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Abstract

Background

Inferring a gene regulatory network from time-series gene expression data in systems biol-

ogy is a challenging problem. Many methods have been suggested, most of which have a

scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In

addition, they have focused on the accurate inference of a network structure only. There-

fore, there is a pressing need to develop a network inference method to search regulatory

genes efficiently and to predict the network dynamics accurately.

Results

In this study, we employed a Boolean network model with a restricted update rule scheme to

capture coarse-grained dynamics, and propose a novel mutual information-based Boolean

network inference (MIBNI) method. Given time-series gene expression data as an input, the

method first identifies a set of initial regulatory genes using mutual information-based fea-

ture selection, and then improves the dynamics prediction accuracy by iteratively swapping

a pair of genes between sets of the selected regulatory genes and the other genes. Through

extensive simulations with artificial datasets, MIBNI showed consistently better performance

than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in

terms of both structural and dynamics prediction accuracy. We further tested the proposed

method with two real gene expression datasets for an Escherichia coli gene regulatory net-

work and a fission yeast cell cycle network, and also observed better results using MIBNI

compared to the six other methods.

Conclusions

Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics

of a gene regulatory network.
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Background

A gene regulatory network (GRN) consists of various molecular components such as genes,

proteins, and mRNA, and their genetic interactions. Discovering the genetic interactions from

a time-series gene expression dataset is considered to be a network inference or reverse engi-

neering problem. Specifically, the problem aims to infer not only a set of regulatory genes for a

target gene (i.e., a network structure inference), but also the regulatory rules between genes

(i.e., a network dynamics inference). Many methods based on various computational models

including a relevance network [1], a Bayesian network [2], and a differential equation [3] have

been proposed for the reverse engineering problems. Another popular computational model is

a Boolean network (BN), wherein the state of a gene is represented by a Boolean value. This

value is updated by a logical rule based on multiple regulatory genes, and some BN-based

inference methods have been proposed [4, 5]. Although a BN model is basically attractive for

inferring a relatively large GRN due to the simple representation, the previous BN-based meth-

ods were not suitable for large-scale network inference, because all possible combinations of

genes were exhaustively compared so as to find a best set of regulatory genes for a given target

gene. For example, a best-fit algorithm [6] exhaustively searches regulatory genes with all pos-

sible combinations for a target gene and finds the best fitting function that minimizes the

errors. On the other hand, some other BN-based methods have limited the maximum number

of regulatory genes to reduce a computation at cost. For example, a Bayesian inference

approach for a Boolean network (BIBN) [7] where the maximum number of regulatory genes

was bounded by two was used to infer a Boolean network by maximizing a joint posterior

probability. Therefore, a way to select the most informative regulatory genes efficiently is

required, and herein, we incorporate an approximated multivariate mutual information mea-

sure to resolve this problem.

Mutual information, which is a measure used to represent a mutual dependency between

two random variables, can describe the dependency of a given target gene on a set of candidate

regulatory genes. In this regard, many approaches based on mutual information have been

proposed for reverse engineering problems. The first approach was the reverse engineering

algorithm REVEAL, which searches for a set of genes that maximizes a discrete mutual infor-

mation value for a target gene [8]. A method called a path consistency algorithm based on con-

ditional mutual information (PCA-CMI) employs conditional mutual information to detect

nonlinear statistical dependencies between gene pairs and distinguish direct interactions from

indirect interactions [9]. The time-delay algorithm for the reconstruction of accurate cellular

networks (ARACNE) method is used to compute the mutual information by considering a

time gap between gene expression values [10]. The final example is the mutual information

distance and entropy reduction (MIDER) method, which defines a mutual information-based

distance between genes to specify the directionality [11]. These mutual information-based

methods are computationally expensive, because they are implemented to compute exact

mutual information values over all possible combinations of genes. To reduce the computa-

tional cost, other mutual information-based methods have been proposed. For example, the

relevance network (RelNet) algorithm [12] computes pairwise mutual information for a target

gene and infers an interaction if it is larger than a pre-specified threshold. The context likeli-

hood of relatedness (CLR) method [13] reduces the connections from a complete graph by dis-

carding false connections through comparisons of pairwise mutual information scores with a

background correction of mutual information scores. A chi-square test (CST) [14] was also

used to identify a connection by testing whether there was a significant difference between the

distributions of a target gene and candidate regulator genes. We note that RelNet, CLR, and

CST are computationally effective because they assess only pairwise interactions. Another
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common limitation is that they are intended to infer only a regulatory structure without any

consideration of inferring a regulatory rule or function. Therefore, there is a need to develop a

novel approach that cost-efficiently computes the multivariate mutual information and prop-

erly extends it to infer regulatory rules for the prediction of network dynamics.

To resolve these limitations, we propose a mutual information-based Boolean network

inference (MIBNI) algorithm. The algorithm first employs a mutual information-based feature

selection (MIFS) method [15] that was originally suggested for efficient supervised learning in

artificial neural networks. We used MIFS to approximate the mutual information between a

target gene and a set of candidate regulatory genes to reduce the computational cost. The loss

of information increases as the number of regulatory genes considered in MIFS is increased,

which can eventually cause a significant decrease in the inference accuracy. To overcome this

problem with MIFS, we further devised a SWAP subroutine, which is a greedy algorithm

wherein a gene in the set of regulatory genes selected by MIFS is iteratively swapped with

another gene in the set of unselected genes. MIBNI was implemented to repeat the MIFS and

SWAP subroutines by turns until the desired number of most informative regulatory genes

with the highest dynamics accuracy is found. To validate the performance of MIBNI, we com-

pared it with six well-known reverse engineering methods, REVEAL, Best-Fit, RelNet, CST,

CLR and BIBN. Through extensive simulations on artificial gene expression datasets, it was

shown that MIBNI performed significantly better than the six previous methods in terms of

the accuracies of both structural and dynamics inference, even with a relatively small running

time. Our method was also tested with two real gene expression datasets related to an Escheri-
chia coli gene regulatory network and a fission yeast cell cycle network, and it showed signifi-

cantly better performance than did any of the previous methods. These successful results

indicate that MIBNI is a useful mutual information-based method that can infer a Boolean net-

work from various gene expression datasets.

Methods

A Boolean network is the simplest model to represent a biological network. In this section, we

explain the basic concepts employed in our proposed method to infer a Boolean network from

time-series gene expression data.

A Boolean network model

A Boolean network [16] G(V,A) consists of a set of nodes V = {v1,v2,. . .,vN} and a set of interac-

tions A = {(vi,vj)|vi,vj � V}. Every node is represented by a Boolean variable whose state is

updated by a Boolean function. Specifically, the value of a Boolean variable vi at time t + 1 is

determined by the values of other variables vi1
; vi2

; . . . ::; vik
having a link to vi at time t by the

following Boolean function:

viðt þ 1Þ ¼ fiðvi1ðtÞ; . . . ; vikðtÞÞ:

In this work, it is assumed that each update function is represented by a conjunction (AND

rule) or a disjunction (OR rule) and that all of the variables are synchronously updated.

Boolean network inference problem

Boolean network inference is the problem of inferring a Boolean network that best fits

observed time-series gene expression data. The overall approach to that problem is in Fig 1. As

shown in the figure, a time-series dataset of real values is obtained from an unseen target net-

work G(V,A). Then, it is transformed into a dataset of binary values by a discretization method.

A novel mutual information-based Boolean network inference method
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We used the K-means clustering algorithm-based discretization method [17]. This method

divides all of the expression values of a gene into two clusters, and assigns 1 (the ‘on’ state) and

0 (the ‘off’ state) to the clusters having relatively higher and lower average values, respectively.

A Boolean network inference method uses the Boolean dataset as an input and outputs an

inferred network G0(V0,A0) as a result. Then, two performance types are evaluated. One is the

structural performance evaluated by comparing the structures G(V,A) and G0(V0,A0). For a reli-

able comparison of the structural performance, we use three well-known metrics, precision,

recall, and structural accuracy, as in previous studies [9, 18]. Precision is defined as the per-

centage of correctly inferred connections out of all predictions, as follows:

Precision ¼
TP

TPþ FP
;

where TP (true positive) and FP (false positive) denote the numbers of correctly and incor-

rectly predicted connections, respectively. Recall is the percentage of inferred connections

among the true connections in G(V,A):

Recall ¼
TP

TPþ FN
;

Fig 1. Overview of a Boolean network inference problem. An unseen target network G(V,A) produces a time-series gene

expression dataset that is converted to a Boolean time-series dataset by a discretization method. An inference algorithm trains the

Boolean dataset as an input and infers a Boolean network G0(V0,A0) as an output. The inference performance is evaluated by a

structural accuracy comparing the inferred connections A0 to the true connections A and by a dynamics accuracy comparing the

predicted Boolean time-series data V0(t) to the observed data V(t).

doi:10.1371/journal.pone.0171097.g001
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where FN (false negative) means the number of non-inferred connections in G(V,A). Struc-

tural accuracy is the percentage of correct predictions, as follows:

Structural Accuracy ¼
TPþ TN

TPþ FPþ FN þ TN
;

where TN (true negative) is the number of correct negative predictions.

The other performance measure is the network dynamics accuracy, wherein we compare

the two trajectories of the target and the inferred networks. To specify this, we first define the

gene-wise dynamics consistency between the observed variable v(t) and the predicted variable

v0(t), E(v,v0), as follows:

E v; v0ð Þ ¼

PT
t¼2
IðvðtÞ ¼ v0ðtÞÞÞ
T � 1

;

where T is the number of time steps and I(�) is an indicator function that returns 1 if the condi-

tion is true, or 0 otherwise. Then, the network dynamics accuracy is obtained by simply aver-

aging the gene-wise dynamics consistency over all genes as follows:

Dynamics Accuracy ¼
PN

i¼1
Eðvi; vi 0Þ
N

;

where N is the number of genes. In other words, the network dynamics accuracy represents

the ratio of the equivalent Boolean values between all pairs of the target and the inferred vari-

ables over all time steps except the initial time. Previous studies of the network inference prob-

lem have mainly focused on structural measures [19–21], and the dynamics performance has

not frequently been taken into account. The dynamics performance measure is more crucial,

considering that the network inference ultimately aims to characterize various cellular dynam-

ical behaviors through complex molecular interactions.

Mutual information

Our approach includes a selection of regulatory variables that is based on some concepts of

information theory. First, the entropyH(X) of a discrete random variable (gene) X is defined

to measure the uncertainty of X as follows:

HðXÞ ¼ �
X

x2X

pðxÞ log pðxÞ:

In addition, the joint entropyH(X,Y) of two discrete random variables X and Y with a joint

probability distribution p(x,y) is defined as follows:

HðX;YÞ ¼ �
X

x�X

X

y�Y

pðx; yÞ log pðx; yÞ:

Finally, we used the mutual information of two discrete variables as follows:

IðX;YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ:

The larger the mutual information is, the more the variables (genes) are dependent on each

other.

In this work, we propose a mutual information-based Boolean network inference method

called MIBNI. We first introduce two main subroutines, MIFS and SWAP, which are a mutual

information-based feature selection procedure and an iterative variable replacement proce-

dure, respectively.

A novel mutual information-based Boolean network inference method
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MIFS and SWAP subroutines

In a previous study [15], MIFS which is a feature selection method based on mutual informa-

tion was suggested to retrieve the most informative input variables in a generalized supervised

learning problem. In this work, we used the method to search for a set of the most informative

k variables, S, among the total set of candidate Boolean variablesW = {w1,w2,. . .,wM} for a tar-

get variable vO (Fig 2A). The set S is initialized with a variable v 2W that maximizes the mutual

information with vO. Then, the subroutine selects a next variable w among the remaining can-

didate variables that maximizes I(vO;w) − ∑s2SI(w;s) where the second term represents the

approximate dependency of w to the set of already selected variables S. This selection for the

next variable is repeated until the desired number of variables (k) has been chosen.

To reduce the computational cost, the MIFS subroutine does not compute the exact multi-

variate mutual information, and it often fails to find the optimal set of regulatory variables. To

overcome this problem, we propose a simple iterative SWAP subroutine to improve the

dynamics accuracy by swapping the same number of variables between the sets of selected and

unselected variables. The pseudo-code of the proposed SWAP subroutine is shown in Fig 2B.

Given two sets of selected and unselected variables S andW, each is assumed to be ordered by

the mutual information with the target variable. Every pair of variables s 2 S and w 2W is

examined to see if swapping s and w increases the gene-wise dynamics consistency. In this pro-

cess, it is required to specify the update rule of v0O corresponding to the target variable vO from

a set of selected input variables S (“search_update_rule” in Fig 2B). Since every variable in S
can be positively or negatively related to vO, there can be 2|S|+1 conjunction or disjunction

update rules. Thus, we chose the update rule that maximizes the gene-wise dynamics consis-

tency among the possible update rules.

Overall framework of the proposed Boolean network inference algorithm

The overall framework of the proposed MIBNI is shown in Fig 3. This framework considers

each variable of one time step lag as a target variable. Given a target variable vO and a set of

candidate Boolean variablesW = {v1,v2,. . .,vN}, the entropy value of vO is first examined. When

it is zero, it implies that there is no regulatory genes because the value of vO was fixed all the

time steps; otherwise, the subroutine MIFS is called to select the kmost informative variables

with vO. Next, a greedy subroutine SWAP is performed to increase the gene-wise dynamics

consistency by swapping the same number of variables between S andW\S. This process is

repeated by increasing k until an optimal set S (i.e., the perfect gene-wise dynamics consis-

tency) is found or k equals a parameter K which specifies the maximum number of incoming

links to be inferred. Considering the computation time, we set K to 10 in this study and note

that the parameter was set to a relatively small value, two or three in previous studies [6–8]

based on Best-Fit, BIBN, and REVEAL. In conclusion, MIBNI searches for a conjunction or

disjunction Boolean function that best approximates vO(t + 1) using the set of selected input

variables S for every variable.

Results and discussion

To validate our approach, we tested it with artificial and real gene expression datasets. We

present the results in the following subsections.

Performance on artificial networks

Artificial gene expression data. To test MIBNI, we generated random networks and gene

expression datasets by using two different models. In the first model, ten groups of random

A novel mutual information-based Boolean network inference method
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Boolean networks with different network sizes (|V| = 10,20,. . .,100 and |A| = 2 � |V|) are cre-

ated by using the Barabási-Albert (BA) model [22] (see S1 Fig for the pseudo-code). For each

group, 30 networks were generated and therefore a total of 300 BA random networks were

tested. The state of each gene (node) was randomly initialized between 0 and 1 and it was

Fig 2. Pseudocodes of two main subroutines in MIBNI. (a) MIFS subroutine. This returns k most informative variables among W for a given

target variable v0. (b) SWAP subroutine. This improves the dynamics accuracy by iteratively swapping a variable from the set of selected variables S

with another variable from the set of unselected variables W.

doi:10.1371/journal.pone.0171097.g002

A novel mutual information-based Boolean network inference method
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updated over some time steps by an update function selected uniformly and randomly between

the conjunction and the disjunction functions. We note that no discretization method was

required for this dataset. In the second random network model, ten groups of random net-

works with different network sizes (|V| = 10,20,. . . 100 and variable |A|) are created by using

GeneNetWeaver (GNW) [23] software which randomly constructs network structures by

extracting modules from known E. coli or S. cerevisiae gene regulatory networks (herein, the

former was selected). The number of links (|A|) is variable because it is determined by GNW

Fig 3. Overall framework of the MIBNI algorithm. Every Boolean variable with a single-step time lag (vi(t + 1))

is specified as a target variable. If the entropy value of the target variable is zero, it means that there is no regu-

latory gene. Otherwise, MIBNI selects an initial set of k most relevant variables (S) among W using the MIFS

subroutine for a given a target variable vO and a set of candidate Boolean variables W = {v1,v2,. . .,vN}. Then,

some variables in S can be replaced with the same number of other variables in W\S using the SWAP subroutine

to improve the identification of input variables. The process is repeated by increasing k until an optimal set S is

found or until k equals a parameter K.

doi:10.1371/journal.pone.0171097.g003

A novel mutual information-based Boolean network inference method
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in a probabilistic way (see S1 Table for the ranges of the number of links). For each group, 30

networks were generated and therefore a total of 300 GNW random networks were tested. The

continuous-valued gene expression data was induced from both of stochastic and ordinary

equations and it was converted to Boolean-valued data by using the K-means clustering algo-

rithm-based discretization method. In both of BA and GNW random networks, we set the

maximum time step (T) to |V| + 10. Then the trajectory of all the Boolean gene values was

used as an input to train the MIBNI. After MIBNI learns the input data, it outputs an inferred

network structure and predicts time-series Boolean values of all genes. Accordingly, we ana-

lyzed the performance of MIBNI in terms of both structural and dynamics accuracies.

Structural accuracy analysis. To compare performance, we applied MIBNI, REVEAL,

Best-Fit, RelNet, CST, CLR, and BIBN to the artificial gene expression datasets generated from

300 BA random target networks and examined the structural accuracies with respect to the

inferred networks (Fig 4). For more information, we classified all of the target genes into nine

classes according to the number of incoming links (D), which ranged from 1 to 9. As shown in

the figure, the average precision, recall, and structural accuracy values of all methods decreased

as the number of incoming links increased. This is because the number of incoming links rep-

resents the degree of difficulty of the inference problem. Every method showed considerably

higher structural performance in the easiest case of D = 1; in particular, MIBNI, REVEAL,

Best-Fit and BIBN always found the correct regulatory genes in that case. However, MIBNI

showed higher precision, recall, and structural accuracy values than all of the other methods in

cases of D > 1. These results were consistently observed irrespective of the specific network

size in BA random networks (see S2, S3, and S4 Figs) as well as GNW random networks (see

S5, S6, and S7 Figs), which implies that the performance of MIBNI was highly stable.

Dynamics accuracy analysis. We note that networks with different structures can pro-

duce the same dynamics. In this regard, it is also important to verify the network inference

performance in terms of the dynamics accuracy. Therefore, we examined the dynamics accu-

racy (see Methods section for the definition) of the inferred networks by the MIBNI, REVEAL,

Best-Fit, RelNet, CST, CLR and BIBN methods over the 300 BA random target networks (Fig

5). We note that the original REVEAL, Best-Fit, RelNet, CST, CLR and BIBN methods can

determine only whether the regulatory interactions between genes exist or not, so we modified

them in a way that they can additionally find the regulatory rules. To this end, we applied the

“search_update_rule” subroutine shown in Fig 2B to the inferred regulatory interactions. As

shown in Fig 5, we computed the average dynamics accuracy of the node groups as classified

by the number of incoming links (Fig 5A; i.e., D = 1,2,3,. . .,9) and the network size (Fig 5B;

i.e., |V| = 10,20,. . .,100). As seen in Fig 5A, the dynamics accuracies of all methods decreased

as the number of incoming links increased. However, MIBNI showed significantly higher

dynamics accuracy than all other methods, especially in cases with D> 1. This difference in

accuracy increased as the number of incoming links increased. In particular, the dynamics

accuracy of MIBNI was 1.0 (a perfect prediction) when D = 1 or 2. As shown in Fig 5B, MIBNI

also exhibited the best dynamics accuracies irrespective of the network size. Specifically, the

dynamics accuracies of MIBNI were higher than 0.9986 for all network sizes, whereas the max-

imal dynamics accuracies of REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN were less than

0.9176, 0.9254, 0.8666, 0.9131, 0.8755, and 0.9213 respectively. This outstanding performance

of MIBNI was consistently observed in simulations with GNW random networks (see S8 Fig).

In addition, we examined the effect of a sample size of gene expression data on performance.

To this end, we investigated changes of structural and dynamics accuracies by varying the

maximum time step from 10 to 110 by 10 (see S9 Fig), and observed that both accuracies

increased as the time step increased. In particular, the structural accuracy was more sensitive

to the sample size than the dynamics accuracy.

A novel mutual information-based Boolean network inference method
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Improvement by swapping. As previously mentioned, the MIFS approximates the multi-

variate mutual information value. The approximation error increases as the number of regula-

tory genes considered increases. To overcome this limitation, we inserted the SWAP

subroutine into our MIBNI method. To show the performance improvement by SWAP, we

compared the dynamics accuracies of MIBNI approaches with and without the SWAP subrou-

tine over the 300 BA random networks (Fig 6). Herein, we call them “MIBNI_w/_SWAP” and

“MIBNI_w/o_SWAP”, respectively, for convenience. In Fig 6A, MIBNI_w/_SWAP shows

higher dynamic accuracy than MIBNI_w/o_SWAP for all D> 1 cases. The performance

improvement by SWAP increased as the number of incoming links increased, indicating that

SWAP is more efficient for relatively difficult problems. This result was consistently observed

irrespective of the network size (see S10 Fig). We additionally examined the average perfor-

mance improvement in network groups of different sizes (Fig 6B). The dynamics accuracies of

MIBNI_w/_SWAP were consistently higher than those of MIBNI_w/o_SWAP were, irrespec-

tive of the network size. Thus, the SWAP subroutine plays an important role in improving the

dynamic accuracy by ameliorating the approximation error caused by the MIFS subroutine.

Computation time comparison. The running times of most of the existing network infer-

ence algorithms are quite high and depend upon the incoming links of a target node in the net-

work. We compared the running time of MIBNI with those of the REVEAL, Best-Fit, RelNet,

CST, CLR and BIBN methods over the 300 BA random networks in Fig 7. In the figure, the Y-

axis values are the ratios of the average running times of the compared methods over that of

MIBNI. Thus, Y = 1 is the baseline for comparisons. The running time of MIBNI was signifi-

cantly smaller than those of REVEAL, Best-Fit and BIBN were, and was similar to those of

RelNet, CST, and CLR. We must note that the latter three methods showed the worst perfor-

mance in terms of structural and dynamics accuracy, as seen in Figs 4 and 5. In other words,

the improved speeds of RelNet, CST, and CLR were obtained by sacrificing their prediction

accuracies.

Performance on real networks

To validate the performance of MIBNI, we tested it with two real gene expression datasets

from an E. coli gene regulatory network and a fission yeast cell cycle network (see S11 Fig).

Case study 1: E. coli network. Our method was tested with a time-series gene expression

dataset used in the DREAM3 challenge [24], which was derived from an E. coli gene regulatory

network consisting of 10 nodes and 11 interactions. The original gene expression data was rep-

resented by real values (see S2 Table), so it was converted to another dataset of Boolean values

using a K-means clustering algorithm-based discretization method [17] (see S3 Table). Then,

MIBNI inferred a network, as shown in Fig 8A, by correctly constructing 7 out of 11 interac-

tions. On the other hand, REVEAL, Best-Fit, CST, RelNet, CLR and BIBN correctly inferred 4,

5, 2, 3, 4 and 4 interactions, respectively (see S12 Fig). We also found that the dynamics accu-

racy of MIBNI was 0.9700, whereas those of REVEAL, Best-Fit, CST, RelNet, CLR and BIBN

were 0.9300, 0.9500, 0.8900, 0.8700, 0.8100, and 0.9200 respectively. In other words, MIBNI

Fig 4. Comparison of precision, recall and structural accuracy between MIBNI and other methods in

BA random networks. Results of (a) precision, (b) recall, and (c) structural accuracy, respectively. In each

figure, 300 BA random networks with different network sizes (|V| = 10,20,. . .,100) were used as target

networks, and a total of 16,500 nodes in those networks were classified into nine groups by the number of

incoming links. The maximum time step was set to |V| + 10 in generating artificial gene expression data. Y-

axis values show the average precision, recall, and structural accuracy values with respect to the target genes

in each group. Error-bars mean the standard deviations. MIBNI showed the best performance in terms of

precision, recall, and structural accuracy.

doi:10.1371/journal.pone.0171097.g004
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showed the best performance in terms of both structural and dynamics accuracies. We also

note that the dynamics accuracy was relatively high considering the structural accuracy. This is

because networks with different structures can induce the same dynamics. For example, gene

G2 was inferred as a regulatory gene for gene G5 by MIBNI, whereas G3 is the real regulatory

gene in the real network (Fig 8A). Despite this incorrectly inferred structure, the time-series

expression of gene G5 was predicted with no error. It is also interesting that MIBNI uniquely

inferred two interactions G3–G4 and G9–G5 which are not inferred by any of six other meth-

ods. On the other hand, there was no interaction uniquely inferred by either of REVEAL, Best-

Fit, RelNet, CLR, or BIBN, and only one interaction G3–G7 uniquely inferred by CST. We also

need to note a previous result [25] where a time-delayed dynamic Bayesian network inference

method was used to infer the same E. coli network used in this study. Although it inferred the

same number of true positive interactions as MIBNI, it utilized additional information such as

heterozygous knockdown and null mutant knockout data.

Case study 2: Yeast cell cycle network. As another case study, we considered a fission

yeast cell cycle network consisting of 10 nodes and 23 interactions that was used in a previous

study [26], which provided a time-series gene expression dataset of Boolean values (see S4

Table). As shown in Fig 8B, MIBNI correctly inferred 14 out of 23 interactions. In contrast,

REVEAL, Best-Fit, RelNet, CST, CLR and BIBN correctly inferred 10, 12, 4, 11, 12, and 10

interactions, respectively (see S13 Fig). We also found that the dynamics accuracy of MIBNI

was 0.9800, whereas those of REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN were 0.9200,

0.8800, 0.8700, 0.8600, 0.8400, and 0.9000 respectively. As in the E. coli case study, MIBNI

showed significantly better performance than did any of the other methods in terms of struc-

tural and dynamics accuracies. In addition, MIBNI uniquely inferred two interactions, cdc2/

cdc13 – ste9 and cdc2/cdc13 – rum1, whereas none of six other methods uniquely inferred any

interaction. This can be a useful characteristics in network inference.

Conclusions

The inference of a hidden gene regulatory network from time-series gene expression data is a

challenging problem in systems biology. Nevertheless, there have been few methods proposed

for that problem, as researchers have focused more on the accurate prediction of the network

dynamics than that of the network structure. In this regard, we proposed a novel mutual infor-

mation-based Boolean network inference method called MIBNI, in which a Boolean network

model with a restricted update scheme to capture coarse-grained dynamics efficiently was emp-

loyed. MIBNI repeatedly executes two main subroutines, MIFS and SWAP. The MIFS subroutine

identifies an initial set of regulatory genes for each target gene using mutual information-based

feature selection. Then, the SWAP subroutine improves the dynamics prediction accuracy by

iteratively swapping a pair of genes between the set of the selected regulatory genes and the set

of other genes. Through extensive simulations with artificial gene expression datasets, MIBNI

showed consistently better performance than REVEAL, Best-Fit, RelNet, CST, CLR, or BIBN in

terms of both structural and dynamics prediction accuracies. Moreover, MIBNI was significantly

faster than REVEAL and Best-Fit. In addition, our method achieved good performance with two

real gene expression datasets for an E. coli gene regulatory network and a fission yeast cell cycle

Fig 5. Comparison of dynamic accuracies between MIBNI and other methods in BA random networks. (a)

Results versus the numbers of incoming links. A total of 300 BA random networks with different network sizes

(|V| = 10,20,. . .,100) were used as target networks, and 16,500 nodes in those networks were classified according

to the number of incoming links. (b) Results versus the network sizes. For each different number of nodes, 30 BA

random networks were examined. Error-bars mean the standard deviations. In each figure, the maximum time

step was set to |V| + 10 in generating artificial gene expression data.

doi:10.1371/journal.pone.0171097.g005
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network. Based on these results, we suggest that MIBNI is a promising tool for predicting

both the network structure and the dynamics of a gene regulatory network. One limitation of

MIBNI is the update scheme, which assumes that the update rule is represented only by a con-

junctive or disjunctive function. Our future research will improve MIBNI by using a more

generalized update scheme. Another limitation is about the parameter of the maximum num-

ber of incoming links to be inferred. Although a considerably larger value was specified in

MIBNI than in previous inference methods, there is no general criteria to efficiently deter-

mine the parameter value. The last limitation is that our method is a local optimization

approach. Considering a tradeoff between computational time and inference accuracy, there

is room to improve the inference accuracy performance by sacrificing the computation time.

For example, MIBNI can be modified into a global optimization method by replacing the

MIFS subroutine with one of various meta-heuristics such as simulated annealing, genetic

Fig 6. Performance improvements by SWAP subroutine. Two versions of MIBNI, in which the SWAP routine was

included and not included, respectively, were compared with respect to dynamics accuracy. (a) Results versus the

numbers of incoming links. Three hundred BA random networks with different network sizes (|V| = 10,20,. . .,100 and |A| =

2 � |V|) used as target networks, and 16,500 nodes in those networks were classified according to the number of incoming

links. (b) Results versus the network sizes. For each different number of nodes, 30 BA random networks were examined.

The Y-axis value indicates the average dynamic accuracy of the nodes in each group, and error-bars mean the standard

deviations. In each figure, the maximum time step was set to |V| + 10 in generating artificial gene expression data.

doi:10.1371/journal.pone.0171097.g006

Fig 7. Comparison of the running times among the network inference methods. The Y-axis values represent the ratios of the

average running times of six other methods over that of MIBNI. The Y = 1 line denotes the baseline for comparisons. The running times

of Best-Fit, REVEAL and BIBN were significantly larger than that of MIBNI, whereas those of RelNet, CST, and CLR were similar to it.

doi:10.1371/journal.pone.0171097.g007
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algorithms, swarm-based optimization, and tabu-search, which are time-consuming but even-

tually help to avoid trapping into local optimum solutions. This modification can be also one

of the interesting future studies.

Supporting information

S1 Fig. Pseudo-code of the Barabási-Albert model used in our simulation.

(PDF)

S2 Fig. Comparison of precision between MIBNI and other methods in BA random net-
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S3 Fig. Comparison of recall between MIBNI and other methods in BA random network
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(PDF)

S4 Fig. Comparison of structural accuracy between MIBNI and other methods in BA ran-
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(PDF)

S5 Fig. Comparison of precision between MIBNI and other methods in GNW random net-
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(PDF)

S6 Fig. Comparison of recall between MIBNI and other methods in GNW random network

groups of different sizes.
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S7 Fig. Comparison of structural accuracy between MIBNI and other methods in GNW

random network groups of different sizes.

(PDF)

S8 Fig. Comparison of dynamic accuracies between MIBNI and other methods in GNW

random networks.

(PDF)

S9 Fig. Changes of structural and dynamics accuracy of MIBNI in BA random network

groups against the number of samples.

(PDF)

S10 Fig. Performance improvement by SWAP subroutine in BA random network groups

of different sizes.

(PDF)

S11 Fig. Structures of two real regulatory networks.

(PDF)

Fig 8. Inference performance of MIBNI with two real biological network datasets. The green, red, and

blue interactions denote true positive, false positive, and false negative predictions, respectively. (a) Inference

result of an E. coli gene regulatory network consisting of 10 genes and 11 interactions. The maximum time

step of the gene expression data was 21. The predicted result shows 7 true positives, 4 false positives, and 4

false negatives. The structural and dynamics accuracies were 0.9200 and 0.9700, respectively. (b) Inference

result of a fission yeast cell cycle network consisting of 10 genes and 23 interactions. The maximum time step

of the gene expression data was 10. The predicted result shows 14 true positives, 3 false positives, and 9

false negatives. The structural and dynamics accuracies were 0.8800 and 0.9800, respectively.

doi:10.1371/journal.pone.0171097.g008
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