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Abstract

Owing to increasing medical expenses, researchers have attempted to detect clinical signs

and preventive measures of diseases using electronic health record (EHR). In particular,

time-series EHRs collected by periodic medical check-up enable us to clarify the relevance

among check-up results and individual environmental factors such as lifestyle. However,

usually such time-series data have many missing observations and some results are

strongly correlated to each other. These problems make the analysis difficult and there

exists strong demand to detect clinical findings beyond them. We focus on blood test values

in medical check-up results and apply a time-series analysis methodology using a state

space model. It can infer the internal medical states emerged in blood test values and han-

dle missing observations. The estimated models enable us to predict one’s blood test values

under specified condition and predict the effect of intervention, such as changes of body

composition and lifestyle. We use time-series data of EHRs periodically collected in the Hir-

osaki cohort study in Japan and elucidate the effect of 17 environmental factors to 38 blood

test values in elderly people. Using the estimated model, we then simulate and compare

time-transitions of participant’s blood test values under several lifestyle scenarios. It visua-

lizes the impact of lifestyle changes for the prevention of diseases. Finally, we exemplify

that prediction errors under participant’s actual lifestyle can be partially explained by genetic

variations, and some of their effects have not been investigated by traditional association

studies.

Introduction

Recently, the continuously increasing cost of medical care has received significant attention.

The center of the idea aimed at curbing this trend is using electronic health records (EHRs) to

detect signs and preventive measures of diseases such as diabetes. EHRs consist of patient’s

medical information, e.g., demographics, symptoms, and blood test values. Thus, while the
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essential purpose of EHR is to document the history of patient care for reimbursement, the

accumulated EHRs have been gathering a great deal of attention for advanced purposes. For

example, the analysis of EHRs enables us to facilitate clinical decision support, to predict con-

dition-specific clinical processes, and to improve clinical treatment plans beyond traditional

clinical encounters. In particular, periodic time-series EHRs collected in, e.g., annual medical

check-ups, can clarify trends of changes in check-up results depending on lifestyle and social

status. However, such time-series data have many missing observations and some results are

strongly correlated to each other. These problems make the analysis difficult.

Traditionally, time-aware models, e.g., survival modeling, are utilized when we focus on the

time-to-event to evaluate the effect of treatments or occurrence of events for some endpoints,

e.g., the mortality of cardiovascular diseases. On the other hand, there exist statistical tech-

niques, which utilize statistical models to mathematically formalize the generative process of

the data under assumptions. They can elucidate hidden mechanism of the target system and

also incorporate the effect of time such as dynamic Bayesian networks (DBNs) [1, 2] and the

state space models (SSM) [3–5]. For example, Nachimuthu et al. [6] used DBNs to model tem-

poral relationships between insulin and glucose homeostasis and predicted the future glucose

levels of a patient admitted in an ICU. Sandri et al. [7] and Gatti et al. [8] also used DBNs with

the restrictions on the causal structure to model organ failure. Similarly, Peelen et al. [9] used a

hierarchical Bayesian strategy for modeling organ failure. These researches constructed statis-

tical models for the analysis of target medical incident and successfully obtained clinical find-

ings. Thus, we design statistical models that can represent relevance among check-up results,

lifestyle changes, and social status depending on time.

In this paper, we focus on blood test values in EHRs and inference of the effect to blood test

values by the changes of body composition values such as Body Mass Index (BMI), lifestyle,

and social status. For this purpose, we apply a statistical approach using the SSM, which has

successful applications in a wide range of fields [10–14]. Our proposed model is designed to

infer hidden state variables, which summarize the internal (unobserved) medical states

emerged in blood test values, at each time-point for each person. The model realizes the esti-

mation of the effect of body composition values, lifestyles, and social status to blood test values.

For the extraction of meaningful relationships, we suppress the sparse constraint to regulatory

effect matrices and infer their parameter values by maximization of the L1 regularized likeli-

hood. To this end, we developed a new algorithm to obtain active sets of parameters and esti-

mate a maximizer of the L1 regularized likelihood using the EM algorithm. The proposed

approach is applied to EHR obtained in the Hirosaki cohort study in Japan, which is a free par-

ticipation medical check-up cohort including men and women, aged from 12 to 91 obtained

from 2005 to 2015.

Materials and methods

Periodically collected time-series EHR

Here, we consider that EHR is a set of clinical records with date, and it includes each diagnosis

or check-up result. Thus, clinical records obtained at different dates, of which individuals are

the same, can be integrated to refer to participant information. Especially, in this study, we

consider that EHRs consist of collected certain items at regular interval through cohort studies

and regular medical check-ups. Although a predetermined interval of visits may exist for each

person’s condition, e.g., annual medical check-ups are held at one-year intervals and pre-dia-

betes patients are advised to check their blood test values every few months, many participants

do not actually follow these recommendations. Thus, the most striking characteristic of EHR

is the irregularity of participants visits.

PLOS ONE Prediction of blood test values under different lifestyle scenarios

PLOS ONE | https://doi.org/10.1371/journal.pone.0230172 March 20, 2020 2 / 19

Funding: SI and SN received the Center of

Innovation Program from Japan Science and

Technology Agency (https://www.jst.go.jp/EN/) TH

received Grant-in-Aid for Young Scientists (B)

Grant Number 17K12647 from Japan Society for

the Promotion of Science (https://www.jsps.go.jp/

english/).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0230172
https://www.jst.go.jp/EN/
https://www.jsps.go.jp/english/
https://www.jsps.go.jp/english/


Let yk,t be q-dimensional observed blood test values of the kth (k = 1, . . ., K) participant at

the tth (t = 1,. . .,Tk) time point (we here consider the data of the first time of visit as yk,1), K is

the number of participants, and Tk is the final time of visit of the kth participant. We have a set

of observation data Y = {Y1,. . .,YK}, where Yk = {yk,1,. . ., yk;Tk
} and the number of observations

of the kth participant is not necessarily Tk because the kth participant might not visit at the t0th
(1< t0 <Tk) time-point.

Linear state space model for EHR

The state space model (SSM) has been widely used in time-series analysis and it consists of a

state transition equation and an observation equation. The state transition equation models

the process of the hidden state variables and the observation equation links the observations to

these underlying states. The advantage of SSM is the scalability of the design of the model. In

this research, we have three motivations; (a) inference of the effect of environmental factors

such as lifestyles to blood test values, (b) prediction of one’s blood test values under certain

environmental factors, and (c) estimation of genetic effects as the explanatory factors for pre-

diction errors of blood test values. Moreover, there are two major problems; (i) there are

strongly correlated blood test values and (ii) EHR has several missing observations. To over-

come these problems, we apply the state space model.

Let xk,t and zk,t be a series of p-dimensional vectors containing hidden variables represent-

ing the internal medical states emerged in blood test values and m-dimensional vector contain-

ing the values representing environmental factors such as body composition values of the kth

(k = 1,. . .,K) participant at the tth (t = 1,. . .,Tk) time point, respectively. Then, we consider a

state space model for EHR represented by

xk;t ¼ Axk;t� 1 þ Gzk;t� 1 þ vk;t; ð1Þ

yk;t ¼ Hxk;t þ wk;t; ð2Þ

where A = (a1, . . ., ap)0 is a p × p regulatory matrix, ai = (ai,1, . . ., ai,p)0 (i = 1, . . ., p) is a p-

dimensional vector including regulatory effects on the ith hidden variable by other ones, G =

(g1, . . ., gp)0 is a p ×m regulatory matrix, gi = (gi,1, . . ., gi,m)0 is an m-dimensional vector repre-

senting their regulatory effects on the ith hidden variable by zk,t−1, H = (h1, . . ., hq)0 is a q × p
map matrix, hi0 = (hi0,1, . . ., hi0 , p)0 (i0 = 1, . . ., q) is a p-dimensional vector that maps hidden var-

iables on the ith element of yk,t, vk,t 2 Rq is a vector of system noise, and wk,t 2Rq is a vector of

observational noise. Here, diagonal elements of A are restricted to less than 0.8 and we set sys-

tem noise as vk,t* Np(0p, Q) and observation noise as wk,t* Nq(0q, R), where Q and R are p ×
p and q × q diagonal matrices. The initial state vector xk,0 is assumed to be a Gaussian random

vector with mean vector μk,0 and covariance matrix S0, i.e., xk,0 * Np(μk,0, S0). Because the

relationship between observation variables yk,t can be represented by A and H [15], we can esti-

mate the effect from the lifestyle zk,t to the observation variables yk,t with considering the

effects between observation variables yk,t using the proposed state space model. Note that we

consider that A, G and H should be sparse matrices.

The SSM consisting of Eqs (1) and (2) represents a process how observation values yk,t

are generated from an unobserved dynamic system through a latent state vector xk,t. Our

aim is to estimate posterior distributions of state vectors xk,t (t = 1,. . ., Tk) given a set of

observation data Yk = {yk,1, . . ., yk;Tk
} in Bayesian-statistics manner. The estimation is carried

out sequentially from t = 1 to t = Tk by updating the posterior distribution of xk,t according

to the dynamics of Eq (1) followed by addition of information of yk,t to the set of observation

data according to Eq (2) one after another. The modeling and estimation approach can
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naturally handle missing observations in time-series data without external imputations by

the following mechanism; if the observation at time t0, yk,t0 (1 < t0 < T), is a missing case, the

update of posterior distribution of xk,t0 is done according to Eq (1) only and the step to add

information of yk,t0 is just skipped; then the estimation process from t = t0+ 1 is continued

without inconsistency.

Maximum likelihood estimation using the EM algorithm with L1

regularization

We applied L1 regularization to select effective sets of elements for A, G, and H. Let {Y, X} =

{Y1, . . ., YK, X1, . . ., XK} be the complete data set, where Xk = {xk,0, . . ., xk;Tk
} is the set of state

variables. Here, yk,t can be unobserved when the kth individual did not participate the check-

up at time t, but all xk,t are estimated. Furthermore, let the probability densities P(xk,0) and

P(xk,t|xk,t−1) be the p-dimensional Gaussian distributions Np(μk,0, S0) and Np(Fxk,t−1 + Gzk,t−1,

Q), respectively, and P(yk,t|xk,t) be the q-dimensional Gaussian distribution Nq(xk,t, R). Then

joint likelihood for the complete data set is given by

PðY;X; θÞ ¼
YK

k¼1

Pðxk;0Þ
Y

t2T k

Pðxk;tjxk;t� 1Þ
Y

t2T k;obs

Pðyk;tjxk;tÞ; ð3Þ

where θ = {A, G, Q, H, R, μ1,0, . . ., μk,0}, and T k and T k;obs (T k;obs 2 T k) are sets of all time

points and the observed time points of the kth participant, respectively. In this study, we used

the Expectation-Maximization (EM) algorithm [16] to search for the parameter vector θ that

maximizes P(Y; θ) under L1 regularization. The L1 regularized log-likelihood is given by

log
Z YK

k¼1

Pðxk;0Þ
Y

t2T k

Pðxk;tjxk;t� 1Þ
Y

t2T k;obs

Pðyk;tjxk;tÞdx1;0 . . . dxK;TK

�
Xp

i¼1

Xp

j¼1

l
ðsÞ
i jAi;jj �

Xp

i¼1

Xm

j¼1

l
ðsÞ
i jGi;jj �

Xq

i0¼1

Xp

j¼1

l
ðoÞ
i jHi;jj;

ð4Þ

where l
ðsÞ
i and l

ðoÞ
i are the L1 regularization terms for the ith row of system and observation

models, respectively.

In the EM algorithm, the conditional expectation of the joint log-likelihood of the complete

data set

qðθjθlÞ ¼ E½log PðY;XjθÞjY; θi�; ð5Þ

is iteratively maximized with respect to θ until convergence, where θl is the parameter vector

obtained at the lth (previous) iteration. More details of the proposed algorithm are described

in the supplemental materials.

Because the EM-algorithm tries to search for the parameter values that can achieve the local

minimum likelihood, we set several initial values and the dimension of the hidden variables p
to obtain better models. To select the most plausible model among the estimated results, we

apply Bayesian information criterion [17] described as

BIC ¼ � 2logLðYjθÞ þ dfðθÞlogn; ð6Þ

LðYjθÞ ¼
Z YK

k¼1

Pðxk;0Þ
Y

t2T k

Pðxk;tjxk;t� 1Þ
Y

t2T k;obs

Pðyk;tjxk;tÞdx1;0 . . . dxK;TK
; ð7Þ
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where df(θ) is the degree of freedom, i.e., the number of non-zero parameters values, and ν is

the number of observed points. The source code is available at https://github.com/hase62.

Results

EHR in Hirosaki cohort study

We apply the method to the data obtained from the Hirosaki Center-of-Innovation (COI)

health promotion project, which is a cohort study in Hirosaki City (population is about 10, 000)

in northern Japan. Every year, about 1,000 people have been checking their health status with

free participation. Since the final goal is to extend the life span, it has measured comprehensive

items (total about 2, 000), such as invasive/non-invasive clinical test values, body composition

values, lifestyles, medication, exercise capacity, and cognitive ability. The data actually include

many missing observations because individuals did not necessarily participate all check-ups.

Thus, for example, if the kth participant visited 2009, 2010, 2013, and 2014’s check-ups, we have

Yk = {yk,1, yk,2, yk,5, yk,6}, where yk,1 is the observation data at the first year (2009) of visit. Note

that each yk,t (t = 1, 2, 5, 6) includes all features. All participants gave written informed consent

and the study was approved by IRB in Hirosaki University (Num. 2017-026).

We used the data obtained from 2007 to 2015. Especially in this study, we firstly focused on

1, 196 elderly persons aged from 55 to 75 because young participants may have normal blood

test values regardless of their lifestyle and we are interested in the association of the effect of

lifestyle changes and blood test values in elderly people. We considered exclusion criteria that

removed 533 participants who used any medicine because we are interested in the effect of life-

style changes to the blood test values, but not the effect of medicine. We thought that the blood

test values were potentially affected by the medicine. We further excluded 104 participants

who participated only one medical check-up between 2007 and 2015 because we cannot obtain

any time-series blood test values from them. Finally, the numbers of participants for male and

female were 156 and 273, respectively, and thus 429 (35.9%) participants were remained from

1, 196 elderly participants.

For baseline information comparison, we prepared histograms of ages and target blood test

values of (i) included participants, (ii) excluded participants who used any medicine, and (iii)

excluded participants who participated only one medical check-up in the supplementary mate-

rials. We then evaluated the differences between (i) and (ii) datasets and between (i) and (iii)

datasets by the Wilcoxon rank-sum test. In the former comparison, we hypothesized that some

differences should be observed, because dataset (ii) were collected sick participants and they

were not our analysis target. From the Wilcoxon rank-sum test between (i) and (ii), we con-

firmed the difference is significant as considered. Therefore, the participants in (ii) could be

affected by using medicine for the treatment and this exclusion criterion seems to be reason-

able. On the other hand, we confirmed that the comparison between (i) and (iii) indicated no

significant difference (the adjusted threshold of the p-value is 0.05/(39 × 2) = 6.41E-4 by the

Bonferroni method). Thus, no serious sample bias has been detected.

We focus on 38 blood test values in the collected check-up results and they are handled as

yk,t and listed in Table 1. These check-up items are generally collected for the screening of

chronic diseases such as Diabetes and high blood pressure. As environmental factors, we pre-

pare body composition values [Bc], lifestyles [Lf] and social status [Ss], and they are handled as

zk,t and listed in Table 2. Here, we used Body weight, Abdominal Circumference, W/H-ratio,

BMI, and BFP as representative of body composition because they are usually used as easy

indicators of obesity, exercise, diet and so on.

In order to show the overall picture of the correlation among blood test values and life-

styles, the correlations of yk,t and zk,t for Male dataset are illustrated in Fig 1. Here, in order
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Table 2. List of environmental factors representing body composition values [Bc], lifestyles [Lf], and social status

[Ss] handled as zk,t.

Num. Name

z1 [Bc] Body Weight

z2 [Bc] Abdominal Circumference

z3 [Bc] Waist / Hip Ratio

z4 [Bc] Body Mass Index

z5 [Bc] Body Fat Percentage

z6 [Lf] Working Days (Days / Week)

z7 [Lf] Sleep Disorder (0:None, 1:Yes)

z8 [Lf] Current Smoking Habits (0:None, 1:Yes)

z9 [Lf] Current Drinking Habits (0:None, 1:Yes)

z10 [Lf] Sleeping Hours

z11 [Lf] Midday Nap (0:None, 1:Yes)

z12 [Lf] Averaged Exercise Hours

(1:None, 2:1 Time / Week, 3:2-3 Times / Week,

4:4-5 Times / Week, 5:Everyday)

z13 [Ss] Age at Survey Date

z14 [Ss] Family Structure (#Family members)

z15 [Ss] Marital Status (0:None, 1:Yes)

z16 [Ss] Farmer (0:None, 1:Yes)

z17 [Ss] Final Educational Background

(0:Elementary or Junior High or High School,

1:Junior College or Vocational School,

2:University or College)

https://doi.org/10.1371/journal.pone.0230172.t002

Table 1. The list of observed blood test values in yk,t.

Num. Name Num. Name

y1 Systolic Blood Pressure y20 ALT (GPT)

y2 Diastolic Blood Pressure y21 Total Protein

y3 PWV Left-Right Average y22 ALB (Improved BCP)

y4 ABI Left-Right Average y23 Creatinine

y5 Bone Density (Acoustic Value) y24 Urea Nitrogen

y6 Bone Density (Z score) y25 Uric Acid

y7 Bone Density (T score) y26 Total Cholesterol

y8 Serum Glucose y27 Triglyceride (TG)

y9 HbA1c (NGSP) y28 HDL Cholesterol

y10 Muscle Amount (Height Corrected) y29 LDL Cholesterol

y11 White Blood Cell Count (WBC) y30 Sodium

y12 Red Blood Cell Count (RBC) y31 Potassium

y13 Hemoglobin y32 Chlorine

y14 Hematocrit y33 Calcium

y15 MCV y34 Inorganic Phosphorus

y16 MCH y35 Serum Iron

y17 MCHC y36 C3

y18 Total Bilirubin y37 C4

y19 AST (GOT) y38 nonHDL Cholesterol

https://doi.org/10.1371/journal.pone.0230172.t001
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Fig 1. The Spearman correlation coefficients of observed blood test values and environmental factors. The bottom-left part and the

upper right part of the heatmap represent the Spearman correlation coefficients among (yk,t – yk,t−1) and (zk,t – zk,t−1), and among yk,t and

zk,t for Male time-series data, respectively.

https://doi.org/10.1371/journal.pone.0230172.g001
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to illustrate the immediate effect of changes of environmental factors to the changes of blood

test values, we illustrated the results of the spearman correlation analysis among (yk,t – yk,t−1)

and (zk,t – zk,t−1), and yk,t and zk,t. In the blood test values yk,t, we can see that some values

are highly correlated, for example, ‘HbA1c and Glucose’, and ‘Total Cholesterols, LDL, and

nonHDL’. They should be represented by the same hidden variables in the proposed SSM.

Similarly, body composition values are mutually highly correlated, and they are also corre-

lated with Bone Densities (BDs), Muscle Amount, Blood Counts, Cholesterols, and so on.

On the other hand, among (yk,t – yk,t−1) and (zk,t – zk,t−1), they have weaker correlations espe-

cially in Waist/Hip ratio (W/H-ratio) than those in yk,t and zk,t. Thus, the changes of body

composition values and lifestyles cannot immediately affect to blood test values even if some

values suddenly change. These correlations enable us to impute missing observation data.

For example, high correlations between some observation variables at time t and t−1 enable

us to predict these variables at time t0, which is a time-point with missing observation data,

from the variables at time t0 − 1. The details of the calculation are written in the supplemental

materials.

Inference of internal medical states and their relationship

For the above explained datasets, we applied the proposed SSM to classify the relationships

among blood test values and environmental factors. We tested 50 calculations for each system

dimension p from 3 to 15 with randomly prepared initial parameter values, and then searched

for the value of p that achieves the lowest BIC score as described in Eq (6). Consequently, for

both datasets, p = 14 was selected as the best dimension. The BIC score is illustrated for each of

system dimensions, p, in the supplementary materials.

For each dataset, we next evaluated the effects of xk,t and zk,t to the blood test values yk,t.

The heatmaps of the estimated sparse matrices H and G are illustrated in Fig 2. This figure

shows the effect of zk,t to xk,t as an estimated matrix G in the upper part and that of xk,t to yk,t as

an estimated matrix H. Through the results, some clusters exist in the blood tests. We summa-

rize here: ‘Diastolic and Systolic Blood Pressures (BPs), and PWV’ (BP Group), ‘HbA1c and

Glucose’ (Diabetes Group), ‘RBC, Hemoglobin, and Hematocrit’ (RBC Group1), ‘MCH and

MCV’ (RBC Group2), ‘Total Cholesterols, LDL Chol., HDL Chol, and nonHDL Chol.’ (Dysli-

pidemia Group), ‘Total Bilirubin and Serum Iron’ (Liver Group1), ‘ALT and AST’ (Liver

Group2), and ‘C3, Total Pro., ALB, and Calcium’ (Liver Group 3). These groups are similar

to the result of correlation analysis in Fig 1 and can be similarly changed in response to the

changes of xk,t and zk,t. Also, some hidden variables have similar effect to yk,t in H with partially

different components. On the other hand, some blood test values, e.g., ABI and Potassium, are

not or weakly regulated by xk,t; these blood test values are robust from other blood test values,

and the changes of our prepared body composition values and lifestyles. Here, we summarize

the characteristics of the results in Table 3.

For each dataset, we then evaluate the effect among xk,t based on the matrix F. Hidden vari-

ables that share similar effects in H seems to have feedback structures, but we cannot capture

any clear structure. The regulatory relationships are illustrated in the supplemental materials.

Scenario-based blood test value simulation

We compare the predicted and actual time-series blood test values of participants when

improving or corrupting their body composition values and lifestyles. In this experiment, we

postulate two situations; (i) a healthy person suddenly corrupted their body composition val-

ues and lifestyles, and (ii) an unhealthy person started to improve their body composition val-

ues and lifestyles. At first, we extracted a healthy male and female, and predict blood test
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values using the estimated parameter values and (i-a) actual zk,t and (i-b) postulated zk,t to con-

duct them to be unhealthy persons. Here, we consider unhealthy status as Abdominal Circum-

ference (AC) = 95 [cm], W/H-ratio = 1.05, BMI = 30, and Smoking status for male, and W/H-

ratio = 0.95, BMI = 30, Body Fat Percentage (BFP) = 35, and Smoking status for female. The

simulation results are illustrated in Fig 3.

In these figures, we assume that the body composition values and lifestyles suddenly

changed to unhealthy condition at the first medical check-up year. From the simulations, par-

ticipants in Dyslipidemia Group seem to be the most affected. The male under unhealthy con-

dition gradually increases TG and LDL and finally becomes Dyslipidemia when he is 64 years

old. In contrast to the postulated unhealthy condition, actual status at 64 years old is not Dysli-

pidemic. Furthermore, ALT and Uric Acid are weakly increasing to suspected areas, and

HbA1c, BDs, WBC, RBC, Hemoglobin, and Hematocrit are also weakly increasing in the Male

Fig 2. The heatmap of the effect of zk,t to yk,t. The heatmap represents the effect of zk,t to xk,t as an estimated matrix G in the upper part and that of xk,t to yk,t as an

estimated matrix H in the bottom part, and thus introduces the indirect effect from zk,t to yk,t. The numbers on horizontal axis mean the element numbers of the

14-dimensional vector xk,t. For example, the column with ‘3’ in the heatmap displays the effect from the 3rd element of the hidden variable xk,t to the observation variables

yk,t. For H, each value is normalized as Hi0 , j ×
ffiffi
ð

p PK
k¼1

PTk
t¼1
ðx2

k;t;jÞÞ and then Hi0 ,j/max(|H|), where Hi0 ,j is the i0th row and the jth column element of H and max(|H|) is

the max absolute value of H. For G, positive and negative elements are illustrated as red and blue, respectively.

https://doi.org/10.1371/journal.pone.0230172.g002
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in contrast that they are almost not varied in the Female. In both persons, BPs and HbA1c are

not affected by the changes in body composition values and lifestyles used here.

Next, we extracted unhealthy male and female and calculated their predicted blood test val-

ues, and (ii-a) actual zk,t and (ii-b) postulated zk,t to conduct them to be healthy persons. Here,

we consider healthy conditions as AC = 75[cm], W/H-ratio = 0.80, BMI = 20, and non-smok-

ing status for male and W/H-ratio = 0.70, BMI = 20, BFP = 20, non-smoking, non-drinking

and exercise every day. The simulation results are illustrated in Fig 4.

In these experiments, when healthy male participant was changed his lifestyle to

unhealthy one; AC, W/H-ratio, and BMI, were changed from less than 75, 0.80, and 20, to

95, 1.05, and 30, respectively. Also, their means in Male participants are approximately 85,

0.9, and 24, respectively. Because each element of zk,t is normalized to mean 0 and variance

1 in the application, the rate of change of the effect by the jth lifestyle (gi,j × zk,t,j) to the ith
hidden variable in this case is almost −1, where gi,j is the ith row and the jth column element

of G and zk,t,j is the jth element of zk,t. On the other hand, smoking and drinking were

changed from 0 to 1. The same applies to the opposite case. Similar to the previous experi-

ments, Dyslipidemia Group seems to be the most affected blood test values. In these experi-

ments, the male under unhealthy condition gradually decreases TG and LDL and finally

becomes healthy from Dyslipidemia when he is 72 years old. In contrast to the previous

experiments, ALT, Uric Acid, HbA1c, BDs, WBC, RBC, Hemoglobin, and Hematocrit are

weakly affected both in the Male and Female. In both persons, BPs and HbA1c are not

affected.

Table 3. Effect of lifestyles for blood test values. The columns (+) and (-) indicate the list of blood test values that are increased and decreased by the corresponding envi-

ronmental factors in male or female, respectively.

Environmental factors Male (+) Male (-) Female (+) Female (-)

Farmer MCV, Hematocrit,

Dyslipidemia Group,

and BDs

MCH, and MCHC BDs, MCV,

and Hematocrit

Dyslipidemia Group,

and MCHC

Increasing

Age

BDs, HDL

and RBC Group2

Dyslipidemia Group,

RBC Group1,

and MCHC

Smoking Chlorine, and MCV C3, C4, RBC,

and Liver Group 3

MCHC HDL

Drinking HDL MCHC

Higher

Education

BDs,

and RBC Group2

Dyslipidemia Group,

RBC Group1,

and MCHC

BDs, MCV,

and Hematocrit

Dyslipidemia Group,

and MCHC

Married

Status

Dyslipidemia Group,

and RBC Group1

BDs, HDL,

and RBC Group2

Longer

Working

Hours

Dyslipidemia Group

Increasing

BMI

Dyslipidemia Group,

and RBC Group1

BDs, HDL

and RBC Group2

Dyslipidemia Group,

and RBC Group2

HDL,

and RBC

Increasing

W/H-ratio

Dyslipidemia Group,

and RBC Group1

BDs, HDL

and RBC Group2

BDs, MCV,

and Hematocrit

Dyslipidemia Group,

and MCHC

Increasing

AC

Dyslipidemia Group,

and RBC Group1

BDs, HDL

and RBC Group2

Increasing

BFP

RBC Group1, TG,

Dyslipidemia Group,

and Liver Group3

RBC Group2,

and Chlorine

Exercise Dyslipidemia Group

https://doi.org/10.1371/journal.pone.0230172.t003
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Fig 3. The comparison among predicted and actual blood test values of representative healthy male and female. The

predicted values are calculated both under actual and unhealthy conditions for representative healthy male and female.

The predicted blood test values are calculated by our estimated state space model and zk,t (actual and unhealthy) without

filtering steps. Red circles are observed blood test values, black lines are predicted blood test values under actual

condition, and blue lines are predicted blood test values under the unhealthy condition. Black crossed marks are actual
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Genetic effect analysis

Finally, we analyzed the prediction errors among the predictive and observed values (observed
value—predicted value). In some participants, there is a clear discrepancy and we assume that

they are due to unobserved or unused information such as genetic effects. In the Hirosaki

cohort study, genetic data was also obtained in 2014 and 2015, and we focused on detecting

associated SNPs for these discrepancies.

Thus, we firstly created a list of known SNPs from GWAS catalog [18] by indexing names

of the used 38 blood tests as queries and obtained 3, 924 SNPs, of which 915 SNPs are included

in our SNP array. We then (i) performed normalization transformation [19] to the observation

values and the prediction errors and (ii) checked the genetic associations of these SNPs with all

38 traits by statistical tests (linear regression analysis under additive, recessive, and dominant

models with adjustment of age and BMI). To extract firm associations, we set the adjusted

threshold for p value lower than 0.05/915 = 5.46E − 5 by the Bonferroni method. Note that, in

this analysis, some observed values can be generated by the same participants diagnosed at dif-

ferent years and, in these cases, we used mean values to avoid the inflation of p-values. Conse-

quently, we obtained SNPs that were strongly associated to the prediction errors in both cases.

Parts of the results are illustrated in Fig 5.

It is known that rs662799 is associated with higher TG and cholesterol levels [20] and par-

ticipants who have this SNP were predicted to exhibit positive prediction errors for nonHDL

cholesterol levels (p = 5.25E − 5) in the male result. Additionally, rs887829 is popularly associ-

ated with total bilirubin levels [21] and participants who have this SNP were predicted to

exhibit positive prediction errors for total bilirubin levels (p = 4.17E − 8) in the female result.

However, in contrast to the results of rs887829, the strong association of rs662799 with

nonHDL cholesterol levels could not be detected when using the observation values (p = 2.34E

− 2). In the middle and right of this figure, novel effects of SNPs were suggested in the associa-

tions of the prediction errors. rs4607103 and rs3817198 are known to have an association with

type II Diabetes [22] and Breast cancer [23], respectively, but associations with total protein

levels (p = 3.23E − 5) and PWV (p = 3.63E − 5) were indicated in the male results, respectively.

Similarly, rs907612 and rs2371767 were indicated to have associations with Uric Acid levels

(p = 1.00E − 5) and HDL cholesterol levels (p = 2.57E − 5) in the female results, respectively,

but these SNPs are known to have associations with monocyte and granulocyte [24] and

Waist/Hip-ratio [25], respectively. Among them, strong associations of rs4607103, rs3817198

and rs2371767 could not be detected when using observation values.

Discussion and conclusion

Generally, we could control some blood test values in response to the changes of body compo-

sition values, lifestyles, and social status. In this study, we focus on chronic diseases such as

Diabetes and high blood pressure and selected 38 blood test values listed in Table 1. Then, we

defined zk,t as clinical target values to be controlled as listed in Table 2 and clarified their effect

to the blood test values. Body composition values are considered as endpoints of both exercise

and eating habits because it is difficult to directly clarify eating habits. Then, we assume that

the changes in body composition values could partially reflect the effects of eating habits. Actu-

ally, other blood tests, e.g., γGT and C-reactive protein, could be effective items to investigate

zk,t, and blue circles are postulated zk,t under the unhealthy condition. The horizontal and vertical axes indicate the ages

of the selected participant at the medical check-up years and the blood test values, respectively. Thus, the youngest age in

the horizontal axis means the participant’s age at the first year of visit to the medical check-up event. Note that, in the

calculation, we consider the observation at the first year of visit as yk,1.

https://doi.org/10.1371/journal.pone.0230172.g003
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Fig 4. The comparison among predicted and actual blood test values of representative unhealthy male and female.

The predicted values are calculated both under actual and healthy conditions for representative unhealthy male and

female. The predicted blood test values are calculated by our estimated state space model and zk,t (actual and healthy)

without filtering steps. Red circles are observed blood test values, black lines are predicted blood test values under actual

condition, and blue lines are predicted blood test values under the unhealthy condition. Black crossed marks are actual
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chronic diseases, but they have been collected recently in this cohort. On the other hand, it

may be interesting to analyze blood test values such as vitamins and hormones for other

diseases.

From Fig 1, we can see that many blood test values are highly correlated among them, as

well as correlated to body composition values, lifestyles, and social status. In contrast, focusing

on their year-differences yk,t − yk,t−1 and zk,t − zk,t−1, absolute correlation values are lower than

the correlations among yk,t and zk,t. This indicates that blood test values are not suddenly

changed according to the changes of other values (except for the case where they indicate

almost the same vital condition, such as in HbA1c and glucose). Thus, we can assume that life-

style changes gradually impact blood test values.

From the results of estimated matrices H and G in the proposed SSM, similar to the results

obtained in Fig 1, the blood test values are clustered into categories such as RBC and Dyslipi-

demia Groups. They are regulated by the same hidden variables xk,t and environmental factors

zk,t and assumed to be similarly varied. Additionally, we can see that body composition values

can control some indicators for chronic diseases, e.g., Dyslipidemia Groups, but simulta-

neously and oppositely regulate RBC Groups. It is quite natural that chemical compounds are

mutually regulated or share the same chemical pathways and they should be simultaneously

affected even if we change only a part of the blood test values.

Then, we postulated the case of healthy or unhealthy persons suddenly changing their body

composition values and lifestyles and predicted time-transitions of their blood test values. In

both males and females, indicators for Dyslipidemia such as total cholesterol, LDL, HDL, and

TG, are strongly affected by changes in body composition values such as AC, W/H-ratio, and

BMI. These results are intuitively natural because serum cholesterol levels show the lipid pro-

files in blood whereas body composition values show subcutaneous and visceral fat. Thus, the

amount of cholesterols should have a mutual relationship with the body composition values.

On the other hand, HbA1c and BPs are slightly affected by the changes of body composition

values and lifestyle changes. Exercise could be one of several factors related to and prevent dia-

betes; however, even if you exercise, you still may get diabetes due to other factors. For exam-

ple, HbA1c levels can increase if the participants started exercising but were still eating and

drinking too much. As a result, their clear relationship cannot be detected in the experiments

and we consider these values could be gradually changed over time based on their entire life-

style. In contrast, ALT, Uric Acid, and BDs values are varied only in males in relation to the

changes of indicators for Dyslipidemia. We assume that these blood test values are likely to be

changed in males and these values are stable enough in females to reveal the change of trends

in our dataset. Consequently, we conclude that the body composition values and lifestyle

changes can be a clinical target of Dyslipidemia and the risk of the disease might be controlled

by keeping them within regular ranges. Our quantitative results using the mathematical simu-

lation are consistent with types of intuitively reasonable knowledge and capable of updating

them in more detail. For other blood tests that are targets of other diseases, such as Diabetes,

we have to add other controllable targets in environmental factors. For example, time of eating

dinner and composition of the meal can be good factors.

Although the observation data are well predicted for the most part, if predicted values still

vary from the observation data in only some participants, they do not share the estimated

zk,t, and blue circles are postulated zk,t under the healthy condition. The horizontal and vertical axes indicate the ages of

the selected participant at the medical check-up years and the blood test values, respectively. Thus, the youngest age in the

horizontal axis means the participant’s age at the first year of visit to the medical check-up event. Note that, in the

calculation, we consider the observation at the first year of visit as yk,1.

https://doi.org/10.1371/journal.pone.0230172.g004
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Fig 5. Histograms of the observed blood test values and prediction errors among predicted blood test values of our proposed models and the

observed blood test values. The first and the second rows display the results for the Male and the third and the fourth rows display the results for the
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relationships represented by A, H, and G. In this case, we consider that other factors, which

are not included in the model, could affect to their relationships or observation variables.

To clarify these factors, finally, we evaluated genetic effects for the correction of prediction

errors among the predictive values under the participant’s actual conditions and observed

values. We discovered some interesting findings about detected SNPs. In the results of SNPs

with known traits, rs662799 has a strong association with higher TG and cholesterol levels

[20] and this association could be reproduced when using the prediction errors (p = 5.25E

− 5). However, a strong association could not be detected when using observation values

(p = 2.34E − 2). In the results of SNPs with novel traits, the association of rs907612 with uric

acid levels was detected by using either prediction errors or observation values. However,

associations of rs4607103, rs3817198 and rs2371767 with total protein, PWV and HDL cho-

lesterol, respectively, were detected only by using prediction errors. rs4607103 was suggested

to be associated with type II Diabetes [22] and Diabetes is also known to be associated with

the increase of total protein. Similarly, rs3817198 had an association with breast cancer [23]

and recent studies indicated the association of breast cancer and PWV [26, 27]. The associa-

tion of rs2371767 to waist/hip-ratio was previously indicated [25] and we can assume that

the waist/hip-ratio has an association with the levels of HDL cholesterol because both values

can be used as indicators for metabolic syndrome. Thus, these associations seem to be novel

findings of genetic effects. Moreover, similar to our experiments, rs907612 and rs2371767

were recently obtained in previous studies [24, 25] by conditioning several covariates, e.g.,

age, exercise, smoking history and drinking history, using a large number of participants

(both studies utilized approximately 200, 000 participants). Such approaches could clarify

the minute effects of SNPs that could not be detected using traditional genome wide associa-

tion studies, which condition a few covariates or principal components and capture SNPs

with higher effect size. Because our approach can utilize time-series information for detect-

ing associated SNPs, it could especially enhance the detection power in contrast to the tradi-

tional non-time series approaches.

The extension of the model to include the presence of SNPs enables us to evaluate their

effect to the blood test values and to predict them more accurately. However, such extension

makes the calculation heavier depending on the dimension of zk,t and it is difficult to include

all obtained SNPs in the proposed model. Thus, extended models or more efficient algorithm

might be required to include SNPs effects. For example, the calculation using linear mixed

models are computationally efficient and it can be applied with designing appropriate covari-

ance structure for time-series data. In addition, since random effects could correct for popula-

tion structure and family relatedness also in SSM, it can be extensions of the proposed model.

Some other factors can also affect to the changes of blood test values. The analysis including

SNP effects, random effects, and other factors is one of future works. Our proposed model can

express linear relationships under the Gaussian assumption among blood test values and envi-

ronmental factors, but many natural processes, e.g., chemical reaction networks and biological

signal processing, are generally represented as nonlinear structures. Moreover, the observation

noises of some blood test values could not depend on the Gaussian noises, for example, TG lev-

els can suddenly increase due to eating habits before medical check-up. The use of a nonlinear

structure and non-Gaussian assumption has the potential to clarify more detailed relationship

among them.

Female. The left histograms indicate the association of known SNPs and known traits. The middle and right histograms indicate the association of known

SNPs and unknown traits. The sign on the right of the blood tests indicates the positive (+) and negative (-) effects from SNPs. Blue, green, and red

histograms show the cases of major homo, hetero, and minor risk alleles, respectively.

https://doi.org/10.1371/journal.pone.0230172.g005
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