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Abstract
Dentatorubral–pallidoluysian atrophy (DRPLA) is a rare neurodegenerative disorder caused by CAG repeat expansions in 
the atrophin-1 gene and is inherited in an autosomal dominant fashion. There are currently no disease-modifying treatments 
available. The broad development of therapies for DRPLA, as well as other similar rare diseases, has hit a roadblock due 
to the rarity of the condition and the wide global distribution of patients and families, consequently inhibiting biomarker 
development and therapeutic research. Considering the shifting focus towards diverse populations, widespread genetic test-
ing, rapid advancements in the development of clinical and wet biomarkers for Huntington’s disease (HD), and the ongoing 
clinical trials for antisense oligonucleotide (ASO) therapies, the prospect of developing effective treatments in rare disorders 
has completely changed. The awareness of the HD ASO program has prompted global collaboration for rare disorders in 
natural history studies and the development of biomarkers, with the eventual goal of undergoing treatment trials. Here, we 
discuss DRPLA, which shares similarities with HD, and how in this and other repeat expansion disorders, neurogenetics 
groups like ours at UCL are gearing up for forthcoming natural history studies to accelerate future ASO treatment trials to 
hopefully emulate the progress seen in HD.

Current understanding of DRPLA

Dentatorubral–pallidoluysian atrophy (DRPLA) is a rare 
autosomal dominant neurodegenerative disorder, character-
ized by progressive cerebellar ataxia, myoclonus, epilepsy, 
dementia, choreoathetosis, and psychiatric symptoms [90]. 
The condition was first described by Titica and van Boegard 
in 1946, whereby two cases in a family with progressive 
choreoathetosis, ataxia, and dementia were reported [88]. 
The term “hereditary DRPLA” was later coined by Naito 
and Oyanagi in 1982 [61]. DRPLA is classified within the 
spinocerebellar ataxia (SCA) group, which represents a het-
erogeneous group of > 40 autosomal dominantly inherited 
diseases [44]. DRPLA is caused by a CAG-polyglutamine 
(polyQ) repeat expansion. Nine such polyQ diseases have 
currently been identified in humans, including Huntington’s 

disease (HD), spinal and bulbar muscular atrophy (SBMA), 
SCA 1, 2, 3, 6, 7, and 17 [82].

DRPLA is the result of an unstable CAG repeat expan-
sion in exon 5 of the atrophin-1 (ATN1) gene [46, 60]. The 
number of repeats in normal individual chromosomes ranges 
typically between 6 and 35. Full penetrance occurs at ≥ 48 
CAG repeats, whilst alleles of 35–47 repeats are incom-
pletely penetrant and are usually associated with a milder 
clinical phenotype [13, 37, 38, 46, 55, 60]. Characterized 
by genetic anticipation, with paternal transmission resulting 
in more prominent anticipation than maternal transmission, 
DRPLA symptoms present more severely and earlier in each 
subsequent generation [56, 90]. The CAG repeat load is also 
associated with the phenotype, whereby the longer the size 
of expanded CAG repeats, the earlier the age of onset and 
death, the more severe the symptoms and long-term dis-
ability, and the poorer the prognosis [34, 37, 55]. Figure 1 
illustrates the currently known features of DRPLA.

Due to the heterogeneity in clinical presentation, based on 
the prominent genetic anticipation and age of onset, diagnos-
ing DRPLA can often be challenging, with symptoms asso-
ciated with a broad differential diagnosis. Whilst epileptic 
seizures are common in juvenile-onset patients (onset prior 
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to the age of 20), the frequency of seizures is reduced after 
the age of 20, and rare in patients with an onset after the 
age of 40. Patients with an onset after the age of 20 tend to 
present with cerebellar ataxia, choreoathetosis and dementia, 
often making the disease difficult to differentiate from clini-
cal mimics including HD and other hereditary SCAs [13, 
61]. Further, brain MRI findings in DRPLA are variable, 
with case reports of early-stage patients often presenting 
with only mild changes, whilst late stages of the disease are 
associated with non-specific changes such as atrophy of the 
cerebellum and brainstem, complicating the differentiation 
of the disease from other neurological disorders [35, 45, 
77, 83, 92].

Global burden

Defining global burden through natural history studies is 
important to understand the impact of condition and to iden-
tify disease biomarkers in the preparation for therapeutic 
trials. DRPLA is most commonly recognised in popula-
tions of Japanese ancestry and has an estimated incidence 
in Japan of 2–7 per million [26, 71]. DRPLA is considered 
to be the third most common autosomal dominant ataxia 
in the Japanese population, accounting for approximately 
7.3–20% of autosomal dominant SCA [54, 87, 91]. Whilst 
it is believed to be rare in non-Asian populations, there are 
no accurate reports on the worldwide prevalence of DRPLA, 

Fig. 1   Main genetic, clinical, neuroimaging and neuropathologi-
cal features of DRPLA. a Illustration of location of the trinucleotide 
repeat within the gene—In DRPLA, the CAG trinucleotide repeat 
expansion occurs in coding exon 5 of the atrophin-1 (ATN1) gene, 
which is located on chromosome 12p13.31. Normal alleles in the 
ATN1 gene have 6–35 CAG repeats. ≥ 20 repeats are considered nor-
mal mutable alleles that expand on transmission and result in symp-
toms in the next generation, and ≥ 48 repeats demonstrate fully pen-

etrant clinical phenotype. The unstable CAG repeat sequence causes 
a polyglutamine (polyQ) expansion in the atrophin-1 protein [13, 25, 
44, 55, 60, 68, 94]. b Clinical features—The primary clinical fea-
tures of DRPLA are ataxia and cognitive impairment, however, the 
age of onset affects the clinical presentation, with different symptoms 
observed between adult-onset and juvenile-onset DRPLA (Wardle 
et al. [98]; [34, 48, 55]. c Neuroimaging findings—[47, 106]. d Neu-
ropathological findings—[36, 84, 106, 107]
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with current estimates based on the evaluation of cohorts 
diagnosed with SCA, suggesting that the prevalence of 
DRPLA is likely to be underestimated [6, 91, 96]. In Sin-
gapore, Korea and China, the frequencies of DRPLA have 
been found to be 3.4%, 3.4%, and 1%, respectively [42, 50, 
111]. In South America, the DRPLA frequency has found 
to be 0.14% and 3.1% in SCA cohorts from Brazil and Ven-
ezuela, respectively [8, 65]. In Europe, findings have been 
variable, with reports of the frequency in Portuguese cohorts 
with autosomal dominant ataxias of DRPLA ranging from 
4 to 11.2%, whilst in Spain, the frequency was reported as 
3.3% [18, 39, 93]. In South Wales, France, and Italy, the fre-
quency amongst cohorts with SCA has been reported as 5%, 
0.25%, and 0.45–1%, respectively [11, 27, 49, 97]. Figure 2 
illustrates the estimated number of cases around the world.

Developing a treatment approach for DRPLA 
and other repeat expansion disorders: drawing 
upon insights observed for HD

There are currently no treatments to prevent or stop the dis-
ease progression in DRPLA [90]. Whilst the exact patho-
physiology of DRPLA is unclear, the literature overall points 
towards the idea that the expanded polyQ stretch leads to a 
“gain-of-toxic” function of the mutant protein on neuronal 
cells [89]. To downregulate the levels of the pathological 
polyQ proteins, RNA-targeting therapies may hold promise 
in the treatment of DRPLA, in particular, antisense oligonu-
cleotides (ASO) therapy [16]. Therapeutic ASOs are single-
stranded synthetic DNA molecules that work by binding to 
complementary target mRNA through Watson and Crick 
hybridization to interfere with normal gene expression and 
protein synthesis. ASOs affect gene expression through three 
mechanisms: RNase H-mediated degradation of mRNA, 
blocking ribosomes from binding to mRNA and preventing 
protein translation, or by modulating splicing of pre-mRNA 
[70, 102]. Figure 3 shows the normal steps of gene expres-
sion and the mechanisms by which therapeutic ASOs can 
influence this process. The scope of ASO therapeutics has 
expanded considerably in recent years, with an emphasis 
particularly placed on rare untreatable conditions, which 
cannot be easily addressed with small molecule drugs. ASO 
therapeutics have shown promise in several neurological dis-
orders. For example, Nusinersen and Eteplisren are FDA-
approved ASO treatment options for spinal muscular atrophy 
(SMA) and Duchenne muscular dystrophy (DMD), respec-
tively, whilst clinical trials are ongoing for ASO treatments 

for amyotrophic lateral sclerosis (ALS), Alzheimer’s disease 
(AD), and HD [75, 104]. Figure 4 highlights the progress of 
therapeutic ASO development for repeat expansion neuro-
logical disorders.

HD is the most widely studied CAG repeat expansion 
disorder and has gained significant attention for ASO thera-
peutics. Based on the success seen in preclinical studies of 
non-human animals, ASO clinical trials are ongoing for HD 
[78]. HTTRX is an ASO that targets the mutant and wild-type 
alleles with the purpose of reducing levels of the mutant 
Huntingtin protein (mHTT). Through phase 1–2a clinical 
trial in early-stage HD patients, it was found that CSF mHTT 
levels showed dose-dependent decrease by up to 40%. No 
significant safety concerns were reported, though levels of 
CSF neurofilament light chain (NfL), a marker of neuroax-
onal damage, were shown to be increased in the final study 
visit [86]. Preclinical studies have also been conducted for 
SCA. In early manifest transgenic SCA3 mice, ATXN3-
targeting ASO resulted in sustained reduction of polyQ-
expanded ATXN3, accompanied by rescued motor impair-
ment [57]. Further, in SCA2 mouse models, the delivery 
of ATXN2-targeting ASO led to the downregulation of the 
ATXN2 mRNA and protein, delayed onset of the SCA2 phe-
notype, with improved motor performance [74]. These find-
ings indicate a promising proof-in-concept for ASO therapy 
as an approach for polyQ conditions.

The advances in HD are suggestive of the possibility of 
adopting similar methods to define biomarkers and treat 
DRPLA. Before clinically meaningful interventions can 
be discovered, a greater understanding of DRPLA disease 
progression and the identification of wet biomarkers must 
be pursued. Despite the significant advancements made for 
other neurodegenerative diseases, such as HD and AD, bio-
markers in biological fluid, such as blood and CSF, have not 
been found for DRPLA [16]. Potential biomarkers includ-
ing glial fibrillary acidic protein, DJ-1, and tau have been 
studied in SCA1, SCA2, and SCA6 patients, where only 
CSF tau was significantly higher in patients than controls, 
though levels did not correlate with CAG repeat size and 
disease severity [9]. CSF and plasma/serum NfL have been 
shown to be a notable biomarker in many neurodegenerative 
conditions, including HD, AD, ALS, and multiple sclerosis 
[12, 23, 30, 101]. In a small cohort of repeat-expansion SCA 
patients, serum NfL was found to be higher in patients than 
controls; however, the correlation with disease severity was 
not analysed [103]. Another potentially important biomarker 
for DRPLA disease progression and severity, which may 
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also act as a potential therapeutic target, is repeat expansion 
somatic instability. This has been observed in HD mouse 
models and human brain tissue; it is worth exploring as a 
prominent biomarker for DRPLA and other repeat expan-
sion disorders [3, 24, 85]. In addition to being clinically 
beneficial in regard to improving diagnostic accuracy and 
monitoring disease progression, biological biomarkers for 
DRPLA would also be influential in research. For example, 
they would provide greater accuracy in clinical trial recruit-
ment, objective monitoring of disease-related biological 
changes, tracking adverse effects and response to treatment 
interventions [1]. Studies in larger cohorts are needed to 
gather data on the role of biological biomarkers DRPLA.

Insight into the natural progression of rare diseases is an 
essential step in facilitating the process of drug development 
[64]. To garner progress towards the discovery of disease-
modifying treatments for DRPLA, emphasis must be placed 
on natural history studies to enhance our understanding of 
disease progression and to identify reproducible, validated 
biomarkers (Fig. 5). For rare diseases, this entails interna-
tional collaboration to understand the longitudinal clinical 
progression in statistically large numbers of cases, ide-
ally with n > 20 patients from multiple geographical areas, 
alongside matched controls. Initial investigative markers 
of disease progression would include clinical rating scales, 
imaging techniques and EEG, and objective, fluid-based bio-
markers. In DRPLA, and other rare repeat expansion disor-
ders, prominent analysis will comprise of DNA extracted 
from multiple fluids to investigate somatic instability, RNA 
extracted from blood and fibroblast cell lines, and extraction 
of serum/plasma and/or CSF for the examination of bio-
markers such as NfL. The goal over the next 3 years will be 
to enhance our insight of DRPLA clinical features, imaging 
and fluid biomarkers, disease progression, and to uncover 
methods to monitor response to therapeutic intervention.

Fig. 2   Estimated number of reported cases of DRPLA based on a lit-
erature search. a World map with dots corresponding to the number 
of reported cases of DRPLA, as per studies shown in (b). b Table of 
DRPLA families/cases found outside of Japan as reported in litera-
ture. DRPLA literature search for studies written in English published 
between January 1945 and July 2020 was performed on PubMed and 
Scopus databases, using the following key words: DRPLA; dentato-
rubral–pallidoluysian atrophy; Naito-Oyanagi disease; Haw-River 
syndrome; or ataxia. Cases for Thailand and Germany based on per-
sonal communication

◂

Fig. 3   Normal process of protein synthesis and common mechanisms 
of ASOs on target RNA. Normal process of protein synthesis (left): 
DNA is transcribed to pre-messenger RNA (pre-mRNA), which 
contains coding (exon) and non-coding (intron) regions between 5′ 
and 3′ untranslated regions (UTR). Pre-mRNA undergoes post-tran-
scriptional modifications into mature mRNA, including 5′ capping, 
removal of introns (splicing), and polyadenylation (poly-A tail). The 
mature mRNA undergoes ribosome-dependent protein synthesis. 
Mechanisms of ASOs on target RNA (right): Splicing modulation—
ASO binds to pre-mRNA intron/exon junctions and modulate splic-

ing to include or skip the target exon, resulting in the synthesis of a 
modified protein. Translation inhibition—ASO binds to the mRNA 
and sterically blocks and prevents the binding of ribosomes to the 
mRNA, inhibiting translation and resulting in reduced protein syn-
thesis. RNase H-mediated degradation of mRNA—ASO binds to the 
mRNA to form an RNA–DNA hybrid, allowing the recruitment of 
RNase H nuclease, inducing degradation of the target mRNA, result-
ing in reduced protein synthesis [22, 70, 73, 78, 102]. Diagram cre-
ated on biorender.com 
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The next few years for DRPLA

The future for DRPLA and other rare disorders is one of 
momentous opportunity. The knowledge gained in the sci-
entific community from previous successful (and many 
unsuccessful) trials for SMA, HD, and other similar dis-
eases have defined the foundations required to understand 
disease progression and how to see the reversal. The current 
development of collaborative natural history and biomarker 
studies for DRPLA by our group at UCL alongside other 
institutions gives hope to DRPLA patients and families for 
advancements over the next few years. Whilst it is expected 

that many clinical, fluid or imaging markers of disease will 
overlap with other conditions, namely fluid NfL and MRI 
sequences, it can be postulated that DRPLA-specific markers 
may be discovered, for example, disease-associated protein 
levels such as ATN1, or somatic instability in the repeat 
expansion in biosamples. Though funding is challenging in 
rare disorders, natural history studies, in tandem with open-
access data, imaging, wet biomarker and fibroblast reposi-
tories are essential. Ascertaining a wide resource for use by 
future researchers is crucial in the drive towards discoveries 
that may potentially benefit patient care.

Fig. 4   Progress in the development of ASO therapies for repeat 
expansions associated with neurological disorders. Table shows 
stages in the research towards developing ASO therapies for neuro-
logical repeat expansion disorders. Information. Chr: chromosome; 

HD; Huntington’s disease; ALS: amyotrophic lateral sclerosis; SCA: 
spinocerebellar ataxia; DM1: myotonic dystrophy; SBMA: spinobul-
bar muscular atrophy
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The 
importance of
biomarkers in
clinical trials

Developing an international collaborative clinical study involves:
i) DRPLA affected patients (n>20) from each geographical area
ii) Patients with a range of different repeat sizes
iii) Patients with range of clinical severities
iv) Matched controls
v) Following and sampling over a period of at least 3 years

Finding fluid biomarkers:
Blood sampling using EDTA anticoagulant and RNA preservative 
solution, analyzing serum/plasma, urine, saliva, CSF and faeces

Development of a clinical and
biobank resource for DRPLA:

Safe storage of clinical data,
investigation results, and biomarkers
in blood, saliva, CSF, urine, and/or
faecal samplesfor DRPLA patients

and matched controls

Fig. 5   Facilitating DRPLA therapeutic development through under-
standing of natural history and discovery of biomarkers. Natural his-
tory studies follow the course of a disease from prior to inception, 
through the presymptomatic and clinical stages, to the point it ends 
(the patient is either cured, chronically disabled or dead, without 
external intervention) [20]. International, collaborative clinical stud-
ies are paramount to the DRPLA drug discovery process by identify-
ing milestones of the disease progression and facilitating the discov-
ery of longitudinal or cross-sectional biomarkers to objectively track 
disease-related biological changes. The discovery of biomarkers is, in 
turn, essential for clinical trials. The figure showcases the process by 
which a clinical and biobank resource for DRPLA can be uncovered, 
through collaborative efforts. Several methods are used for biomarker 

discovery; in particular, ‘omics’ technologies contribute towards the 
rapid discovery and validation of biomarkers. Genomics allows the 
identification of gene mutations or polymorphisms; transcriptom-
ics can identify changes in RNA; epigenetics can identify modified 
epigenetic mechanisms; metabolomics and proteomics can identify 
small molecule metabolites and protein biomarkers in human biologi-
cal fluid, respectively [1, 2, 28, 31, 41]. MS: multiple spectrometry; 
NfL: neurofilament light chain; NMR: nuclear magnetic resonance; 
MALDI-TOF MS: matrix-assisted laser desorption/ionization time of 
flight mass spectrometry; MRI: magnetic resonance imaging; EEG: 
electroencephalogram; EDTA: Ethylenediamine tetraacetic acid; 
CSF: cerebrospinal fluid
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