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Abstract

Purpose

Inverse planning is trial-and-error iterative process. This work introduces a fully automated

inverse optimization approach, where the treatment plan is closely tailored to the unique

patient anatomy. The auto-optimization is applied to pancreatic stereotactic body radiother-

apy (SBRT).

Materials and methods

The automation is based on stepwise reduction of dose-volume histograms (DVHs). Five uni-

formly spaced points, from 1% to 70% of the organ at risk (OAR) volumes, are used. Doses

to those DVH points are iteratively decreased through multiple optimization runs. With each

optimization run the doses to the OARs are decreased, while the dose homogeneity over the

target is increased. The iterative process is terminated when a pre-specified dose heteroge-

neity over the target is reached. Twelve pancreatic cases were retrospectively studied.

Doses to the target, maximum doses to duodenum, bowel, stomach, and spinal cord were

evaluated. In addition, mean doses to liver and kidneys were tallied. The auto-optimized

plans were compared to the actual treatment plans, which are based on national protocols.

Results

The prescription dose to 95% of the planning target volume (PTV) is the same for the treat-

ment and the auto-optimized plans. The average difference for maximum doses to duode-

num, bowel, stomach, and spinal cord are -4.6 Gy, -1.8 Gy, -1.6 Gy, and -2.4 Gy respectively.

The negative sign indicates lower doses with the auto-optimization. The average differences

in the mean doses to liver and kidneys are -0.6 Gy, and -1.1 Gy to -1.5 Gy respectively.

Conclusions

Automated inverse optimization holds great potential for personalization and tailoring of

radiotherapy to particular patient anatomies. It can be utilized for normal tissue sparing or

for an isotoxic dose escalation.

PLOS ONE | https://doi.org/10.1371/journal.pone.0191036 January 19, 2018 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Mihaylov IB, Mellon EA, Yechieli R,

Portelance L (2018) Automated inverse

optimization facilitates lower doses to normal

tissue in pancreatic stereotactic body radiotherapy.

PLoS ONE 13(1): e0191036. https://doi.org/

10.1371/journal.pone.0191036

Editor: Qinghui Zhang, North Shore Long Island

Jewish Health System, UNITED STATES

Received: September 6, 2017

Accepted: December 27, 2017

Published: January 19, 2018

Copyright: © 2018 Mihaylov et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work is supported in part by NIH

grant R01 CA163370 and in part by Philips

Radiation Oncology Systems to IBM. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: We have the following

interests. This study was partly funded by Philips

https://doi.org/10.1371/journal.pone.0191036
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191036&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191036&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191036&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191036&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191036&domain=pdf&date_stamp=2018-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191036&domain=pdf&date_stamp=2018-01-19
https://doi.org/10.1371/journal.pone.0191036
https://doi.org/10.1371/journal.pone.0191036
http://creativecommons.org/licenses/by/4.0/


Introduction

Despite the availability of modern multi-modal treatment options, pancreatic adenocarcinoma

patients continue to have a very dismal 5-year survival prognosis of about 6% including for all

stages combined.[1] Meanwhile, the rate of pancreatic cancer continues to increase at about

1.3% per year. Because of this trend, pancreatic cancer is expected to become the second lead-

ing cause of cancer death in not that distant future.[2]

The growing role of radiotherapy in pancreatic adenocarcinoma and the time-intensive

and challenging nature of planning for dose-escalated radiotherapy have led us to seek further

enhancement in the dose optimization algorithms by introducing automation. Many different

algorithms have been proposed for improvements of the IMRT optimization process.[3–16]

Initial work proposed fast, efficient inverse planning through reduced constraint optimization,

where one of the major goals was to achieve quick optimization solution.[7, 10, 12] Another

class of fast automated IMRT solutions is based on parameters derived from “expert” plan

libraries, pre-generated for various patient anatomies and different treatment sites.[4–6, 9, 13]

A variation of this approach was applied to breast treatments. It included a selection of beam

and collimator angles from a library of plans, combined with optimization which utilized two-

stage process incorporating forward and inverse optimization.[17] A more comprehensive

approach for automatic IMRT optimization used beam angle look-up from a “knowledge”

database, while dose and dose-volumetric objectives were iteratively reduced in the subsequent

inverse plan optimization.[15] More recently, an automated IMRT optimization with iterative

reduction of hot and cold spots was developed by generation of additional IMRT optimization

structures.[14] Another variation of treatment plan automation was realized through unsuper-

vised machine learning, where a set of standardized beam angles was generated on the basis of

prior experience derived from treatment plans for different anatomical locations of the targets.

[18]

This work introduces a form of automated inverse optimization where optimal (or near

optimal) intensity maps are generated automatically for each unique patient and their particu-

lar anatomy. It is based on step-wise reduction of the dose-volume (DVH) histograms. Doses

to several (five in this work) DVH points for each organ at risk (OAR) are iteratively decreased

through multiple optimization runs. With each optimization run the doses to the OAR DVHs

are decreased, while the dose homogeneity over the target is increased. The iterative process is

terminated when a pre-specified dose heterogeneity over the target is reached. Therefore, the

treatment plans are tailored to each individual case, such that the radiation doses to healthy tis-

sue are minimized as low as reasonably achievable, without defying the therapeutic intent by

compromising target doses and coverage.

Materials and methods

Patient data

In this work twelve pancreatic cancer patients are retrospectively studied. The retrospective

chart review was approved by the institutional review board (University of Miami IRB proto-

col number 20160960) and it did not require informed consent. For all studied patients there

was no duodenal wall invasion and they were treated with SBRT in our institution between

January 2014 and September 2016. Patients received 6–8 cycles of chemotherapy, followed by

radiotherapy, and finally by surgery if eligible. None of those patients had prior radiation ther-

apy to the abdominal region.

For each case, gross tumor volume (GTV) was outlined on the planning CT. A planning

target volume (PTV) was generated by expansion of the GTV ranging from 0.3 cm to 0.5 cm.
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In addition, duodenum, bowel, spinal cord, stomach, liver, and kidneys were outlined. All of

those structures were used as dose-limiting organs at risk (OARs) in the inverse plan optimiza-

tion and the clinical decision making of plan quality. Standardized dose prescription was used

in all cases: 35 Gy to 95% of the PTV in five fractions. All patients were treated with volumetric

modulated arc therapy (VMAT). The treatment plans used 3 to 6 full arcs, depending on

patient anatomy. The details of the optimization objectives used for clinical planning are pre-

sented in Table 1. Treatment planning was performed with Varian’s Eclipse treatment plan-

ning system (TPS), utilizing its RapidArc capability.

Optimization automation

The proposed automated optimization approach is based on a dose-volume reduction scheme

because dose-volume optimization is most widely used in modern radiotherapy. However, the

automated optimization can also be used with other metrics such as generalized equivalent

uniform doses,[19–21] dose-mass optimization,[22–25] or global energy minimization.[26]

In this work the automated optimization is applied with DVH objectives of the form

Fj ¼ wj
X

i2V

di � dj

dj

� �2

Dvi ð1Þ

presented in Eq 1. Fj is the objective value, where: wj is a user assigned weight, V denotes the

volume of the anatomical structure of interest where the dose di is larger than the dose dj, di is

the dose in voxel i of the volume V, dj is the desired (objective) dose, and vi is the normalized

voxel volume with respect to the total organ volume V.[24, 27, 28] An optimization function of

the form presented in Eq 1 is necessary for each DVH optimization objective.

The automated process includes multiple steps (Fig 1). In the first step, shells or rings

around the targets are generated as auxiliary structures to shape the dose fall-off from the tar-

get. In this step the target and the supplementary structures objectives are also set. The target

objectives include minimum, maximum, and uniform doses, while the auxiliary structures

objectives consist of maximum and mean doses.

In the second step, optimization proceeds on the targets defined in the first step. The aim of

this initial optimization is solely to achieve the prescription dose for the target(s). The optimi-

zation objectives to the target(s) and the auxiliary structures, set in the first step above, are not

altered any further in the subsequent steps.

In the third step, after a suitable solution is found in the first step, the OAR objectives are

set. The type and the number of the OAR objectives is read from a configuration file, created

by the user upfront. In this step the underlying dosimetric metric (e.g. DVH, EUD) is evalu-

ated for all anatomical structures of interest–targets and OARs alike (step 3 on Fig 1), thereby

estimating the OAR objective values. As an example, in the case of DVH optimization a set of

predetermined fractional volumes are used as objectives—5 equi-spaced points on the cumula-

tive DVH curve, spanning the range from 1% to 70% of the OAR volume of interest. OAR

objective doses dj from these initial DVH points are used as the basis for the determination of

the OAR dose-volume objectives for the next step in the auto-optimization process.

Table 1. Dosimtric objectives used for clinical treatment plans.

PTV Duodenum Bowel Stomach Cord Liver Kidneys

Dose

[Gy]

35 30 30 30 20 10 10

Volume/Fractional Volume 95% 2 cc 2 cc 2 cc Max dose Mean dose Mean dose

https://doi.org/10.1371/journal.pone.0191036.t001
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Fig 1. Flowchart of the automated inverse optimization. All of the steps presented in the figure are executed with a single button

click. A prerequisite for the auto-optimization is that contours of the anatomical structures are outlined, the beams/arcs are set, the

dose grid is positioned, and the number of treatment fractions is specified. Step 1 sets the auxiliary ring structures which control the

dose fall off. Step 2 creates a plan with only PTV and auxiliary structures objectives. Step 3 evaluates the initial DVHs. Step 4

Automate inverse optimization spares normal tissue
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In step 4, and again later in step 7, The OAR dose-volume objectives dj are adjusted such

that the OAR optimization objective values Fj (cf. Eq 1) are slightly larger (by ~5%) than the

largest objective value for the targets. The adjustment of the OAR objective value is achieved

by varying the dose for each preset fractional volume. Usually one of the target objectives

(most often the dose uniformity) has the largest objective value, and it is the one used as the

target objective according to which the OAR objectives are scaled. From experience we have

determined that the scaling of the OAR doses in such a manner (about 5% larger than the tar-

get objective value) will properly “guide” the solution toward achieving the final goal, namely

adequate target coverage for as low as reasonably achievable OAR sparing. This experience is

derived from Pinnacle TPS (see below), but the actual value might be different for other TPSs

and need to be evaluated by the user.

After setting the OAR doses for the predetermined metrics (step 4 in Fig 1) the optimiza-

tion is performed again, but this time with both target and OAR optimization objectives in

place (step 5). At the end of the next step, the solution is checked whether it satisfies some

acceptance criterion (step 6). In the work presented here the acceptance criterion is that stan-

dard deviation of the dose across the PTV is less than 5%.[29] It should be pointed out, that

the solution achieved by steps 1 and 2 result in target doses with high homogeneity and very

low standard deviation of PTV dose (~ 1% to 2%). If the acceptance condition (step 6) is not

satisfied, the desired doses dj to the OARs (for each fractional volume) are lowered again such

that all OAR objectives Fj become about 5% larger than the largest target objective value (step

7). The entire optimization is carried again (step 5). The loop (denoted by the dashed rectangle

on the figure) proceeds through steps 5, 6, and 7 until the acceptance condition in step 6 is

achieved. At that point the auto-optimization is terminated–step 8. The successive reduction

of the OAR objective doses dj in the loop over steps 5, 6, and 7 will gradually increase the dose

heterogeneity over the PTV until the pre-specified optimization termination condition is met

in step 6.

The process depicted on Fig 1 is in essence a stepwise reduction of the OAR optimization

doses dj (or equivalently stepwise increase of the OAR objective function values Fj). The result

of this stepwise dose decrease is a gradual convergence of the optimization toward a balanced

solution, where therapeutic doses are delivered to the tumors, while at the same time sparing

the OARs as much as reasonably achievable.

In routine clinical practice inverse optimization is limited to no more than 2 or 3 objective

functions per OAR. However, in the presented automated inverse optimization there might be

an arbitrary number of objective functions for each. In this investigation 5 individual DVH

objectives were used per OAR. Those were set for equi-spaced relative OAR fractional volumes

between 1% (high dose) and 70% (low dose). In order to increase the flexibility of the auto-

optimization scheme, the OAR importance and/or the importance of a single dose-volume

(such as maximum 1%) objective can be pre-specified by the user on a sliding scale.

The auto-optimization platform is developed as a plugin to a research version of a commer-

cially available TPS (Pinnacle, Philips Radiation Oncology Solutions, Fitchburg, Wisconsin).

Note that each of the steps 1 and 5 on Fig 1 are realized as one Pinnacle optimization cycle.

This cycle is terminated either by reaching 100 iterations, or by a change in the composite

objective function (which is a sum of all Fj from Eq 1 over all structures) of less than 10−4.

generates the initial OAR objectives. Steps 5, 6, and 7 are executed multiple times such that at each successive repetition the doses in

the DVH objectives are progressively reduced. This stepwise DVH reduction is terminated when standard deviation of the dose over

PTV reaches 5% of the prescription dose–step 8.

https://doi.org/10.1371/journal.pone.0191036.g001
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Every time step 5 (cf. Fig 1) is executed the beams are reset automatically through Pinnacle’s

built in “Reset Beams” functionality.

Setup for pancreatic cancer planning comparison

For each of the twelve cases an automated VMAT plan was generated with the auto-optimiza-

tion module described above. The auto-optimized plans used the same initial parameters as

the original plans such as dose grid size and resolution, number of full dynamic arcs, and pho-

ton energies. The prescription was set such that 95% of the PTV volume received the prescrip-

tion dose of 35 Gy. Three rings were used for control of the dose fall-off. Each of the rings was

1 cm in size and they were at 0.5, 3.5, and 5.5 cm from the PTV. The PTV optimization objec-

tives (step 2 in Fig 1) were set to minimum, maximum, and uniform doses with relative

weights wj of 100. Two objectives for each of the three rings were specified in terms of maxi-

mum and mean doses. The relative weight wj for the rings was set to 80. In step 5 of the auto-

optimization five objectives were set for each OAR for equi-spaced fractional volumes ranging

from 1% to 70%. The relative objective weights wj for all OARs were set to one. The loop

denoted by the dotted line on Fig 1 was allowed to run (steps 5, 6, and 7) until the standard

deviation of the PTV dose became approximately 5% of the prescription dose. In each case two

to three cycles of steps 5, 6, and 7 were sufficient for the termination condition to be achieved.

Analyses

The analyses of the obtained result were based on clinically used end points. They included

doses to 95% and 5% of the PTV, as well as doses to 2% (surrogates for maximum doses) of

duodenum, spinal cord, bowel, and stomach.[30] Mean doses to liver and kidneys were also

interrogated. All these quantities, termed dose indices (DIs) hereafter, were normalized for

better visualization.[19, 31–34] The normalization was performed with respect to the DIs

derived from the treatment plans. If a normalized DI is greater than unity, then the absolute

dose for that particular patient and index, resulting from the auto-optimized plan is larger, and

vice versa.

In addition to direct comparison of the DIs non-parametric statistical tests were performed

on the absolute DIs. The statistical significance was established with related samples Wilcoxon

singed rank test.

Results

Fig 2 demonstrates isodose plots and DVHs for one case from the patient cohort. There are

two columns in the isodose plots (left panel of the figure), where the left column corresponds

to the treatment isodoses, while the right column depicts the auto-optimized isodoses. It is evi-

dent from the plots that the prescription isodose (green) conforms to the PTV (orange) well in

both plans. The solid lines on the right outline the DVHs from the treatment plans, while the

dashed DVHs correspond to the auto-plan. The differences in the maximum dose of the duo-

denum, the bowel, the stomach and the spinal cord were -35%, -5%, -6%, and -27% respec-

tively. The differences in the mean doses to liver, the left, and the right kidneys were -26%,

-48%, and -46% respectively. The negative values indicate lower absolute doses from the auto-

optimized VMAT plan.

Fig 3 presents the data for all tallied DIs. In addition to the DIs, unity (dashed line) is also

plotted in the figure, indicating where the absolute doses from the treatment and the auto-

plans are equal. From the panel is evident that 95% of the PTV receives the same dose with

either optimization approach, as intended by the prescription. The doses to 5% of the PTV

with the auto-optimized plans are somewhat larger than the doses from the treatment plans by
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6% on average (range -3.5% to 13.5%). The middle panel outlines the data for D2% to the

stomach, the bowel, the spinal cord, and the duodenum. The differences range from -78%

(duodenum patient 10) to -4.6% (patient 11), with average difference of -21%. The situation

with spinal cord maximum doses is similar where the average difference is -32% with a range

from -59% to 10%. The average differences in bowel and stomach are -5% (-34% to 33%) and

-13% (-50% to 23%). The differences in the maximum doses to bowel and stomach vary more

than in the case of duodenum, but this is a result of the higher priority given to the duodenum

sparing in the auto-optimization. Nonetheless, the results indicate that the majority of the tal-

lied maximum doses are lower with auto-optimization. The bottom panel of Fig 3 presents the

mean doses to liver and kidneys. The scale of the plot indicates that all mean doses are lower in

the auto-optimized plans, since the normalized DIs span the range from 0.3 to 0.95.

Table 2 presents the average absolute doses for all tallied OAR DIs, placing in perspective

the relative differences from Fig 3. On the top row the actual treatment doses (averaged over

the patient cohort) are presented, while on the bottom row the average doses from the auto-

optimized plans are outlined. In addition to the average doses, in the parentheses the range of

that DI is also given. The table clearly indicates that the duodenum receives the highest maxi-

mum doses followed by stomach, bowel, and spinal cord. Furthermore, the most clinically sig-

nificant dose reductions are those achieved for duodenum, bowel, and stomach since they are

in close proximity to the target.

Discussion

Each auto-optimized plan is specifically tailored to the individual patient anatomy. In contrast,

the database look-up and expert plan utilization approaches are in effect population based

methods, where the expert plan is as good as the specified planning objectives, or the experi-

ence of the planner. Notably, human anatomies are rather similar in many aspects, but rarely if

never identical. Even if the relative anatomies are very similar tissue properties are likely to be

different between patients. Therefore, the use of “expert” dosimetric objectives may be far

from optimal on patient-by-patient basis.

Fig 2. Comparison of isodose plots (left) and DVHs between a manually planned treatment and an auto-optimized plan. The left column displays the absolute

doses of the treatment plan on axial and coronal views, while the right column corresponds displays the auto-plan for the same patient. The colorwash structure is

the PTV, while the green isodose line is the prescription dose of 35 Gy. The DVH plot on the right outlines the treatment DVHs (solid lines) and the auto-optimized

DVHs (dashed lines).

https://doi.org/10.1371/journal.pone.0191036.g002
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Fig 3. Comparison of all normalized tallied indices. Normalization is performed with respect to the doses derived from the treatment plans

and plotted as a ratio of auto-plan over manual treatment plan. Values greater than one indicate more dose for the auto-plan compared to the

manual plan, values less than one indicate less dose for the auto-plan, and values equal to one indicate equal doses for the two compared plans.

The top panel outlines the normalized doses to 95% and 5% of the PTV. The middle panel contains the data for doses to 2% of duodenum,

bowel, stomach, and spinal cord. 2% of the volume for those OARs have been used as surrogates for maximum doses. The bottom panel of the

figure outlines the average doses to liver and kidneys. Note that while most normalized maximum doses in the middle panel are smaller

(majority) than unity, all normalized mean doses in the bottom panel which are smaller than unity.

https://doi.org/10.1371/journal.pone.0191036.g003
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The auto-optimization presented in this work creates plans on the basis of minimal

assumptions. The optimization objectives are not based on any protocols, guidelines, or clini-

cal practices. Instead, the doses are minimized as much as reasonably achievable, depending

on sufficient target coverage and pre-set dose uniformity over the target. In addition, all of the

OAR goals are set as optimization objectives rather than constraints. While the optimization

objective is a desired goal, the optimization constraint is a “must do” restriction. The result is

that if an objective goal is set as a constraint, the optimization algorithm would satisfy it first

and will attempt to find a solution for the objectives by manipulating the remaining free

parameters. As a result of that inflexibility a portion of the solution space may be blocked and

thereby sub-optimal solutions will emerge. If on the other hand, only optimization objectives

are utilized as in this work, the optimization algorithm would maintain its flexibility and it is

very possible that a solution with better trade-off could be achieved. However, it is quite possi-

ble that the auto-optimization is unable to satisfy a clinical “must do: constraint. In this sce-

nario the auto-plan solution may be used as a starting point, namely all of the dosimetric

objectives calculated by the auto-planning are used, and only those which affect the achieve-

ment of the clinical constraints are manually adjusted in further optimization.

The presented results indicate that this auto-optimization approach is capable of reducing

doses to nearby anatomical structures. Close inspection of Fig 3 indicates that the farther away

an OAR is from the target, the better sparing can be accomplished with the auto-optimization.

Therefore, the auto-optimization can be used “as is” for dose reduction to nearby OARs, or it

can be utilized for dose escalation. Fig 3 indicates that for patients 1, 2, 3, 6, and 11 an approxi-

mately 15% increase of the prescription dose would lead to almost isotoxic dose escalation

where the auto-optimized doses can be “boosted” to 8 Gy per fraction for a total dose of 40 Gy.

This dose escalation may be used to overcome the known radio-resistance of pancreatic can-

cers. [35] [36, 37] Therefore, the dose escalation allowed by the auto-optimization scheme may

be potentially translated into higher resection rates and improved overall survival. The pre-

sented results suggest that this might be an option in about 40% (5 out of 12) of the cases

which require radiotherapy.

The presented auto-optimization scheme is not geared toward quick solution. It is aimed in

“pushing” the limits as much as possible to achieve low doses to the healthy anatomical struc-

tures in target vicinity. Although not rigorously benchmarked, the optimization needs a couple

of hours to find a solution. This may not be optimal in real time, but it is perfectly suitable to

be used overnight when the computers are unutilized. Nonetheless, the auto-optimization

saves tremendous amount of time for the planners. As it was mentioned above, there is virtu-

ally no limit on how many DVH points are used as objectives and they are automatically

adjusted during the optimization process. This is unachievable for a planner since this will

require prohibitively long time.

Table 2. Average absolute doses to all OARs for the tallied dose indices. The last row indicates the p-values derived from related samples Wilcoxon singed rank statisti-

cal test.

Duodenum

D2%

[Gy]

Bowel

D2%

[Gy]

Stomach

D2%

[Gy]

Cord

D2%

[Gy]

Liver

Dmean

[Gy]

Lt kidney

Dmean

[Gy]

Rt Kidney

Dmean

[Gy]

Average Value Treatment

(range)

24.7

(14.9–31.7)

16.0

(7.9–20.1)

17.6

(2.0–30.0)

7.3

(4.0–11.6)

2.1

(0.5–4.3)

2.5

(1.2–4.9)

3.3

(0.2–8.5)

Average Value Auto

(range)

20.1

(3.3–29.7)

14.2

(6.5–19.9)

16.0

(2.0–28.3)

4.9

(2.5–8.4)

1.5

(0.5–3.4)

1.4

(0.5–2.3)

1.9

(0.2–7.0)

p-values <0.05 0.071 0.071 <0.05 <0.05 <0.05 <0.05

https://doi.org/10.1371/journal.pone.0191036.t002
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Conclusion

This work outlined a new inverse optimization approach, based on automated reduction of

dose-volume objectives. It is tailored to each individual patient case and is based on minimum

assumptions. Virtually, all that is required are the prescription goals and the desirable dose

homogeneity over the target. This auto-optimization scheme was applied to pancreatic cancer

treated with SBRT. It was demonstrated that in some cases auto-optimization is capable of

reducing doses to normal tissue in comparison to treatment plans created by senior very expe-

rienced dosimetrists. The available dose reduction can be utilized “as is” for reduction of the

complications rates, or it can be used for isotoxic dose escalation in the prescription, which

might be an important factor in the management of the radio-resistant pancreatic cancer.

Since the presented auto-optimization approach requires very minimal input and virtually no

supervision it can be performed in background and/or after hours and can be used as a starting

point or for comparison to conventional treatment plans. It may help less experienced users

achieve better quality radiotherapy treatment plans.

Supporting information

S1 Dataset. FileData.zip contains the absolute dosimetric indices (DIs) for the organs at

risk (OARs) used in the optimization process. The content of the file is patient number, dose

from the treatment plan, dose from the automated-inverse optimization plan. The file names

in the FileData.zip indicate the type of the DI (e.g. bowel.0.02 indicates that this is doze to 2%

of the bowel).
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