyroidism [200].  Up to 30% of amiodarone patients 

develop neurological side effects including tremor, ataxia, 

neuropathy and dizziness [198].  And up to 25% will 

develop abnormalities in liver function tests [198].  

Perhaps most catastrophically, amiodarone can trigger 

chemical pneumonitis that can evolve into pulmonary 

fibrosis [198], carrying a mortality rate as high as 33% 

with late recognition, but still 10% with early recognition 

[198].   

Given the risks of antiarrhythmic drugs, multiple 

randomized trials have attempted to determine whether or 

not these drugs conferred benefit over rate-control 

strategies [81].  Trials included RACE, AFFIRM, STAF, 

and HOT-CAFÉ in patients with normal left ventricular 

function, as well as DIAMOND-CHF and AF-CHF in 

those with heart failure.  No trial has revealed survival 

advantage with any of the anti-arrhythmic drugs evaluated 

[201 - 203], and subgroup analysis of AFFIRM may 

suggest decreased survival in certain patient subsets, such 

as the elderly and those with coronary disease [204].  

Furthermore rate-control and rhythm-control groups had 

equivalent rates of stroke occurrence, stressing the 

necessity of continued prophylactic anticoagulation while 

utilizing anti-arrhythmic medications in AF patients [81].      

 

The Surgical Maze 

 

Because of the risks and side-effects of rhythm-control 

drugs, as well as their poor overall efficacy against AF, 

surgical alternatives were explored, hoping to cure AF by 

altering atrial anatomic characteristics [205, 206].  Of 

these, the maze procedure, developed by James Cox in the 

late 1980s, gained the most widespread application.  Maze 

surgery consists of cutting then re-sewing a series of 

location-specific, full-thickness incisions through the 

walls of both atria. The resulting scars create a maze-like 

pattern of “blind alleys,” capable of conducting sinus 

rhythm, but theorized to block AF propagation.   

With the original version of the surgery, now called 

maze I, “free of AF” rates in greater than 90% of patients 

were reported in case series [207 - 209].  But significant 

complications prompted serial adaptations to the maze 

procedure, yielding maze II, and then maze III [210, 211].  

Published success rates for maze III range widely:  from 

64% free of AF at 4 years [212],  to 96% [213], or even 
98% [214], at 5+ years of follow-up.  

Commentators have argued that success rates for the 

maze may be overestimated [206] because studies lacked 
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rigorous means to document post-procedure AF 

recurrences [215].  Some maze case series report AF 

recurrence rates based on follow-up phone calls, 

questionnaires, or single EKGs alone [206, 215].  Random 

EKG checks could miss episodes of paroxysmal AF, and 

since 1/3 of patients do not recognize when they are in AF 

[216], phone questionnaires would not be reliable 

indicators.  Other maze studies do not report AF return 

rates at all, but define success via post-procedure stroke 

rates [206].  Accurate evidence of post-maze AF 

recurrences would require longer-term monitoring, but 

even this may suffer from inaccuracies due to potential 

patient non-compliance [206].  

Maroto and colleagues showed that early post-

operative recurrence of AF after open-heart maze 

procedure, in this case utilizing radiofrequency ablation 

rather than cut-and-sew incisions, is a risk factor for late 

recurrence [217].  In this study, 59% of patients 

experienced early post-operative AF recurrence; and 

within three years, 32% had AF return [217].  Specific 

patient characteristics increase the likelihood of AF return 

after the maze [205, 218, 219], including increased left 

atrial diameter, particularly if greater than 6cm, and 

longer duration of pre-procedure AF with greater 

remodeling and fibrosis.  Thus, factors that promote 

reentry and wavebreak seem to make the surgical maze 

less likely to succeed in the long-term.  In addition, scar 

lines from the maze could be expected to slow conduction 

and provide substrate for reentry and wavebreak.  This is 

significant because the maze often does not stop a patient 

from having episodes of the atrial reentry arrhythmia that 

originally instigated AF [220]; there is a body of literature 

on radiofrequency ablations for atrial tachycardia and 

atrial flutter after maze surgery [218, 221].  The 

persistence of post-maze atrial reentry arrhythmias 

potentially opens the door to wavebreak-driven AF 

recurrences in the future.  Progression of underlying 

cardiac arrhythmia substrate, including fibrosis due to 

aging, autonomic imbalance, or ongoing cardiac disease 

might render a post-maze patient, who early on seemed to 

be cured, once again susceptible to AF. Given this, 

patients are often advised to continue prophylactic 

anticoagulation.   

The classical surgical maze is performed via median 

sternotomy and cardiopulmonary bypass which carry 

risks, especially in already-compromised patients.  

Modifications to make the maze less invasive have been 

developed, including thoracoscopic approach, but results 

suggest similar limitations to the original [205].  The maze 

technique carries its own risks [205, 222], including a 

persisting decrease in atrial contractility [223], and 10-
19% reported requirement for permanent pacemaker 

because of SA node dysfunction, after even maze III [214, 

222, 224] since classical maze incisions disrupt SA 

arterial supply [225].  Because of these drawbacks, 

surgical maze is rarely offered to patients with lone AF, 

and is largely performed on patients who are undergoing 

open-heart surgery for some other reason, such as 

coronary artery occlusive disease or valve dysfunction 

[205]. 

 

Radiofrequency Catheter Ablation  

 

For nonsurgical AF candidates, intravascular catheter 

ablation is increasingly utilized, and meta-analyses have 

shown it to be more successful against AF than anti-

arrhythmic drugs [226, 227]. Unlike the uniform lesion set 

performed on all maze recipients [205], catheter ablation 

employs electrophysiological mapping to customize each 

procedure to the patient’s individual arrhythmia substrate.  

Mapping has yielded ablation success rates above 90% for 

a variety of atrial arrhythmias including atrial tachycardia, 

AV Node reentry tachycardia, AV reentry tachycardia and 

atrial flutter [228].   

The mainstay of ablation therapy for AF is electrical 

isolation of the pulmonary veins behind scar lines.  But 

for AF, in contrast to other atrial tachyarrhythmias, 

published catheter ablation success rates are typically 

quoted as 50-70% [228, 229].  A 2005 international 

survey of ablation centers [230] reported a 52% AF 

ablation success rate, but with 27% of patients requiring 

more than one AF ablation procedure [229].  A 2012 

review of the California State Inpatient Database 

evaluated 4,156 patients who received a first AF ablation 

procedure between 2005 and 2008, reporting readmission 

rates for AF recurrence of 21.7% by 1 year and 29.6% by 

2 years [231]. Radiofrequency ablators deliver high 

frequency current to destroy cardiac cells in contact with 

the catheter tip, creating lesions with a central nidus of 

necrosis, surrounded by areas of inflammation [228].  The 

donut of inflamed tissue around the necrotic center may 

not be able to conduct arrhythmia immediately after the 

ablation, but later it may recover conduction, enabling AF 

recurrence [228].  

The complexity of the reentry-wavebreak 

pathophysiology may also drive post-ablation AF 

recurrence.  Radiofrequency ablation of AF often does not 

terminate the original reentry tachycardia that triggered 

fibrillation [232].  And 30-50% of patients develop new 

atrial tachycardias after extensive ablation for AF [233 - 

236].  These reentry arrhythmias, together with 

conduction slowing from ablation scar lines have been 

implicated [236] in AF return. Given these data, post-

ablation patients are often advised to continue 

anticoagulation. 
A 2014 editorial pointed out that the majority of AF 

ablation cases represented in published trials were 

younger patients with paroxysmal rather than persistent 
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AF, and without structural heart disease [229].  Such 

patients have the least severe AF substrate and constitute 

a comparatively small percentage of the larger spectrum 

of AF cases. Evidence suggests that, just as with the maze, 

ablation is less successful in more complex AF [237] with 

extensive remodeling, for example in sleep apnea patients 

[238, 239], and those with structural heart disease.  The 

ongoing CABANA trial may in the near future shed 

clearer light on ablation success rates across the full 

spectrum of more complex AF patients [229].  

At present the use of catheter ablation for AF remains 

the subject of intense debate [229, 240], and is best 

reserved for highly symptomatic patients who have failed 

multiple attempts at cardioversion and/or drug 

suppression.  The procedure itself carries risk, including 

valvular insufficiency [241], left atrial thrombus [242], 

atrial-esophageal fistula [243], and pulmonary vein 

stenosis if radiofrequency energy is applied too close to 

the ostia of the veins [228, 244].  In addition there is 0.5% 

risk of damage to the conduction system requiring 

permanent pacemaker placement, 1-2% risk of cardiac 

perforation/tamponade, 2-4% risk of vascular damage due 

to percutaneous vascular access [228], and a 4.7% 

reported incidence of periprocedural stroke [231].  

 

New Directions 

 

Procedures targeting autonomic imbalance have begun to 

be utilized in animal models and preliminary human 

studies of AF. In dogs, low-level vagal stimulation was 

reported to decrease AF inducibility in response to focal 

ectopy generated by high-frequency, sympathetic-

mimicking atrial stimulation during the atrial refractory 

period [245].  Also in animals, radiofrequency ablation of 

the cardiac autonomic ganglion plexus, to halt unequal 

outflow of autonomic stimulation to the heart, has been 

reported to increase the success of ablation procedures in 

eliminating AF [246].  However, in human patients, 

studies of combined ganglion plexus destruction and 

pulmonary vein isolation by radiofrequency ablation have 

yielded mixed results in preventing AF recurrence [75, 

247, 248].  Moreover, such extreme disruption of cardiac 

autonomic input might have deleterious hemodynamic 

consequences in compromised hearts, for in animal 

models of heart failure, ganglion blockade can cause death 

[249].   

In dogs, renal sympathetic denervation, which 

diminishes central sympathetic drive rather than 

abolishing cardiac autonomic input, decreased AF 

incidence after electrical stimulation of the stellate 

ganglion [250].  In a sleep apnea model, renal denervation 
decreased frequency and duration of AF, by blunting 

apnea-induced shortening of atrial refractory period 

[251].  In a small study of 27 patients, pulmonary vein 

isolation plus renal denervation reported improved 

freedom from AF at 1 year compared to pulmonary vein 

isolation alone [252].  Larger renal denervation trials are 

underway [253]. 

A few studies have begun to assess effectiveness of 

integrative medicine and lifestyle approaches in 

suppressing AF.  The LEGACY trial recently revealed 

that sustained weight loss decreased AF burden, by Holter 

monitor and symptom scoring, over 5 years of follow-up 

[254].  Obesity is associated with a persistent low-grade 

pro-inflammatory state [255-258], as well as with 

sympathetic overactivation [259, 260].  Weight loss has 

been shown to improve autonomic balance and decrease 

inflammation [261-263], which would be expected to 

lower their contributions to AF promotion. 

Acupuncture, which has been shown to enhance 

parasympathetic tone [264, 265], has been reported to 

reduce AF burden, however results thus far have come 

from small numbers of patients.  A small 2012 study 

showed that acupuncture significantly reduced number 

and duration of AF episodes [266].  A 2011 study reported 

that acupuncture decreased recurrences after 

radiofrequency ablation of persistent AF [267].  And a 

2013 case report documented improved retention of sinus 

rhythm after AF cardioversion in a patient with chronic 

pulmonary disease [268].  Promotion of improved 

autonomic balance may underpin these effects on AF 

burden.  

In the Yoga My Heart study, yoga was reported to 

decrease paroxysmal AF episodes and decrease resting 

heart rate in a single-center 3-month-long study, utilizing 

symptom diaries and event recorders [269].  Both yoga 

and acupuncture have been reported effective in treating 

post-traumatic stress disorder (PTSD), so it appears that 

both modalities have the ability to modulate the limbic 

system [270 - 272], and potentially alter its contribution 

to autonomic imbalance.  In addition, both yoga and 

acupuncture have been reported to lower markers of 

inflammation, providing another potential avenue for the 

reported decrease in AF burden [273 - 275]. 

 

Conclusion  

 

Atrial fibrillation continues to grow in prevalence 

worldwide [7], despite pharmacological, surgical and 

interventional efforts to suppress it.  The underlying 

pathophysiology of AF illuminates the reasons behind its 

treatment refractoriness.  AF begins remodeling the atria 

on the first day of onset, making the atria much more 

likely to continue fibrillating.  Many anti-arrhythmic 

drugs have arrhythmia-promoting potential, which 
diminishes their effectiveness.  Scarring from maze and 

ablation procedures may sometimes facilitate reentry and 

wavebreak, enabling AF recurrence.  Although results are 
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preliminary, lifestyle modification and autonomic 

rebalancing approaches may provide the key to more 

successful control of AF in the future. 
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