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Abstract

Background: The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex
biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In
particular, PN allows the topological analysis based on structural properties, which is important and useful when
quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time
evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved
entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of
solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such
simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis
techniques provides a valuable approach in the field of systems biology.

Results: Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA -
an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The
simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and
Gillespie’s algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical
interface and accepts input data such as concentrations and reaction rate constants that are common parameters in
the biological context. The key features of the simulation module are visualization of simulation, interactive plotting,
export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel
simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as
case study.

Conclusions: We present a software that combines the modeling power of Petri nets with stochastic simulation of
dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a
valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell
experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility
in describing the simulation parameters. The open-source distribution allows further extensions by third-party
developers. The software is cross-platform and is licensed under the Artistic License 2.0.
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Background
Chemical and thus biochemical systems, can be modeled
at different levels of abstraction. The choice and level of
the method depends on the available data. With the devel-
opment of the omics-technologies we get many different
types of experimental data, ranging fromNGS (Next Gen-
eration Sequencing) data to image data. It is indispensable
to check the quality and completeness of the data to decide
which method should be applied for theoretical model-
ing. In this context, it is essential to provide mathematical
formalisms which can handle and combine different levels
of abstraction. This can then lead to assurance of sev-
eral sound analysis techniques and an intuitive graphical
interface. Here, we use Petri nets (see next subsection)
— a formalism that exhibits all these properties. State-
of-the-art tools implementing hybrid Petri nets include
commercial tools, e.g., Cell Illustrator [1,2], and colored
Petri nets, e.g., CPN [3]. Our aim is to provide an open-
source, easily extendable tool for biochemical Petri nets
that allow to model the classical P/T networks as well as
the Gillespie’s stochastic simulation approach.
If there exists kinetic data in a sufficient amount we

can start a quantitative modeling. Mathematical models
of (bio)chemical reaction systems are usually formulated
in terms of ordinary differential equations (ODE). The
simulation of such models is performed numerically, and
the result is strictly deterministic. This approach ignores
stochastic fluctuations which are important for biologi-
cal systems operating with low molecule numbers. The
concept of Chemical Master Equations (CME) aims to
describe stochastic fluctuation in reaction systems. For a
more detailed introduction we refer to the textbook by
Atkins [4].
The CME is a countable, but infinite, system of first-

order differential equations that determines time evolu-
tion of the probabilities of the discrete states of a system. A
numerical solution of this equation is infeasible. Alterna-
tively, the Monte Carlo simulation method can be applied
to compute valid trajectories through the state space of
the system. For this purpose, Gillespie [5] proposed an
efficient stochastic simulation algorithm (SSA). For the
initial state of a chemical system, the Gillespie’s method
simulates the evolution of the number of molecules by
estimating when and which reaction would be occurring
next. Several implementations of the Gillespie’s method
have already been proposed to improve the computa-
tional performance. The approximate SSA [6] facilitates a
significant speed-up factor.

Petri nets
Petri net (PN) is a powerful mathematical concept [7],
which is widely applied for modeling systems of chemical
reaction, metabolic pathways [8], signaling pathways [9],
or gene expression networks [10]. The main idea is the

consequent distinction between passive and active parts
of the network, enabling for a sound treatment of concur-
rency. Here, we will give briefly themain definitions which
are essential for understanding the idea described in our
approach.

Definition 1 (Petri net). A Petri net (PN) is a directed
bipartite graph PN = (P, T, E, f(e), m(Pi)) with

- P and T are disjoint sets, P∪T is the set of all vertices.
P is the set of places, T is the set of transitions,

- E ⊆ ((P × T) ∪ (T × P)) is the set of directed edges,
- f (e) : E → N+ is the weight function which assigns a

positive integer weight to each edge e ∈ E and
- m(Pi) : P → N0 is the marking which assigns a

positive integer number of tokens to each place
Pi ∈ P.

Places (states or species) represent passive and tran-
sitions (reactions) active elements. Movable objects are
called tokens and are located on the places. A token dis-
tribution (marking) represents the number of entities of
the corresponding species and defines a system state.
The dynamics are modeled by the movements of tokens
through firing of transitions, applying firing rules.

Definition 2. (Pre- and post-places, firing of a
transition)

- •Ti := {Pj ∈ P | (Pj, Ti) ∈ E} is the set of the
pre-places of transition Ti, i.e., the set of all places
which have an outgoing edge to Ti.

- Ti• := {Pj ∈ P | (Ti, Pj) ∈ E} is the set of the
post-places of transition Ti, i.e., the set of all places
which have an incoming edge from Ti.

- Transition Ti is active and can fire iff

∀Pj ∈ •Ti : f (Pj,Ti) ≤ m(Pj).

Pre- and post-transitions are defined analogously to pre-
and post-places.
A transition can only fire, if the number of tokens on

all pre-places of the transition is equal to or greater than
the weights of the edges between the corresponding places
and the transition. In this case, the transition is active or
enabled. Firing of a transition consumes tokens from the
pre-places and adds tokens to the post-places, according
to the weights of the corresponding edges. We extend the
standard definition of PN by introducing constant places.
The number of tokens on a constant place is not affected
by the firing of transitions but is determined by a user-
defined mathematical expression. For instance, pulsatile
secretion of insulin in a model of insulin signaling can be
described as

(1400 cos(Time/300 2π) + 1600)
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where the variable Time stands for the simulated time (in
seconds).
In the context of (bio)chemical systems, places represent

chemical compounds (e.g. insulin, insulin receptor), com-
plexes (e.g. receptor-ligand complex) or different states
(e.g. inactive or active receptor), and transitions describe
chemical reactions. The number of tokens on a place rep-
resents the number of molecules of the corresponding
biochemical species. In signaling or gene expression PN,
the number of tokens can describe the activation state
(on/off ) or the strength of a response. An overview of the
PN formalism and its application to biology has already
been earlier described [11,12].

Available software
MONALISA [13] is an open-source software for creation,
visualization and analysis of PN. MONALISA implements
several analysis techniques such as invariant analysis
(implemented in C, [14]), topology properties, knockout
analysis, and other, supporting a broad range of file for-
mats like PNML, PNT, SPEED, SBML (read: all levels and
versions of SBML Core, write: SBML core Level 2, Version
4), KGML andDAT.MONALISA provides the possibility to
easily extend its functionality by newmodules. It also sup-
ports the annotation with MIRIAM identifiers and SBO
terms. An interface to SED-ML [15] is planned.
Here, we introduce a module which extends the func-

tionality to applications of dynamic simulations. The
applied firing rules determine the strategy to choose
the next transition to fire and the time point at which
the event takes place. Stochastic firing rules simulate
the dynamics of the stochastic kinetic of a mass action
reaction system inside a cell. Alternative tools for the
stochastic analysis of biochemical PN are Snoopy [16]
and VANTED [17]. VANTED is an open-source solution
but without any simulation module. Snoopy is not open-
source and aims at providing the entire types of PNmainly
for the Petri net community. Modeling for biology is one
aspect among many others. MonaLisa is focused on bio-
logical applications and covers another spectrum than
Snoopy, ranging from general network analysis to specific
decomposition methods at steady-state as well as non-
steady-state conditions. Moreover, MONALISA includes a
simulation mode with multiple parallel simulations. For a
more detailed comparison of MONALISA and Snoopy see
Table 1. The table compares the different features of both
tools, like existing simulation modes, analysis techniques,
availability, and supported file formats.
StochPy [18] is another tool for stochastic simulation

of biological processes, but is not PN-based. It uses the
PySCeS [19] model description language — a text-based
model description technique. It provides an integrated
statistical output analysis (auto-correlations, propensities,
moments, waiting times) and can be easily extended due

to its integration with other Python libraries. Implemen-
tations of the exact and the approximate SSA are offered,
but StochPy provides neither an intuitive graphical user
interface nor any PN and topological analysis method.

Implementation
MONALISA is an open-source software (see Additional
file 1) distributed under the Artistic License 2.0. It is acces-
sible to modifications and allows adjustment and exten-
sion of its functionality by experienced users. A descrip-
tion of all features of the simulation module is given
in the documentation file MonaLisa_Documentation.pdf
(Additional file 2) provided in the supplementary.

Libraries
The simulation module is implemented in Java, version
1.7, as a plug-in of MONALISA. The plotting functional-
ity exploits the JFreeChart-library [20]. The integration of
the library exp4j [21] develops the option to evaluate user-
defined mathematical expressions. The Java class High-
QualityRandom [22] implements the standard pseudo
random number generator (RNG) Ran defined by Press
et al. [23]. This RNG is a good compromise between speed
and cryptographic randomness and appropriate for all
algorithms described here. For a more detailed discussion
of the choice of RNGs for simulations we refer to the text-
book of Knuth [24] and the numerous literature published
on this topic, see, e.g., [25-29].

Modes
PN modeling addresses a broad range of scenarios in
systems biology with various goals and requirements.
To account for the different needs, we implemented
four simulation modes in MONALISA, ranging from sim-
ple synchronous and asynchronous modes to the well-
established Gillespie’s algorithm for stochastic simulation:

1. Asynchronous: One randomly chosen transition
fires per simulation step, without any time
consumption. All active transitions have the same
probability to fire.

2. Synchronous:Multiple active transitions fire
simultaneously per step. By default, the simulator
tries to fire all active transitions at once. Transitions
which share pre-places are called concurrent and
compete for the tokens of the shared pre-places. If
the number of tokens on such a place is not sufficient
for all enabled post-transitions, transitions to fire are
randomly chosen with equal probability until all
tokens are consumed. The simulator also allows to
select the fraction of active transitions to fire. If the
fraction is less than 100%, transitions are randomly
selected with equal probability in each step.

3. Stochastic: An enabled transition Ti has to wait a
defined time dt before it can fire. The waiting time dt
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Table 1 A comparison of MONALISA and Snoopy

Snoopy MonaLisa

Availability closed source open source

Biological terminology no yes

Annotation facilities no MIRIAM Identifier and SBO terms

Supported analysis techniques1 no P-Invariants, T-Invariants, Maximal Common
Transitions sets, distance matrix, T-Cluster,
Knock-out, Minimal Cut sets, node degrees

Color highlighting of analysis results no yes - for Invariants, MCT-sets, and Knock-outs

Supported simulation modes P/T-net animation, Gillespie, FAU Asynchronous, Synchronous, Stochastic,
(Gillespie)

Supported Petri net classes 19 - for example: P/T-net, Fault Tree,
Extended Fault Tree, Freestyle Net

P/T-nets

Supported input file formats ANDL, CANDL, APNN, SBML, PED, PNML,
TINA, CSV, DNF

APNN, KEGG, METATOOL, PNML, PNT, SBML,
SPEED

Supported output file formats 19 - for example: ANDL, CANDL, Maria, PEP,
Prod

APNN, METATOOL, PNML, SBML, SVG, PNG,
TXT, PNT

Supported Operation Systems Windows, MacOS X, Linux (selected
distributions)

Windows, MacOS, Linux

Software Platform C++ Java

Editor UI yes yes

1Snoopy does not involve analysis techniques. These have to be approached via different file formats for other tools.

is simulated for each transition as an exponential
distributed random variable Exp(λ), a detailed
description is available in the textbook of D.J
Wilkinson [30]. The parameter λ is the firing rate
specified by the modeler for the particular transition.
Among all enabled transitions only the transition
with the lowest waiting time fires. If several
transitions have the lowest waiting time, one of them
is selected randomly. To speed up the simulation,
waiting times are recomputed only for transitions
with changed number of tokens on the pre-places.
Waiting times of the post-transitions of constant
places are recomputed in every step.

4. Stochastic simulation algorithm: This algorithm
implements the exact and approximate SSA. The
exact SSA implements the direct method of Gillespie
[5,30], applying an internal data structure similar to
the “dependency graph” introduced by Gibson and
Bruck [31] for better performance.
The exact SSA consists of four steps:

i Computing the rates of all reactions based on
the stochastic rate constants c(Ti) and the
number of reactant molecules. We refer to the
textbook of Wilkinson [30] for a detailed
description.

ii The next firing time dt is computed by

dt = − ln(1 − U1)

sum of reaction rates

from a uniformly distributed (in the interval
[0,1]) random number U1.

iii A reaction i is chosen such that the following
equation is satisfied

i−1∑

j=1
r(Tj) < U2 sum of all rates ≤

i∑

j=1
r(Tj)

for a second uniformly distributed random
number U2.

iv The number of molecules is updated according
to the chosen reaction i and the time is
increased by dt.

The approximate SSA integrates the τ -leaping
algorithm of Gillespie and Petzold [32,33]. In brief,
the algorithm chooses a time interval τ and decides
how many times each reaction will occur in this
period. The time interval should be small enough so
that the reaction rates do not change significantly
during this interval. To avoid negative populations,
reactions that do not have sufficient reactants to fire
at least 20 times are considered as critical and are
simulated in an exact way only.
At the beginning of each simulation step critical
reactions are determined. The algorithm computes
two firing times – one for the non-critical reactions
τ1 according to [33] and a second time τ2 for the
critical reactions.
If τ1 < τ2, no critical reaction occurs. For each
non-critical reaction, the number of its occurrences
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is generated as a random Poisson variable with the
mean value r(Ti) τ1, and the reaction is executed
according to the chosen number of times. If τ2 < τ1,
one critical reaction is chosen like in the exact SSA
and the number of occurrences of the non-critical
reactions are chosen as for the first case.

Converting input data
In contrast to ODE-based approaches, the stochastic
methods operate with numbers of molecules instead
of concentrations. Therefore, the continuous biological
parameters like concentrations of chemical compounds
and the reaction rate constants must be converted to
molecule-based data. So, the user has to provide the
volume of the simulated environment as an additional
parameter, and a preprocessor converts concentrations
and mass action reaction rate constants to the appropri-
ate numbers of molecules and stochastic rate constants,
respectively:

nX = NA [X] V

where nX is the number of molecules of compound X,
[X] the concentration of compound X, NA = 6 · 1023 the
Avogadro constant and V the reaction volume.
The conversion of the mass action rate constant k to

the stochastic rate constant c depends on the order of the
reaction. The mass action reaction rate constant is given
in units of M s−1 for a zero order reaction, in units of s−1

for a first order reaction, in units of M−1 s−1 for a sec-
ond order reaction, and in general, in units ofM−(x−1) s−1

for a reaction of the order of x. The mass action reac-
tion constant k gives the reaction rate for standardized
concentrations of 1 M (i.e., NA molecules in 1 l reaction
volume). To get the reaction rate constant for the number
of molecules we have to divide k by (V NA)(x−1) and get

c ∼ k/(V NA)x−1.

A substance (pre-place) Pj may contribute with high sto-
ichiometric order (i.e., weight f (Pj,Ti)) to the reaction Ti.
The combinatorial factor

∏

Pj∈•Ti

f (Pj,Ti)!

accounts for the stoichiometric factors of the species
P ∈ •Ti. Finally, we get the general formula

c(Ti) =
k(Ti)

∏
Pj∈•Ti f (Pj,Ti)!

(V NA)(x−1) .

This equation can be simplified to:

- c = k V NA for zero-order reaction,
- c = k for first-order reaction,

- c = k
V NA

for second-order reaction of the form
A + B → C, and

- c = 2k
V NA

for second-order reaction of the form
2A → B.

Mathematical expressions
Reaction rate constants and the number of tokens on con-
stant places can be defined by mathematical expressions
which may contain names of non-constant places and the
simulated time as variables.

Supported syntax
The evaluation of a mathematical expression is based on
the free Java library exp4j [21]. It supports numerical input
in standard and scientific notations. Supported operators
and functions are listed in Table 2.

Table 2 Operators and functions which are supported by
mathematical expressions for describing the number of
tokens (or concentrations) on constant places or reaction
rate constants

Operators

Addition 2 + 2

Subtraction 2 − 2

Multiplication 2 · 2
Division 2/2

Exponentiation 2 ˆ 2

Sign operators +2 − (−2)

Modulo 2 % 2

Functions (use as “func(x)”)

abs absolute value

acos arc cosine

asin arc sine

atan arc tangent

cbrt cubic root

ceil nearest upper integer

cos cosine

cosh hyperbolic cosine

exp Euler’s number raised to the power (eˆx)

floor nearest lower integer

log natural logarithm (base e)

sin sine

sinh hyperbolic sine

sqrt square root

tan tangent

tanh hyperbolic tangent

div(x,y) integer division, e.g., div(28,24) returns 1
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Conditional expression
It is possible to use multiple conditional expressions to
define the reaction rate constant or the number of tokens
on a constant place. The syntax has the form

if [condition 1] and ... and [condition n]

then [expression].

Each condition is composed of the three parts:

[expression 1] [operator] [expression 2]

with mathematical expressions [expression 1] and
[expression 2]. The operator ([operator]) is one
of “=”, “<”, “>”, “<=”, or “>=”, describing comparisons.
Multiple conditional expressions can be separated by a
semicolon. The value of the first conditional expression
whose conditions are satisfied is returned. If none of the
described cases can be satisfied, 0 is returned. For exam-
ple, the number of insulin molecules should be 1000 for

the first 5 minutes, 100 for the next 5 minutes and 0
afterwards:

if Time <= (5 * 60) then 1000;

if Time <= (10 * 60) then 100.

As long as the reaction time is below 300, the first con-
ditional expression is valid, and the value 1000 is returned.
If the reaction time exceeds 5 · 60, the second conditional
expression becomes valid, and the number of insulin
molecules is set to 100. After the reaction time of 10 · 60
seconds the number of insulin molecules drops down to
zero.
Mathematical expressions are evaluated after each

simulation step. In combination with time-dependent
expressions the Gillespie algorithmmay lead to discretiza-
tion artifacts in the case of the combination of a very
large waiting time with a fast variation of the condi-
tional expressions on a similar time scale. The discretiza-
tion artifacts are negligible for standard applications. In

Figure 1 Graphical User Interface (GUI) of the simulation module. The GUI of MONALISA allows to control and to keep track of the simulation. The
left part depicts the graphical representation of the PN model. The number of tokens is written on the places and transitions are colored according
to their state (active/inactive, last fired). The right part shows the controls of the simulator module.
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further versions of MONALISA, we will implement the
rejection method [34] to provide a more robust algorithm
for this non–homogeneous Poisson process.

Results and discussion
MONALISA provides a PN editor, including visualization
and a special graphical user interface for the simulation
mode (see Figure 1). The simulation process is visualized
by showing the current number of tokens on the places,
highlighting with different colors active transitions and
transitions which fired last. The user may change interac-
tively the number of tokens on places and select manually
a transition to fire.
Four different simulation modes can be chosen - asyn-

chronous, synchronous, stochastic and the SSA. Various
useful features are available:

- History of fired steps,
- Statistic information (number of fired steps, number

of firings each transition has performed),
- Saving and loading of marking,
- Saving and loading of the simulation set–ups,

including the marking, firing rates, reaction rate
constants, mathematical expressions, and other
information in XML format,

- Plot of simulation results,
- Export of simulation results into a tab-stop

separated file,

- Application of mathematical expressions to describe
rate constants and the number of tokens.

The concept of constant places is an assistant fea-
ture of MONALISA. Constant places are ignored in the
firing step, though they contribute to the transitions’
activation states. Constant places are useful for model-
ing boundary conditions, external factors or inhibitory
effects.
For biochemical systems, the stochastic and the

Gillespie’s algorithm (SSA) are the most interesting sim-
ulation modes. Each stochastic simulation of identical
initial parameters will have a different outcome. To repro-
duce a simulation, the user may want to set the seed of
the Pseudo Random Number Generator (PRNG). Repeti-
tion of simulations with a fixed seed will always produce
identical results.
Apart from the exact SSA, the simulator implements

the approximate SSA with improved performance for sys-
tems with fast reactions or large molecule counts [6]. Up
to 500 parallel simulations of identical initial parameters
can be performed and take full advantage of multi-core
processors.

Case study of insulin receptor (IR) recycling
We want to explain modeling and simulating of the com-
plex biochemical system of insulin receptor activation
and recycling. This case study intends to demonstrate a

Figure 2 Insulin receptor recycling model. The insulin molecule can bind to a free receptor (Bind_Insulin) which leads to the autophosphorylation
and activation of the IR (Phos_IR_I). The active receptor can be deactivated in the membrane (Dephos_IR_I_P) or internalized (Inter_IR_I_P) into
cytosol where it is deactivated (Dephos_IR_I_P_Int). Insulin is degraded in the cytosol, and the free receptor can either be transported back to the
membrane (Deinter_IR) or be degraded. The internal receptor pool is maintained by the synthesis of new IR.
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Figure 3 The model of insulin receptor recycling according to Figure 2 is represented as a Petri net. Places are drawn as circles and transitions as
black squares.

possible workflow but not a thorough analysis of the IR
system.
Insulin is an important hormone that regulates various

cellular processes, among others the intake of glucose by
such tissues as fat, muscle and brain or glucose production
by the liver. The response of a cell to an elevated insulin
level is mediated by the insulin receptor, which is mainly
located in the cell surface membranes. Impairments in the
key components of the IR regulatory system can cause dis-
eases such as the metabolic syndrome or type 2 Diabetes
mellitus.
Figure 2 gives an overview of the processes in the

model. Figure 3 depicts the corresponding PN. It con-
sists of 6 places and 11 transitions. The unbound inactive
insulin receptor is modeled by the place IR, the free
insulin by the place Insulin. We consider only a single
cell. The insulin concentration is regulated by external
processes. Consequently, we choose a constant place to
model the time-dependent external insulin level. Insulin
can bind (transition Bind_Insulin) to the free receptor.
The receptor-ligand complex (place IR_I) can dissociate
again (transition Diss_Insulin). Alternatively to the bind-
ing of insulin, the free receptor can be internalized to
the cytoplasm (transition Inter_IR) and is added to the
internal receptor pool (place IR_Int).
As soon as insulin is bound to the receptor, the receptor-

ligand complex can be phosphorylated and becomes acti-
vated (transition Phos_IR_I). The bound phosphorylated
receptor is represented by the place IR_I_P. The phos-
phorylation is reversible, the reverse action (transition
Dephos_IR_I_P) correlates with the dissociation of insulin.

Alternatively, the activated receptor-ligand complex can
be internalized (transition Inter_IR_I_P). The phospho-
rylated complex in cytosol (place IR_I_P_Int) can be
either transported back to the membrane (transition
Deinter_IR_I_P) or deactivated in the cell (transition
Dephos_IR_I_P). The inactive unbound receptor in the
cytosol can be transported back to the membrane (tran-
sition Deinter_IR) or be destroyed by degradation (transi-
tionDegradation). A process of synthesis sustains the level
of IR.

Simulation of themodel
The model is simulated using the Gillespie’s algorithm.
Model parameters (initial concentrations of IR and reac-
tion rate constants) are adapted from [35]. The volume of
the system is set to 1E-9 l. Initial concentrations of the
places are listed in Table 3 and the mass action reaction
rate constants in Table 4. The rate of IR synthesis depends
on the concentration of the receptor in the cytosol. If

Table 3 Places of the Petri net of the IRmodel and the
initial concentrations of themodeled compounds

Place Initial concentration

Insulin varying

IR 9 · 10−13M

IR_I 0

IR_I_P 0

IR_I_P_Int 0

IR_Int 1 · 10−13M
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Table 4 Transitions of the Petri net of the IRmodel and the
rate constants of themodeled reactions

Transition Reaction rate constant

Bind_Insulin 1 · 106M−1s−1

Diss_Insulin 3.33 · 10−3s−1

Inter_IR 5.56 · 10−6s−1

Phos_IR_I 41.66s−1

Dephos_IR_I_P 3.33 · 10−3s−1

Inter_IR_I_P 3.5 · 10−5s−1

Deinter_IR_I_P 3.5 · 10−6s−1

Dephos_IR_I_P_Int 7.68 · 10−3

Deinter_IR 5 · 10−5s−1

Degradation 2.783 · 10−6

Synthesis 2.78 · 10−19M · s−1

if IR_Int + IR_I_P_Int ≥ 10−13M

Synthesis 1.67 · 10−18M · s−1

if IR_Int + IR_I_P_Int < 10−13M

the concentration decreases below the steady-state value
of 1E-13 M, an increased synthesis rate is used. This is
described by the expression

if IR_Int+IR_I_P_Int >= 1E-13 then 2.78E-19;

1.67E-18.

We simulated two days with a typical 24 h insulin pro-
file of a healthy person, whereat the mean basal insulin
concentration is about 6 · 10−11 M [36]. Meal intake,
simulated at 09:00 h, 13:00 h and 18:00 h, triggers the
rapid increase of the insulin concentration to approxi-
mately 3.6 · 10−10 M [36]. The hormone concentration
returns to the basal level within the next 3 hours. This pro-
file is described by a mathematical expression with four
cases (one condition-free case for the basal concentra-
tion and three time-dependent cases for the meal intakes)
and a negative exponential function which describes the
decrease of insulin concentration after meal intake. The
expression can be found in the supplementary text file
“example_MathExp” (Additional file 3).
Results of a simulation of two days are plotted in

Figure 4. The figure shows on top the number of insulin
molecules plotted against time. Whereas the number of
molecules of different IR states is depicted at the bottom.

Figure 4 Results of a 48 h simulation of the IR model. The IR cycling model was simulated for two days with a typical insulin profile. The basal insulin
level is 6 · 10−11 M. At 09:00 h, 13:00 h and 18:00 h, meal intake stimulates insulin secretion and leads to a peak postprandial concentration of
3.6 · 10−10 M which returns to its basal state within three hours. The numbers of insulin molecules (upper part) and the number of molecules of
different states (lower part) are plotted against the simulated time. Black points represent insulin, red points the free membrane located receptor,
blue points the receptor-insulin complex (inactive), green the free receptor in cytosol, yellow the activated phosphorylated IR-insulin complex in
cytosol and cyan the phosphorylated receptor-insulin complex in the membrane.
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The PN (Additional file 4) is provided as theMONALISA-
project file IR_Model.mlproject. The simulation setup file
“IR_Model_params.xml”, (Additional file 5) can be found
in the supplement.

Conclusions
MONALISA combines the powerful modeling concept
of Petri net formalism with stochastic simulation abil-
ities implementing a simulation module. The intuitive
graphical user interface allows to focus on modeling and
simulation. Different simulation modes make the soft-
ware suitable for working with PN in various areas,
especially for biological tasks like analysis and simula-
tion of metabolic systems, gene regulatory networks or
signal transduction pathways. Constant places and the
usage of mathematical expressions for describing simu-
lation parameters offer an improved flexibility compared
to other tools, allowing for modeling of non-standard
kinetics and complex relationships to the external envi-
ronment. Useful features, like built-in plotting, navigation
through the simulation history, export of the simulation
setups to XML-files and setting the seed of the random
number generator, can help to easily adjust parameters to
follow and assess simulation results. We demonstrate a
small case study that models the prominent motif of the
recycling of the insulin receptor. The case study presents
the abilities of MONALISA to model and simulate complex
biochemical systems and demonstrates the applicability of
the software for studying biological processes.

Availability and requirements
Project name: Simulation mode for MONALISA - a tool
for development, visualization and analysis of Petri nets
Project home page: www.bioinformatik.uni-
frankfurt.de/tools/monalisa/
Operating system(s): Linux, Windows, MacOS
Programming language: Java, C (for invariants
computation)
Other requirements: Java 1.7 or higher
License: Artistic License 2.0
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Current version of MONALISA. The current version of
MONALISA, including the implemented simulation module, is provided as
executable .jar-file as well as source files. To execute the compiled file,
open a console (command line under Windows or terminal under
UNIX-like systems), navigate to the directory where the MonaLisa.jar is
located and type java -jar MonaLisa.jar.

Additional file 2: Documentation of the Simulation Mode of
MONALISA. Documentation of the simulation mode.

Additional file 3: Mathematical expression of an insulin profile. The
text file “example_MathExp” contains the mathematical expression which
is used for modeling a 24h profile of insulin concentration in healthy
patients with three meal intakes.

Additional file 4: MONALISA-project of the insulin receptor recycling
model. The Petri net of the IR recycling model is provided as the
MONALISA-project file “IR_Model.mlproject”. To open it, start MONALISA and
select “Open project”.

Additional file 5: Simulation setup. Simulation setup, which includes
initial concentrations of compounds and reaction rate constants, is stored
in the XML-file “IR_Model_params.xml”. To load it, open the IR_Model -
project file, start the “Gillespie SSA”-mode from the “Simulation”-tab and
click the “Load setup”-button.

Abbreviations
ODE: Ordinary differential equation; PN: Petri net; CME: Chemical master
equation; SSA: Stochastic simulation algorithm; PRNG: Pseudo random
number generator; IR: Insulin receptor; ri : Rate of reaction i; ki : Deterministic
rate constant of reaction i; ci : Stochastic rate constant of reaction i; M: Molar
concentration = moles per liter; V :Volume; l: Liter; nX : The number of
molecules of compound X; [ X]: Concentration of the compound X; (or of the
compound represented by the place X); NA : Avogadro constant = 6 · 1023.
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