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Emotional behavior and psychological disorders are expressed through coordinated
interactions across multiple brain regions. Brain electrophysiological signals are
composed of diverse neuronal oscillations, representing cell-level to region-level
neuronal activity patterns, and serve as a biomarker of mental disorders. Here, we
review recent observations from rodents demonstrating how neuronal oscillations in the
hippocampus, amygdala, and prefrontal cortex are engaged in emotional behavior and
altered by psychiatric changes such as anxiety and depression. In particular, we focus
mainly on theta-range (4–12 Hz) oscillations, including several distinct oscillations in this
frequency range. We then discuss therapeutic possibilities related to controlling such
mental disease-related neuronal oscillations to ameliorate psychiatric symptoms and
disorders in rodents and humans.
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INTRODUCTION

The accumulation of mental stress loads is a primary risk factor for psychiatric disorders such as
major depressive disorder (MDD), anxiety disorders, and posttraumatic stress disorder (PTSD)
(Yehuda and LeDoux, 2007; Arnsten, 2015). A number of studies have revealed that brain regions
such as the medial prefrontal cortex (mPFC), cingulate cortex, amygdala (AMY), hippocampus
(HPC), and hypothalamus play crucial roles in the regulation of affective and visceral functions and
undergo marked changes in their activity caused by stress-induced mental disease (Greicius et al.,
2007; Sheline et al., 2010; Nugent et al., 2015; Tovote et al., 2015; Drysdale et al., 2017). In particular,
the HPC-PFC-AMY circuit is a core network formed by long-range projections (Caliskan and
Stork, 2019) in which the ventral HPC (vHPC) and the mPFC transfer sensory and contextual
information to the basolateral amygdala (BLA) (Orsini et al., 2011; Ciocchi et al., 2015) and the
BLA, in turn, transfers information of negative valence back to the mPFC and vHPC (Ishikawa and
Nakamura, 2003; Senn et al., 2014; Kim et al., 2016; Burgos-Robles et al., 2017).

To date, a key technique to understand the basic neuronal mechanisms and devise therapeutic
strategies based on pathophysiology is the recording of electrophysiological signals that represent
brain activity patterns and provide great temporal resolution at the millisecond scale. The
mammalian forebrain generates extracellular field potentials containing a mixture of diverse neural
oscillations at frequency bands ranging from 0.1 to 250 Hz (in health) and up to 500 Hz (in
disease) that show dynamic changes associated with arousal levels, emotional valence, and memory

Abbreviations: AMY, amygdala; BLA, basolateral amygdala; LFP, local field potential; mPFC, medial prefrontal cortex;
PTSD, posttraumatic stress disorder; vHPC, ventral hippocampus.
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performance (Buzsaki and Draguhn, 2004; Buzsaki et al., 2012;
Buzsaki and Watson, 2012). In addition to representing the
activity patterns of individual brain areas, electrical signals from
multiple brain regions are sensitive to changes in their functional
connectivity defined as their correlational power changes and
coherence. A number of clinical studies have reported altered
patterns of electroencephalogram (EEG) oscillatory signals in
depressed patients, such as altered power and functional coupling
in the alpha (8–13 Hz) and gamma (30–100 Hz) bands in
the frontal cortex (Jesulola et al., 2015; Fitzgerald and Watson,
2018; Grunewald et al., 2018). Similarly, in PTSD patients,
resting electrical signals in the PFC show decreased alpha power-
mediated inhibition and increased gamma power, suggesting
hypofunction in the PFC (Huang et al., 2014; Clancy et al., 2017).
Accumulated evidence from these studies suggests that brain field
potential signals serve as a physiological sign of mood disorders
(Iosifescu, 2011; Baskaran et al., 2012; Buzsaki and Watson, 2012;
Fitzgerald and Watson, 2018).

On the other hand, at microscopic levels, a number of studies
from animal models to human patients have demonstrated stress-
related molecular and cellular mechanisms that could lead to
psychiatric disorders (Krishnan and Nestler, 2008; Arnsten, 2015;
McEwen et al., 2015). However, it remains largely unknown how
these mechanisms are integrated in the expression of psychiatric
symptoms and behavioral phenotypes. The necessity to bridge
the gap between these insights also highlights the importance
of electrical field signals as a measure to estimate neuronal
network-level dynamics. In particular, animal experiments allow
us to directly measure local field potential (LFP) signals
from target brain regions with high signal-to-noise ratios and
compare how their oscillatory patterns dynamically change with
emotional behavior in both health and disease. Such basic non-
clinical experiments are crucial for devising novel therapeutic
strategies, including drug discovery and timed interventions
on brain activity, which have been termed oscillotherapeutics
(Takeuchi and Berenyi, 2020).

This paper introduces recent techniques to measure brain LFP
signals from freely moving rodents, summarizes recent reports
showing anxiety- and fear-related changes in LFP patterns,
especially focusing on the HPC-PFC-AMY circuit, observed in
non-pathological animals, and then describes how LFP signals
from these brain regions are affected by stress accumulation.
Finally, we discuss potential therapeutic strategies to ameliorate
stress-induced psychiatric disorders based on oscillatory LFP
patterns.

METHODS FOR OSCILLOTHERAPEUTIC
STUDIES USING RODENTS

Multisite Recordings of Local Field
Potentials (LFPs) in Freely Moving
Rodents
A key experimental technique related to oscillotherapeutics
in rodent research is chronic electrophysiological recordings
of extracellular signals representing collective oscillatory field

potentials from neuronal populations and spike patterns from
individual neurons in freely moving animals (Figure 1A).
A number of studies have utilized various types of recording
electrodes, such as tetrode arrays and silicon probes (Figure 1B),
that enable multisite (tens or hundreds of sites) recordings from
target brain regions. These electrodes are chronically implantable
for several months and are flexibly movable to adjust the depth
of electrodes with micrometer precision in the brain tissue after
implantation using microdrives. Recent advancements in 3D
printer technology make it easy to customize plastic parts to
accommodate these electrodes into a microdrive (Figure 1C).
For example, we recently created a recording device to cover
wide ranges of cortical regions from anterior to posterior and
from medial and lateral parts in rodents (Figure 1B, left) (Konno
et al., 2019; Nakayama et al., 2019). Conveniently, most of the
CAD files designed by developers for multichannel recordings are
now available from cloud-based repositories, such as Mendeley
data, and laboratory websites, which enables researchers to freely
create these devices. Furthermore, wireless recording systems are
recently available (Zuo et al., 2012; Martinez et al., 2018; Iturra-
Mena et al., 2019), which are especially useful for stress research
because they reduce the physical stress of animals.

In addition to brain electrophysiological recordings, we
conceived a recording approach in which a multichannel
recording device extends to the collection of bioelectrical signals
from peripheral organs, such as electrocardiogram (ECG) signals,
electromyogram (EMG) signals (Okada et al., 2016; Okonogi
et al., 2018; Shikano et al., 2018), olfactory bulb respiratory
(Resp) signals (Kuga et al., 2019), and vagus nerve (VN) signals
(Shikano et al., 2019) (Figure 1D), all of which can be captured
by a single recording device. This recording method is useful for
precisely monitoring signals representing changes in peripheral
organ activity related to emotion, stress, and mental disorders, in
addition to simple behavioral phenotypes.

Realtime Manipulation of Local Field
Potentials
Electrophysiological recordings, compared with imaging
techniques, provide higher temporal resolution at millisecond
timescales, allowing real-time detection of electrical signals
and precisely timed interventions involving neuronal activity
immediately upon the emergence of target features in the
signals (e.g., signal amplitude, phase, and spikes), a so-called
closed-loop neurostimulation system (Figures 2B,C). On-
demand stimulation protocols based on this system enable a
high-quality physiological experimental design for both basic
and pathological studies. As an example of targeting transient
brain signals, time-specific stimulation during seizure events
can inhibit subsequent seizure-like behavior in epilepsy animal
models (Berenyi et al., 2012; Takeuchi et al., 2021). At frequencies
lower than 10 Hz, phase-targeting stimulation (e.g., peaks
and troughs of a given oscillation) is an effective technique to
test their contributions to brain functions. For instance, theta
(4–12 Hz) phase-specific manipulations of neuronal activity in
the hippocampus and the subthalamic nucleus have been shown
to induce memory enhancement and parkinsonian symptoms,

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 698753

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-698753 June 3, 2021 Time: 17:20 # 3

Okonogi and Sasaki Oscillotherapeutics for Mental Disorders

FIGURE 1 | Recent recording methods to study brain oscillations in rodents. (A) A picture of a mouse implanted with an electrode assembly. (B) Typical electrode
assemblies with multiple recording sites. (Left) Tetrode arrays to target several separated brain regions. The dotted region is magnified in the right panel, showing the
electrode tips (indicated by arrows). (Middle) A microdrive with multiple tetrode arrays to record spike patterns of neurons in a target region. (Right) A microdrive with
8-shanks silicon probes to record spike patterns of neurons in a target region. (C) Typical CAD illustrations of plastic parts created by a 3D printer. (D) Simultaneous
electrophysiological recordings of a brain LFP signal, a vagus nerve (VN) signal, an ECG signal, an EMG signal, and a Respiration (Resp) signal.

FIGURE 2 | Theta-range oscillations as a target of oscillotherapeutics. (A) Recent studies suggest that theta-range (4–12 Hz) oscillations in the HPC-PFC-AMY
circuit are crucial for emotional behavior and susceptibility to stress. (B) Examples of stimulation patterns (orange) upon brain oscillatory signals (magenta) in the
open-loop and closed-loop systems. (C) (Top) Closed-loop stimulation is applied to the brain region where a target brain signal is recorded. (Bottom) Closed-loop
stimulation is applied to a brain region that is different from the brain region where a target signal is recorded.
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respectively (Siegle and Wilson, 2014; Cordon et al., 2018).
Additional details of applications to studies of emotion and
psychiatric disease are described later.

THETA-RANGE OSCILLATIONS IN THE
HPC-PFC-AMY CIRCUIT RELATED TO
EMOTIONAL BEHAVIOR

Dysregulation of emotions and increased anxiety are crucial
hallmarks of stress-induced mental disorders in both animal
models and human patients. Regarding rodent studies, behavioral
paradigms have been established to subjectively estimate
the levels of emotional valence and anxiety. From these
behavioral experiments, a number of studies with genetic and
pharmacological approaches have suggested that the HPC-PFC-
AMY regions is a hub network related to fear and anxiety-like
behavior (as reviewed by Tovote et al., 2015). In particular,
electrophysiological studies have indicated the importance of
theta-range (4–12 Hz, including multiple distinct oscillations)
LFP signals in the HPC-PFC-AMY circuit related to emotional
behavior as potential substrates for temporal circuit coordination
and long-term plasticity in neuronal networks (Figure 2A; as
reviewed by Caliskan and Stork, 2019). Experimentally, such low-
frequency signals are a good model for a closed-loop system (e.g.,
phase-targeting stimulation) to test their causal roles in behavior
and to associate neuronal activity patterns with single spike levels.
Here, we focus on several major findings of theta-range LFP
oscillations in the HPC-PFC-AMY regions observed in non-
pathological animals, which are subsequently discussed in later
chapters from the perspective of pathology. Details regarding the
involvement of the other oscillations and the other brain regions
are beyond the scope of this paper.

Fear
Fear is an adaptive component of transient responses to internal
and external aversive events such as potentially threatening
stimuli. Fear conditioning tests are often used to assess rodents’
learned fear, in which a conditioned stimulus (e.g., auditory
stimulus) is paired with an aversive unconditioned stimulus.
During an acquisition phase of fear conditioning, the mPFC-BLA
circuit has been shown to increase 4-Hz LFP power (Karalis et al.,
2016; Davis et al., 2017). During REM sleep periods after fear
conditioning, the vHPC-mPFC-BLA circuit exhibits long-lasting
enhancement of theta (4–12 Hz) power and interregional theta
synchrony for hours (Popa et al., 2010; Ognjanovski et al., 2014;
Totty et al., 2017), possibly serving as a substrate to consolidate
fear memories (Boyce et al., 2016). During retrieval phases where
the same conditioned stimulus is applied, similar tendencies of
the two types of LFP oscillations are detected; increased mPFC-
BLA 4-Hz (Dejean et al., 2016; Karalis et al., 2016; Ozawa
et al., 2020) and HPC-mPFC-BLA theta (4–12 Hz) oscillations
(Seidenbecher et al., 2003; Likhtik et al., 2014; Stujenske et al.,
2014), each of which entrain oscillatory spike patterns of cell
ensembles in this frequency band. Note that Karalis et al. (2016)
suggested that the mPFC-BLA 4-Hz oscillation is distinct from
the theta oscillations with higher frequency ranges as they are

generated through different mechanisms. First, medial septum
inactivation selectively eliminated the theta oscillations, possibly
via the HPC, while the mPFC 4-Hz oscillation remained intact,
which suggests that medial septum is an upstream brain region
providing theta-locked inputs to the hippocampus (Buzsaki,
2002) but not 4 Hz-locked inputs to the mPFC. Second, HPC
theta oscillations appear to represent atropine-sensitive type 2
theta oscillations as they are specific to periods of immobility
(Seidenbecher et al., 2003) and responses to danger (e.g., predator
odor) (Mikulovic et al., 2018). This insight suggests that HPC-
mPFC-BLA theta oscillations depend on cholinergic inputs,
possibly through the medial septum. Third, dmPFC interneurons
exhibit spike patterns phase-locked to 4-Hz oscillations (Karalis
et al., 2016) and selective activation of dmPFC parvalbumin
(PV)-expressing interneurons replicates dmPFC 4-Hz oscillation
(Dejean et al., 2016). These results suggest that dmPFC 4-Hz
oscillation is intrinsically induced from the inhibitory neuronal
circuit in the dmPFC.

Manipulation of the mPFC 4-Hz oscillations is useful to
test their causal roles in fear expression and retrieval. Karalis
et al. (2016) has demonstrated that optogenetic induction
of dmPFC 4-Hz oscillations drives conditioned freezing and
Dejean et al. (2016) has demonstrated that inhibition of
dmPFC principal neurons in the descending phase of the
oscillation increased conditioned freezing. These results suggest
the sufficiency of dmPFC 4-Hz oscillations in the induction of
learned freezing behavior.

Conditioned fear memories are extinguished by repeated
presentations of the conditioned stimulus alone without
presentation of an unconditioned stimulus, which is termed
extinction learning. Consistent with increased theta oscillations
during freezing throughout the phases of fear conditioning,
theta coupling across the HPC-mPFC-BLA regions declined
as animals underwent extinction learning, whereas it recurred
during extinction recall (Lesting et al., 2011). Davis et al. (2017)
demonstrated that increased power of a 3–6-Hz BLA oscillation,
possibly classified as a 4-Hz oscillation, induced postextinction
fear memory retrieval. In contrast, outcompeting this BLA
oscillation by chemogenetic inhibition of BLA parvalbumin-
positive interneurons (Davis et al., 2017) or 8-Hz sinusoidal
stimulation (Ozawa et al., 2020) could inhibit the recurrence of
fear behavior following extinction learning, which suggests the
necessity of a 4-Hz oscillation in fear extinction recall and/or the
induction of conditioned freezing.

Anxiety
Anxiety is an emotional state characterized by an unpleasant
state with heightened awareness even without actual exposure
to danger. Anxiety-like behavior in rodents is generally assessed
in an elevated plus maze (EPM) test or an open field (OF)
test. Through these behavioral tests, a number of studies have
suggested that the expression of both fear and anxiety is mediated
by the HPC-PFC-AMY circuit, possibly through overlapping
neuronal mechanisms (Tovote et al., 2015). As a typical example,
mice lacking serotonin 1A receptors showing higher anxiety-like
behavior in an EPM test exhibited larger increases in HPC theta
(4–12 Hz) power (Gordon et al., 2005). In contrast, treatment
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with anxiolytics, such as serotonin 1A receptor agonists and
benzodiazepines, has been shown to exhibit decreases in HPC
theta oscillations (Zhu and McNaughton, 1995). Adhikari et al.
(2010) recorded LFP signals simultaneously from the mPFC and
vHPC in mice engaging in an EPM test. They showed that theta-
frequency communication between the mPFC and vHPC was
specifically augmented under anxiogenic environments in an
EPM and an OF and correlated with behavioral performance
(Adhikari et al., 2010). At a single-neuron level, mPFC
neuronal firing patterns were precisely entrained by vHPC
theta oscillations (Adhikari et al., 2011), which were related to
anxiogenic behavior in an EPM. Together with the fact that the
vHPC neurons preferentially send anxiety-related information
to the mPFC (Ciocchi et al., 2015), it is conceivable that vHPC
theta oscillations lead to mPFC theta-locked spiking activity,
and such theta-locked mPFC neuronal activity is crucial for
the expression of anxiety. This idea was further supported by
the observation that artificial oscillatory activation of mPFC-
projecting vHPC neurons at a theta (8-Hz) frequency increased
anxiety-like behavior in an EPM test (Padilla-Coreano et al.,
2019). In addition, Likhtik et al. (2014) demonstrated that mPFC
theta oscillations precede BLA spiking activity and that coherence
and power changes at the theta band in the mPFC-BLA circuit
predicted stay time in anxiogenic environments. These results all
suggest that interregional coordination of neuronal population
activity in theta bands in the vHPC-mPFC-BLA circuit is crucial
for the expression of anxiogenic behavior. Together with the
observations of fear-related theta-range oscillations, anxiogenic
behavior and fear behavior may be expressed partly through a
common mechanism: theta-range power increases as a means
for enhanced synchronization and entrainment of the HPC-PFC-
AMY circuit.

OSCILLATIONS IN THE HPC-PFC-AMY
CIRCUIT RELATED TO
STRESS-INDUCED PSYCHIATRIC
DISORDERS

The findings of theta-range oscillations in the HPC-PFC-AMY
circuit from non-pathological animals related to fear and anxiety-
like behavior suggest that stress susceptibility and stress-induced
dysregulation of emotion may be due to altered interplay based
on these oscillatory communications. In rodents, behavioral and
physiological changes reminiscent of depressive symptoms are
induced by repeated exposures to chronic social defeat stress in
which a mouse is defeated by a larger animal; this procedure
has been utilized as an excellent murine model with etiological,
predictive, discriminative and face validity (Berton et al., 2006;
Golden et al., 2011; Abe et al., 2019). Socially defeated mice
with impaired extinction learning, possibly replicating a PTSD
symptom, showed increased theta (4–8 Hz) synchronization
between the PFC and AMY (Narayanan et al., 2011). In addition,
defeated mice with depressive-like behavior showed increased
power of a PFC 2–7-Hz oscillation during interactions with an

aggressor mouse (Kumar et al., 2014), which entrained beta (14–
23 Hz) coherence between the AMY and ventral tegmental area
(VTA) (Hultman et al., 2016). These stress-sensitive changes in
oscillatory patterns possibly represented an increase in the 4-
Hz or theta oscillations based on their frequency bands and
common properties. Consistently, increased theta (4–12 Hz)
power in the vHPC-mPFC-BLA circuit has also been reported
in a chronic unpredictable stress model (Jacinto et al., 2013;
Oliveira et al., 2013). Taken together, these findings suggest
that stressed animals appear to exacerbate aversive emotion-
related oscillations in the HPC-PFC-AMY circuit that originally
operated in non-pathological conditions.

Notably, the power of this 2–7-Hz PFC oscillation differs
across individual animals even before stress exposure, and these
differences can predict the manifestation of subsequent stress-
induced depression-like behavior (Kumar et al., 2014). This
finding suggested that LFP signals can serve as a predictive factor
of vulnerability to mental stress in individual animals. Recently,
this idea of predictive stress vulnerability has been expanded to
multiple brain regions, including the nucleus accumbens (NAc)
and VTA, in addition to the HPC-PFC-AMY circuit. An elegant
study with a machine learning algorithm by Hultman et al.
(2018) identified several patterns of prestress LFP power and
coherence in frequency bands ranging from 1 to 50 Hz across
these brain regions and termed these patterns electome factors.
These factors differentiate early life-associated stress vulnerability
and stress susceptibility that can be reversed by antidepressants.
Our group applied a similar strategy to LFP signals recorded
from multiple cortical areas and demonstrated that rats with
lower theta power and higher delta power correlations across
the cortical regions before stress exposure were more likely to
exhibit irregular heartbeat signals after stress load (Nakayama
et al., 2019). In the future, these new types of studies with
multivariate statistics and machine learning algorithms on large-
scale physiological datasets are expected to reveal how the core
region, i.e., the HPC-PFC-AMY circuit, and neuromodulatory
regions, such as the NAc and VTA, functionally interact with
each other. These new approaches are expected to provide a more
comprehensive entire picture of functional organizations of brain
networks that have not been defined by existing statistics with
limited dimensions.

TIME-TARGETED INTERVENTIONS
TOWARD OSCILLOTHERAPEUTICS FOR
PSYCHIATRIC DISORDERS

While LFP oscillatory signals in the HPC-PFC-AMY circuit
related to stress-induced symptoms are beginning to be revealed
(Figure 2A), they remain correlative and leave open questions
as to whether they are causal factors for the pathogenesis of
mental disorders. Addressing these issues will help identify
true therapeutic targets of endogenous oscillatory signals in
the development of oscillotherapeutics. Ideal research strategies
are to selectively manipulate target ongoing oscillatory signals
using open-loop or closed-loop systems and test their phenotypic
effects. In open-loop interventions, external stimulation with
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sinusoidal waveforms, mimicking oscillatory signals, or pulse
trains is applied without feedback from biological oscillatory
signals (Figure 2B, left). In closed-loop interventions, stimulation
is applied with the appearance of target brain signals, enabling
on-demand stimulation with reference to brain states while
avoiding out-of-target overstimulation (Figure 2B, right). Target
signal variables to be detected are transient neuronal events
with certain amplitudes, such as ictal seizure events, or
the phase and amplitude of specific continuous oscillations,
such as theta oscillations. Signals to be manipulated are the
signals detected at the recording sites or signals generated
at distant areas, such as upstream or downstream brain
regions, depending on the locations of stimulation (Figure 2C).
This chapter summarizes recent studies employing these
experimental challenges in rodents and discusses the possibility
of further clinical applications. Other therapeutic strategies using
pharmacological, behavioral, and psychological methods to alter
brain oscillations (e.g., Leuchter et al., 2015) are beyond the
scope of this paper.

Animal Models
Transient neuronal events within a short time window (hundreds
of milliseconds) are widely utilized target signals for closed-loop
systems. For instance, transcranial and intracranial closed-loop
stimulation at the time of detection of large amplitude and high-
frequency cortical seizure events have been shown to suppress
subsequent seizures in epilepsy animal models (Berenyi et al.,
2012; Takeuchi et al., 2021). This technique has also been applied
to LFP oscillations under non-pathological conditions to test
their causal roles in memory processing. For example, closed-
loop amplification and disruption of hippocampal ripples (150–
250 Hz), which represent transient neuronal synchronization
within a short time window (∼100 ms), can improve (Fernandez-
Ruiz et al., 2019) and inhibit (Jadhav et al., 2012; Oliva et al., 2020;
Igata et al., 2021), respectively, subsequent memory processing.
While targeting this type of transient signal is an excellent
means to manipulate large short neuronal events, it appears
inappropriate for modulating emotional states, as brain signals
underlying emotion and stress-induced disease are much longer
and oscillate in lower frequency bands, as described above.

Given the importance of theta-range (4–12 Hz) oscillations
in the HPC-PFC-AMY circuit in emotional behavior and
stress-induced psychiatric disorders, manipulation of neuronal
activity that impact these theta-range oscillations might be
effective in ameliorating psychiatric symptoms. Using open-
loop systems, theta-range oscillations can be exogenously
induced by injecting sinusoidal stimulation at the corresponding
frequencies. In particular, optogenetic photostimulation is
appropriate for creating sinusoidal stimulus patterns with
particular rise and decay amplitudes to manipulate specific types
of neurons. Padilla-Coreano et al. (2019) demonstrated that
selective activation of mPFC-projecting neurons in the vHPC
by optogenetic photostimulation with a theta (8-Hz) sinusoidal
pattern evoked open arm avoidance in an EPM, suggesting
increased anxiety. Interestingly, this effect was not observed when
an 8-Hz pulsatile stimulation pattern was applied, suggesting
the importance of oscillatory neuronal activity. Karalis et al.

(2016) demonstrated that modulation of mPFC parvalbumin-
expressing (PV) interneurons by 4-Hz, but not 8-Hz, sinusoidal
photostimulation induced synchronized mPFC and BLA spikes
and contextual fear behavior, suggesting a causal role of 4-Hz
oscillations in the expression of aversive memories. Furthermore,
using a similar strategy, Ozawa et al. (2020) showed that
rhythmic stimulation of BLA PV interneurons with a sinusoidal
waveform of light at 4 Hz or 8 Hz augmented or suppressed
freezing behavior, respectively, specifically after a postextinction
learning trial, demonstrating the bidirectional modulation of
extinction memories by BLA PV interneurons depending on
different oscillatory frequencies. In addition, they suggested
that extinction learning with suppression of conditioned fear
cell ensembles in the BLA-mPFC circuit was mediated by
BLA PV interneurons via enhancement of a BLA 8-Hz (6–
12 Hz) oscillation that interfered with a BLA-mPFC 4-Hz
(3–6 Hz) oscillation for fear expression (Davis et al., 2017).
Further causal relationships can be tested by a closed-loop
system with higher temporal resolution in which stimulation is
applied at a specific phase of each cycle of oscillations. Dejean
et al. (2016) demonstrated that phase-targeting optogenetic
activation of mPFC PV interneurons in the ascending or
descending phases of mPFC 4-Hz oscillations decreases and
increases conditioned freezing behavior, respectively, suggesting
the importance of phase-specific mPFC cell ensemble activity
for bidirectional control of fear behavior. Using similar
experimental strategies, increased anxiety and impaired fear
extinction by chronic stress might be restored by adjusting
the intensity of theta-range oscillations and phase-specific
modulation of neuronal activity on theta-range oscillations in
the HPC-PFC-AMY circuit. Similar ideas that target theta-range
oscillations have been recently applied to other animal models of
Parkinson’s disease and Alzheimer’s disease (Cordon et al., 2018;
Senova et al., 2018).

For more complex challenges regarding the understanding of
functional connectivity and interregional information transfer
underlying emotional behavior, manipulations of multiple brain
regions at the same or different phases in oscillations may be
more useful (Figure 2C), as demonstrated by Ozawa et al.
(2020). Finally, animals’ behavioral states (e.g., sleep states and
attentional levels) are also crucial factors in interventions of
neuronal activity. For example, Boyce et al. (2016) demonstrated
that a reduction in HPC theta oscillations specifically during
REM sleep eliminated conditioned fear memories, suggesting
that applying interventions in the proper behavioral states may
be important to maximize their outputs and avoid side effects.

Application to Clinical Studies
While it is not possible to simply extrapolate clinical applications
based on insights from basic animal studies, interventions
targeting brain oscillations may also be an effective therapeutic
strategy in clinical studies if properly applied. Deep brain
stimulation (DBS) is an invasive treatment approach for
treatment-resistant depressions applied by electrodes implanted
in brain tissue (Mayberg et al., 2005; Scangos et al., 2021). On
the other hand, transcranial electric stimulation is a non-invasive
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approach that is roughly divided into two types depending
on stimulus patterns: transcranial direct current stimulation
(tDCS) with non-oscillating static currents and transcranial
alternating current stimulation (tACS) with oscillating currents.
For more focal and intense stimulation, repetitive transcranial
magnetic stimulation (rTMS) applies magnetic pulses to
induce current flow in the brain. Accumulating clinical
evidence suggests that restorations of brain oscillations by these
interventions ameliorate pathological symptoms in depressive
patients. For instance, rTMS on the frontal cortex increased
gamma oscillations in patients showing improved depressive
symptoms (Noda et al., 2017), consistent with a pharmacological
effect of ketamine on gamma oscillations (Hong et al., 2010).
Vagus nerve stimulation (VNS) is another intervention approach
for treatment-resistant depression (Moeller et al., 2019). This
method directly activates subcortical arousal-promoting nuclei
through stimulation of the vagus nerve. Recently, a non-invasive
transcutaneous auricular vagus nerve stimulation (taVNS)
method has been developed (Hein et al., 2013; Rong et al., 2016;
Trevizol et al., 2016), which can alter alpha EEG oscillations
(Sharon et al., 2021).

Compared with simple pulsatile stimulation such as tDCS,
resonance approaches using oscillatory stimulus patterns such as
tACS may be more effective in entraining brain oscillations at the
corresponding or other specific frequency bands [for more detail,
see Hanslmayr et al. (2019)]. For instance, in healthy human
subjects, intense tACS with a 1-Hz sinusoidal wave has been
shown to induce alpha-band parietal cortical activity (Voroslakos
et al., 2018). In older adults, tACS over the frontotemporal
regions improves memory performance and cognitive functions
(Reinhart and Nguyen, 2019). More specifically, a closed-loop
system using DBS may be a promising strategy, in which brief
stimulation is delivered in response to ongoing changes in the
brain states of patients (Scangos and Ross, 2018). In addition,
biofeedback methods in which individuals are provided with real-
time information on brain activity have been proposed as another
means to modify EEG signals and improve psychiatric states. For
instance, restoring frontal alpha symmetry by biofeedback signals
has been shown to reduce negative affect in human subjects that
learned conscious control of their own alpha asymmetry signals
(Mennella et al., 2017).

CONCLUSION AND FUTURE
PERSPECTIVE

Recent advancements in electrophysiological recording
techniques, optogenetic tools, and analytical methods such

as machine learning algorithms unveiled emotion-related
and stress-induced oscillations for complex coordination of
multiple brain regions. This review specifically focused on
theta-range oscillations, as a key oscillation, in the HPC-PFC-
AMY circuit in rodents. Precisely timed interventions based
on these oscillations by open-loop and closed-loop systems
enable us to test a causal role of these target oscillatory signals
in the expression of psychiatric symptoms. In the future, in
addition to observing changes in behavioral phenotypes, it
will be interesting to see how emotional memory-encoding
and oscillatory phase-locked neuronal ensembles are recruited
at single-neuron levels in response to these interventions.
While the same experimental strategies may not be directly
extrapolated to clinical studies, the ideas of interventions are
adopted as effective therapeutic strategies for stress-induced
mental illness. In both animal and clinical studies, a crucial issue
is that there are a large number of combinations of technical
parameters (e.g., stimulation regions, type, intensity, timing, and
frequency band) for interventions. In addition, as the level of
impairments in these brain signals and pathological symptoms
considerably vary across individuals, interventions need to be
ideally personalized based on their conditions, as previously
demonstrated (Reinhart and Nguyen, 2019; Grover et al.,
2021). Further oscillotherapeutic studies from both basic and
clinical experiments are expected to identify more appropriate
intervention strategies based on a precise understanding of
cellular and circuit dynamics.
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