
Power-law correlations and coupling of active and quiet states 
underlie a class of complex systems with self-organization at 
criticality

Fabrizio Lombardi1,2,*, Jilin W.J.L. Wang2, Xiyun Zhang2, Plamen Ch Ivanov2,3

1Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria

2Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA 
02215, USA

3Harvard Medical School and Division of Sleep Medicine, Brigham and Women Hospital, Boston, 
MA 02115, USA

Abstract

Physical and biological systems often exhibit intermittent dynamics with bursts or avalanches 

(active states) characterized by power-law size and duration distributions. These emergent features 

are typical of systems at the critical point of continuous phase transitions, and have led to the 

hypothesis that such systems may self-organize at criticality, i.e. without any fine tuning of 

parameters. Since the introduction of the Bak-Tang-Wiesenfeld (BTW) model, the paradigm of 

self-organized criticality (SOC) has been very fruitful for the analysis of emergent collective 

behaviors in a number of systems, including the brain. Although considerable effort has been 

devoted in identifying and modeling scaling features of burst and avalanche statistics, dynamical 

aspects related to the temporal organization of bursts remain often poorly understood or 

controversial. Of crucial importance to understand the mechanisms responsible for emergent 

behaviors is the relationship between active and quiet periods, and the nature of the correlations. 

Here we investigate the dynamics of active (θ-bursts) and quiet states (δ-bursts) in brain activity 

during the sleep-wake cycle. We show the duality of power-law (θ, active phase) and exponential-

like (δ, quiescent phase) duration distributions, typical of SOC, jointly emerge with power-law 

temporal correlations and anti-correlated coupling between active and quiet states. Importantly, we 

demonstrate that such temporal organization shares important similarities with earthquake 

dynamics, and propose that specific power-law correlations and coupling between active and quiet 

states are distinctive characteristics of a class of systems with self-organization at criticality.

1 Introduction

Bursting dynamics is ubiquitous across systems operating far from equilibrium. From 

earthquakes to neuronal and physiologic networks, the dynamics of such systems can be 

described as the irregular alternation of active and quiet states. Depending on the particular 

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://
creativecommons.org/licenses/by/4.0/).
*Corresponding author: lombardif00atgmail.com. 

HHS Public Access
Author manuscript
EPJ Web Conf. Author manuscript; available in PMC 2020 July 10.

Published in final edited form as:
EPJ Web Conf. 2020 ; 230: . doi:10.1051/epjconf/202023000005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


systems, active states are characterized as bursts [1], avalanches [2], flares or earthquakes 

[3], and exhibit power-law size and duration distributions. The emergence of such 

characteristics, which are typical of systems at the critical point of a second order phase 

transition, is considered a fingerprint of self-organization at criticality [4]. The concept of 

self-organized criticality (SOC) was introduced by Bak, Tang and Wiesenfeld to explain 

emergent power-law behaviors in far-from-equilibrium systems. They proposed that such 

systems may self-organize at criticality through slow accumulation and fast redistribution of 

energy, as exemplified by the sandpile model [5].

The framework of SOC has been used to characterize many physical and biological systems 

[6]. Recent empirical results suggest that the brain may also operate at criticality [2, 7–10]. 

While static properties as the power-laws of the size and duration distributions have been 

widely investigated in this context [2, 11], dynamical aspects and mechanisms leading to the 

emergent critical behavior remain poorly understood. Here we study the temporal 

organization of cortical activity across the sleep-wake cycle of rats, with a particular focus 

on the correlation and coupling underlying the emergent critical dynamics of active and 

quiet states.

The sleep-wake cycle of rats is largely dominated by the δ and θ rhythms. During NREM 

sleep, cortical activity is characterized by δ rhythm, low-frequency high-amplitude 

oscillations referred to as slow-wave activity [12], whereas REM sleep and arousals/wake 

state are characterized by θ rhythm, desychronized and localized oscillations of higher 

frequency and lower amplitude [13]. Thus, θ-bursts can be interpreted as active states and δ-

bursts as quiet states of the brain activity in the sleep-wake cycle. This interpretation is 

consistent with the basic neurophysiological understanding of δ rhythm as the cortical 

default mode [14–16]. In contrast, oscillations in the θ band are associated with activated 

state, such as REM, arousals and wakefulness [17, 18].

We analyze long-term continuous EEG recordings in rats, and dissect emergent signatures of 

criticality in the dynamics of θ- and δ-bursts in relation to their correlation properties and 

reciprocal coupling. We show that θ-burst (active states) durations follow a power-law 

distribution while the δ-burst (quiet states) durations follow an exponential-like behavior [1]. 

Importantly, we demonstrate that both active and quiet state durations are long-range power-

law correlated, and that the observed temporal organization implies the existence of an anti-

correlated coupling between active and quiet states. Finally, the analysis we present uncovers 

a striking parallel with earth-quakes dynamics, suggesting that specific power-law 

correlations and coupling between active and quiet states are distinctive characteristics of a 

class of systems with self-organization at criticality.

2 Results

2.1 Critical dynamics of active and quiet states across the sleep-wake cycle

Cortical EEG signals were recorded continuously for 48 h (2 days, 12 h dark and 12 h light) 

in 10 rats. The reader may refer to [1] for further details on the experimental design and data 

collection.
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To characterize the micro-dynamics of dominant brain rhythms across the sleep-wake cycle, 

we divide the EEG signal in N non-overlapping windows of length w and evaluate the 

spectral power in each window for several frequency bands comprised between 0.5 and 20 

Hz (Fig. 1). In Fig. 1a we show a typical spectrogram Sf(t) as a function of time for a 2 h 

EEG recording. The spectral power Sf(t) is mostly concentrated in the low frequency bands 

δ (0 - 4 Hz) and θ (4 - 8 Hz), and exhibits sharp transitions from periods with dominant δ to 

periods with dominant θ waves. We then consider the ratio Rθδ = S(θ)/S(δ) between θ and δ 
power (Fig. 1a), whose intennittent fluctuations between values larger and smaller than a 

threshold Th = 1 captures the alternation between periods with dominant θ-waves, Rθδ > Th 
= 1, and periods with dominant δ-waves, Rθδ < Th = 1. We define bursts in θ and δ rhythms 

as sequences of consecutive time windows where Rθδ > Th = 1 and Rθδ < Th = 1, 

respectively (Fig. 1b). The duration d of a burst is defined as d = n * w, where n is the 

number of consecutive windows belonging to a given burst and w is the window length (Fig. 

1b).

Next, we study the probability distributions θ and δ burst durations (Fig. 2). We find that the 

distribution Pθ of θ-burst durations recorded in a 24 h period exhibits power-law behavior 

(Fig. 2a),

Pθ(d) α d−α . (1)

In contrast, the distribution Pδ of δ-burst duration is described by a Weibull distribution

Pδ(d; λ, β) = β
λ

d
λ

β − 1
e−(d/λ)β, (2)

where λ indicates the characteristic time scale, and β is the shape parameter (Fig. 2c, d). 

Surrogate tests perfonned by randomizing the sequence of windows w in the EEG 

spectrogram (Fig. 1a) leads to exponentially distributed θ-and δ-burst (Fig. 2, insets), and 

indicate that the observed temporal organization in bursting activity of brain rhythms is 

physiologically relevant and relates to underlying regulation.

This coexistence of scale-free θ-burst and exponential-like distributed δ-burst durations 

shares striking similarities with non-equilibrium phenomena exhibiting self-organized 

criticality [5]. In that context, bursts constitute the active phase of the process and follow 

power-law statistics [4, 6]. Consecutive bursts are separated by inactive phases or quiescent 

periods whose distribution depends on the details of the system and generally exhibit an 

exponential tail [19–22], and is an exponential for the paradigmatic sandpile model of self-

organized criticality [23].

The duality of power-law and Weibull distribution in the bursting dynamics of θ and δ 
rhythms is closely reminiscent of this scenario, where scale-free θ-bursts in cortical activity 

can be seen as avalanches or earthquakes (active states), while δ-bursts can be interpreted as 

the quiet periods between active states. This interpretation is consistent with the basic 

neurophysiological understanding of δ rhythm as the cortical default mode [14–16], and θ 
rhythm as oscillations associated with activated state, such as REM, arousals and 
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wakefulness [17, 18]. Due to the respective amount of wakefulness and REM sleep in our 

data, most of the analyzed θ-bursts are likely associated with arousals and wake [1].

Given this analogy, in what follows we will refer to θ-bursts as active states, and δ-bursts as 

quiet states.

2.2 Scale-invariant critical behavior of active and quiet states across time scales

We have shown that active and quiet states exhibit distinct duration distributions: A power-

law for the active states, indicating absence of a characteristic time scale, and a Weibull for 

δ-bursts, with a characteristic time scale λ. In our burst analysis we introduced two 

parameters, the window size w and the threshold Th that were (Fig. 1). In the previous 

Section we presented results based on a particular observational window size w and 

threshold Th. To demonstrate such results are independent of the particular choice of Th and 

w, we repeat the analyses for a range of parameter values. We find that the dynamics of burst 

durations across the 24 h sleep-wake cycle is indeed described by unique scaling functions.

We first examine the duration distributions of θ- and δ- bursts for different threshold values 

Th, keeping the window size w fixed. By increasing the threshold on the ratio Rθδ from Th = 

1 to Th = 2, we find that the scaling exponent α characterizing the power-law distribution of 

active state durations remains stable, as demonstrated by the data collapse in Fig. 3. The 

scaling behavior is followed by a cutoff that, with increasing Th values, shifts to shorter 

burst durations dθ. This behavior can be expressed in terms of the following scaling relation,

Pθ(d) = d−αfθ(d/Tℎ− ∈ ) . (3)

where f(d/Th−∊) is a scaling function, and ∊ expresses the dependence of the cutoff on Th. 

The existence of a scaling function f(d/Th−∊) satisfying Eq. 3 is confirmed by the data 

collapse obtained by plotting P(d)dα versus Th∊d for several values of Th (inset in Fig. 3).

Similarly, we show that the distribution of quiet state durations is independent of the 

threshold Th, and is described by a single scaling function (Fig. 3). Since the quiet states 

correspond to periods with dominant δ-waves and are defined by a sequence of windows w 
where Rθδ < Th = 1 (Fig. 1), to explore the behavior of the duration distribution for states 

with increasingly dominant δ power, we repeat the analysis for different values Th < 1. We 

observe that, as Th decreases, the distributions change: The probability for long quiet state 

decreases, while short quiet states become more likely (insets in Fig. 3). However, when 

distributions are rescaled by their respective mean quiet state duration ⟨dδ⟩, they all collapse 

onto a unique function fδ. Such function is defined by the scaling relation

Pδ(d) = dδ
−η · fδ(d/ dδ

η) (4)

where η = 1.2, and is well described by a Weibull functional form (Fig. 3).

Next, we investigate whether the functional behavior of the distributions depends on the 

window size w. Intuitively, larger w’s would tend to fail in identifying short bursts and 

merge them together, thus causing an increase in the probability of observing longer 
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durations. In particular, larger w’s should influence the active state (θ-burst) power law 

behavior and lead to a decrease of the exponent α. Indeed, the window size w mainly 

influences the tail of the distributions, as shown in Fig. 4. When one rescales the durations 

by the window size w, the distributions collapse onto a single curve with small deviation on 

the tail due to the large window effect for Pθ(d; w > 6) (Fig. 4).

Such rescaling is defined by the following relation

Pθ(d) ∼ w−1 · fθ(d/w) . (5)

A similar data collapse characterizes the dependence of the quiet state (δ-burst) duration 

distribution on window size w. We observe that for increasing w the probability for long δ-

bursts increases, while short δ-bursts become less likely (insets in Fig. 4). When quiet state 

duration distributions corresponding to different window sizes w are rescaled by their 

respective mean duration ⟨dδδ, we find that all distributions collapse onto a unique function 

fδ following a Weibull behavior (Fig. 7b,d) and obeying the scaling relation

Pδ(d) ∼ dδ
−ξ · fδ(d/ dδ

ξ) . (6)

where ξ = 1.2 (Fig. 4).

Repeating the analysis or 12-hour dark and light periods separately, we find that Eq. 3, Eq. 

4, 5 ,and Eq. 6 consistently describe the dynamics of δ- and θ-bursts[1].

2.3 Earthquake-like architecture in the temporal organization of active and quiet states

To further characterize the temporal organization of active and quiet states, we investigate 

the relationship between the duration of θ-bursts and their temporal occurrence (Fig. 5). To 

this end, we consider the sequence of θ-bursts and we study the statistical features of the 

quiet times ∆t separating consecutive bursts as a function of the scale of analysis, which is 

controlled by a threshold D0 on the θ-burst durations. This procedure corresponds to the 

analysis of earthquake catalogs at different magnitude thresholds [20, 21]. We define the 

quiet time ∆ti as the period from the end of θi-burst to the beginning θi+1-burst. Thus, the 

statistical characteristics of ∆ti, depend on the threshold value D0. We then obtain the 

probability distribution P(∆t; D0) of quiet times ∆ti for different values of D0. For D0 = 0, 

the quiet times correspond to the previously analyzed δ-bursts or quiet states. With 

increasing threshold (scale of observation) D0, the probability of longer ∆ti increases, while 

the probability of short ∆ti decreases, leading to different curves for the distributions P(∆t; 
D0) (insets of Fig. 5). Remarkably, by rescaling each distribution by the corresponding 

average quiet time ⟨∆t⟩D0, we find that all curves collapse onto a single function G (Fig. 6c, 

d), defined by the following scaling relation

P (Δt) = Δt −1 · G(Δt/ Δt ), (7)

with the scaling function G(∆t/⟨∆t⟩) well described by the generalized Gamma distribution 

G(∆t/⟨∆t⟩; b, v, p) = p/bv(∆t/⟨∆t⟩)v−1 e−(∆t/b⟨∆t⟩t)P /Γ(v/p) [1].
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This evidence draws a strong parallel with the dynamics of earthquakes. Indeed, time 

intervals between consecutive earthquakes also follow a generalized Gamma distribution, 

independently of the geographical locations and minimum magnitude thresholds [3, 21]. 

Importantly, the presence of a non-exponential scaling function for the quiet times indicates 

specific temporal order in the occurrence of θ-bursts, which is independent of the scale of 

observation. To explicitly verify this, we randomly reshuffle the sequence of θ-burst 

durations, while preserving the sequence of δ-bursts (quiet states) durations corresponding 

to quiet times at D0 = 0, and we perfonn the analysis on the reshuffled sequence to obtain 

quiet time distributions Prand(∆t; D0) for different thresholds D0. In this case, after rescaling 

the distributions Prand(∆t; D0) by the average quiet time ⟨∆t⟩D0, their curves collapse onto an 

exponential distribution (dashed lines in Fig. 5), indicating temporal independence between 

consecutive events [24]. This clearly demonstrates that temporal correlations are intimately 

related to the existence of non-exponential scaling functions (Eq. 7) [21, 24], and indicates 

the presence of a certain temporal order in θ-bursts occurrence and coupling between θ-

bursts and quiet times [25].

2.4 Long-range power-law correlations in the durations of θ and δ bursts

Thus, we first perfonn conelation analysis to quantify long-range features in the temporal 

organization of δ- and θ-burst durations. To this end, we utilize the detrended fluctuation 

analysis (DFA), a method specially tailored to quantify long-range power-law conelations 

embedded in non-stationary signals with bursting dynamics and polynomial trends [26–29]. 

The DFA is based on evaluation of the root mean square (r.m.s.) fluctuation function F(n), 
where n is the scale of analysis expressed in number of consecutive bursts (Fig. 6). A scaling 

relationship of the form F(n) α nαd indicates presence of long-range power-law correlations 

in the time series of burst durations if αd Φ 0.5. An exponent αd ∊ [0, 0.5) indicates anti-

correlations (where short burst durations tend to be followed by longer burst durations), 

while αd ∊ (0.5,1] indicates positive persistent correlations (long bursts tend to be followed 

by longer bursts); αd = 0.5 corresponds to a random walk and absence of correlations.

We perfonn DFA on sequences of θ- and δ-burst durations separately, and find that both θ- 

and δ-bursts exhibit long-range power-law correlations with an exponent αd ≃ 0.6 (Fig. 6). 

Similar exponents characterize the correlations during dark and light periods [1], indicating 

a basic property of burst correlations, independent of the dominant physiologic state (i.e. 

sleep or wake).

2.5 Anti-correlated coupling between the durations of consecutive θ and δ-bursts

Next, we investigate the coupling between consecutive δ-and θ-burst durations. We focus on 

the relationship between ranks of consecutive δ- and θ-burst durations, dδ and dθ. We rank 

burst durations in ascending order, with the shortest duration corresponding to the smallest 

rank, and examine the scatter plots between the ranks of consecutive dδ and dθ (Fig. 7a). We 

find that δ-bursts of high ranks (i.e. long durations) tend to be followed by θ-bursts of low 

ranks (i.e. short durations). This anti-correlated coupling appears to be a basic characteristic 

of dynamics as it is observed throughout the entire sleep-wake cycle in both dark and light 

periods [1].
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To quantify the coupling between consecutive δ- and θ-burst durations we utilize 

Spearman’s correlation coefficient, which assesses monotonic relationships between two 

variables. The Spearman’s coefficient is positive when observations of two variables tend to 

have similar ranks, and negative if they tend to have opposite ranks. Our analyses show that 

the Spearman’s coefficient calculated for consecutive δ- and θ-burst durations is 

significantly negative (Fig. 7b), indicating anti-correlated coupling. This is verified by a 

surrogate test where the sequence of consecutive δ- and θ-burst durations is randomized [1].

3 Discussion

We studied the dynamical features of wake- and sleep-dominant brain rhythms across 48 h 

recordings of the sleep-wake cycle. We found that transient bursts in θ and δ cortical 

rhythms continuously occur during the sleep-wake cycle, and exhibit a complex temporal 

organization which is characterized by a remarkable duality of scale-invariant power-law 

distribution for θ-burst durations (active states) and Weibull distribution with a exponential 

characteristic time scale for δ-burst durations (quiet states), a behavior typical of non-

equilibrium systems self-organizing at criticality.

Importantly, we showed that active and quiet states are anti-correlated, and demonstrated 

that this coupling is essential part of the mechanism responsible for the emergent critical 

dynamics. The presence of such coupling is also manifested through the scale-invariant 

structure in the quiet times separating consecutive active states (θ-bursts) above a given 

duration, which we find to be described by a unique scaling function (generalized Gamma 

distribution). This structure links, across time scales, the duration of a given θ-burst with the 

time of its occurrence. Moreover, we found that sequences of consecutive θ- or δ-burst 

durations are long-range power-law correlated, indicating a scale-invariant organization in 

the temporal order of burst durations and a unique underlying process with persistent 

‘memory’ spanning over a wide range of scales that statistically couples the duration of a 

given burst with the durations of hundreds of following bursts.

Our empirical analyses showed that the reported characteristics of active and quiet state 

dynamics are independent of the scale of observation or on the threshold used to identify 

bursts, and remain continuously present during dark and light periods [1]. The presence of 

multiple scale-invariant characteristics related to distributions, correlations, coupling and 

timing of bursting events, is a strong evidence for criticality underlying cortical dynamics 

across sleep and wake.

Further, we demonstrated that the temporal structure characterizing the alternation of active 

and quiet states is closely reminiscent of the temporal organization of earthquakes. Indeed, 

we found that the distributions of quiet times between consecutive θ-bursts (active states) 

above a given duration threshold follow a unique scaling function, which is well described 

by a generalized Gamma distribution. This distribution is the universal scaling function for 

the distribution of waiting times between consecutive earthquakes, independently of 

geographical location and minimum detection thresholds [21, 25]. Moreover, the reported 

anticorrelated coupling between active and quiet states has been also found in earthquake 

dynamics [25].
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All these features outline a general picture unifying previous empirical observations of 

spontaneous neuronal network dynamics at different levels, from networks of dissociated 

cortical neurons [30] and local field potentials (LFP) in cortex slice cultures [2] and awake 

monkeys[ 11], to the human brain [31–34], and the dynamics of sleep-stage and arousal 

transitions across species [7, 8, 35, 36] — where either distributions or temporal correlations 

of active events have been studied and discussed in the context of self-organized criticality. 

Crucially, our analyses show that both power-law distributions and long-range correlations 

emerge through specific temporal relation and coupling between active and quiet states, 

suggesting that they are distinctive characteristics of a class of systems self-organizing at 

criticality.
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Figure 1. Intermittent transitions between distinct dominant cortical rhythms across the sleep-
wake cycle.
(a) (Top panel) Spectrogram derived from a 2 h segment of the EEG signal recorded from a 

rat during a 12 h light period. Spectral power is calculated in non-overlapping time windows 

w = 5 s for physiologically relevant frequency bands between 0.5 Hz and 20 Hz. Segments 

in red indicate bursts of prominent activity in the low frequency band corresponding to δ 
rhythm (0-4 Hz), and in the frequency band corresponding to δ rhythm (4 - 8 Hz). (Bottom 

panel) Ratio Rθδ = S (θ)/S(δ) of the spectral power in the θ and δ band in log-arithmic scale 

obtained from the spectrogram in top panel. Values Rθδ above log(Th) = 0 (Th = 1) indicate 
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periods with dominant θ rhythm (in red), while values below log(Th) = 0 correspond to 

predominance of δ rhythm (in blue). (b) Smoothed ratio Rθδ of the spectral power in the θ 
and δ band during 30 min segment of 12 h dark (lights-off) period. θ- and δ- bursts are 

defined as sequences of consecutive windows where either the power in θ or δ band is 

dominant, and are labeled as dθ and dδ. Rθδ is calculated on non-overlapping windows w = 5 

s and the smoothing is performed using a 5 point moving average.
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Figure 2. Durations of active (θ-bursts) and quiet states (δ-bursts) across the 24 h sleep-wake 
cycle follow distinct probability distributions indicative of self-organization at criticality.
(a) Distribution of θ-burst durations over the 24 h period (pooled data, 10 rats) exhibits a 

power-law behavior (colored tick lines) with α = 2.34 ± 0.06. (b) Distribution of dburst 

durations for control over 24 h period (pooled data, 10 rats) follow a Weibull distribution 

with β = 0.59, λ = 0.16. The black tick line is a Weibull fit of the distribution. Durations are 

calculated using a window size w = 5 s [1], and threshold Th = 1 on the ratio Rθδ (Fig. 1). 

Insets: Distributions of surrogate θ- and δ-burst durations markedly deviates from the 

original distributions. Error bars δP are calculated for each value of the distributions as 

δP = ( p(1 − p)/N)/dD, and where not shown are smaller than the symbol size. Error bars 

calculation and binning procedure are described in [1].
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Figure 3. Duration distributions of active and quiet states are independent of threshold Th 
utilized to define bursts and are described by unique scaling functions.
(a) Probability distributions of θ-burst durations over a 24 h period (pooled data, 10 rats) 

evaluated using different Th values consistently follow the same power law behavior (red 

line) reported in Fig. 2, with a cut-off that is controlled by Th. With increasing Th the 

distribution cut-off shifts towards shorter burst durations. Insets: Data for different Th 
collapse onto a single universal function fθ when we plot P(d)dα versus Th∊d, with α = 2.35 

(a) and ∊ = 0.8. (b) Rescaled distribution of δ-burst durations for control rats over a 24 h 

period (pooled data) obtained for different Th values collapse onto a single function 
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following a Weibull behavior f(d; λ,β) (black line), with λ = 0.55 and β = 0.59. 

Distributions are rescaled by ⟨dδ⟩η, where ⟨dδ⟩ is the mean δ-burst duration and η = 1.2. 

Inset: Distributions Pδ for different thresholds (not rescaled). Results in all panels are 

obtained for a fixed scale of analysis, keeping the window size w = 5 s (Fig. 1). Results are 

consistent when considering separately light and dark periods [1].
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Figure 4. Active and quiet states duration distributions are independent of the scale of analysis 
defined by the window size w.
(a) Probability distributions of θ-burst durations over a 24 h period (pooled data, 10 rats) 

evaluated using different values of the window size w follow the power law behavior (red 

line) reported in Fig. 2, as proven by the data collapse. Distributions are rescaled by the 

window size w and consistently show the same power law behavior (red line) with α ≈ 2.35. 

Insets: Distributions Pθ for different window sizes w (not rescaled). (b) Rescaled 

distributions of δ-burst durations over a 24 h period (pooled data, 10 rats) obtained using 

different w’s collapse onto a single function following a Weibull behavior f(d; λ,β) (black 
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line). Distributions are rescaled by ⟨dδ⟩ξ where ⟨dδ⟩ is the mean δ-burst duration and ξ = 

1.2. Inset: Distributions Pδ for different thresholds (not rescaled). Results in all panels are 

obtained for fixed threshold Th = 1 on the ratio Rθδ (Fig. 1). Results are consistent when 

considering separately light and dark periods [1].
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Figure 5. Earthquake-like temporal architecture of quiet times between consecutive θ-bursts 
across observational scales.
(a) Schematic diagram of quiet times ∆t between consecutive θ-bursts. A quiet time ∆ti is 

the time elapsed from the end of burst θi to the beginning of the following burst θi+1. (b) 

Distribution of quiet times for different thresholds D0 on θ-burst durations over a 24 h 

period collapse onto a unique function when rescaled by the average quiet time ⟨∆t⟩ (main 

panel). The scaling function is well described by a generalized Gamma distribution G(x; b, 
v, p) (solid green line), with the following set of parameters: b = 2.03, v = 0.30, p = 0.81. 

Applying the same procedure to a sequence of randomly reshuffled θ-burst durations leads 

Lombardi et al. Page 17

EPJ Web Conf. Author manuscript; available in PMC 2020 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to distributions that collapse onto an exponential function (dashed lines). Insets: 

Distributions of quiet times for different thresholds D0 before rescaling. Insets: Distributions 

of quiet times for different thresholds D0 before rescaling. Results are consistent when 

considering separately light and dark periods [1].
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Figure 6. Long-range power-law correlations in sequences of consecutive θ- and δ-burst 
durations are key elements of self-organization at criticality in brain activity.
Detrended fluctuation analysis for sequences of θ-bursts (a) and δ-burst (b) durations. Burst 

durations are calculated using a window w = 5 s and threshold Th = 1 on the ratio Rθδ (Fig. 

1). The root mean square (r.m.s.) fluctuation function F(n) is obtained averaging over all 

rats. Log-log plots of F(n) vs the time scale of analysis n, where n is the number of 

consecutive burst durations, show power-law relations F(n) α nαd over a broad range of 

scales n. The scaling exponents are significantly larger than 0.5 (αθ = 0.599 ± 0.004 and αδ 
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= 0.615±0.003), indicating presence of positive (persistent) long-range correlations in both 

active and quiet states.
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Figure 7. Anti-correlated coupling between <5- and θ-burst durations is an essential dynamical 
feature of brain criticality.
Scatter plots and rank correlation analysis demonstrate anti-correlated coupling between 

consecutive δ- and θ-burst durations. (a) Scatter plot of θ-burst ranks vs θ-burst ranks. Each 

dot represents a pair formed by a δ-burst and the following θ-burst. (b) Average Spearman’s 

cross-correlation coefficient in 24h period (10 rats) (green bar). The correlation coefficients 

is significantly different from the corresponding values obtained in the surrogates (red bars) 

after randomly reshuffling the original order of θ- and δ-bursts (t-test: p < 0.001). All 

durations are calculated using a window w = 5 s and threshold Th = 1 on the ratio Rθδ (as in 

Fig. 1).
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