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Abstract

As patients with Parkinson’s disease (PD) are at high risk for comorbid depression, it is hypothesized that these two diseases
are sharing common pathogenic pathways. Using regional homogeneity (ReHo) and functional connectivity approaches, we
characterized human regional brain activity at resting state to examine specific brain networks in patients with PD and
those with PD and depression (PDD). This study comprised 41 PD human patients and 25 normal human subjects. The
patients completed the Hamilton Depression Rating Scale and were further divided into two groups: patients with
depressive symptoms and non-depressed PD patients (nD-PD). Compared with the non-depressed patients, those with
depressive symptoms exhibited significantly increased regional activity in the left middle frontal gyrus and right inferior
frontal gyrus, and decreased ReHo in the left amygdala and bilateral lingual gyrus. Brain network connectivity analysis
revealed decreased functional connectivity within the prefrontal-limbic system and increased functional connectivity in the
prefrontal cortex and lingual gyrus in PDD compared with the nD-PD group. In summary, the findings showed regional
brain activity alterations and disruption of the mood regulation network in PDD patients. The pathogenesis of PDD may be
attributed to abnormal neural activity in multiple brain regions.
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Introduction

Up to 45% of Parkinson’s disease (PD) patients develop

depression [1], but the etiology for this is unclear [2]. The onset

of depression occurs early, prior to the onset of motor symptoms

[3]. PD with depression (PDD) may represent a specific subgroup

of PD patients [4]. It is unclear whether PD and depression have

common pathophysiological pathways. Functional neuroimaging

approaches have been applied to study in PD patients with

depression [5,6]. The Positron-Emission Tomography (PET)

studies have highlighted the involvement of serotonergic systems

in PDD in the median raphe nuclei and limbic structures, which is

similar to depression in non-PD patients [7,8]. A volumetric

magnetic resonance imaging (MRI) study suggested that there is a

negative correlation between the depression severity and gray

matter density in the right rectal gyrus and bilateral middle/

inferior orbitofrontal regions in PDD [9]. In a recent voxel-based

morphometry study, Kostic et al. found that loss of white matter

within the cortical–limbic network was positively associated with

PDD [10]. A event-related fMRI study found that there are

changed activities in the left mediodorsal thalamus and in medial

prefrontal cortex in PDD compared with those without depression

[6]. A recent study showed that depressed PD patients had

significantly decreased amplitude of low-frequency fluctuations in

the dorsolateral prefrontal cortex, ventromedial prefrontal cortex

and rostral anterior cingulated cortex compared with nD-PD

patients [5]. These neuroimaging studies indicated that the

prefrontal- limbic system contributes to mood network dysregu-

lation in PDD patients.

Resting-state functional MRI allows investigation of large-scale

functional networks at the whole brain level based on the temporal

correlation of spontaneous, blood oxygen level-dependent (BOLD)

fluctuations in low frequencies (,0.08 Hz) [11,12,13]. Resting-

state functional MRI (R-fMRI) reflects spontaneous neuronal

activity [14], and/or the endogenous or background neurophys-

iological processes of the brain [11,15]. Functional impairment has

been observed in fMRI studies on PD [16,17,18]. Previous R-
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fMRI studies focused on motor symptoms, but little attention has

been paid to depression in PDD.

Regional homogeneity (ReHo) is based on data-driven ap-

proach and thus requires no prior knowledge and have good test-

retest reliability [19], thus, it is more suitable for the study of a

disease with unclear pathological mechanism such as PDD. ReHo

[20] is suggested to evaluate the similarity between the time series

of a given voxel and its nearest neighbors [21] and reflect the

temporal homogeneity of the regional BOLD signal. Changed

ReHo value implies changed hemodynamic response. ReHo

supposed that voxels within a functional brain area were more

temporally homogeneous when this area is involved in a specific

condition [20]. This method has been used to explore the

functional regulation and to characterize the pathophysiological

changes in the resting state in patients with: Alzheimer’s disease

[22], PD [17,23], autism spectrum disorders [24,25] and attention-

deficit/hyperactivity disorder [26].

The present study used R-fMRI to examine human regional

homogeneity and functional connectivity in non-depressed PD

(nD-PD) patients, PDD patients and normal control (NC) subjects.

We hypothesized that: PDD patients would show ReHo differ-

ences in prefrontal-limbic systems; and connectivity analysis in the

PDD group would reveal mood regulation network disruption.

Materials and Methods

Participants
This study comprised 41 human patients with idiopathic PD (26

males, 15 females, mean age of 56.6 years, age range 41–65 years).

A diagnosis of PD was made based on: medical history; physical

and neurological examinations; response to levodopa or dopami-

nergic drugs; and findings of laboratory tests and MRI scans

conducted to exclude other diseases. All patients fulfilled the UK

Parkinson’s Disease Society Brain Bank criteria for idiopathic PD

[27]. Patients were excluded if they had used antidepressants in the

year preceding the study, or if they had cerebrovascular disorders,

a history of traumatic brain injury, dementia, seizures, or other

neurological or medical disease. In addition, to reduce the

influence of aged related cognitive and cerebrovascular degener-

ation or motion artifacts during MRI scan, patients older than 65

years and patients with severe motor symptoms were excluded. So

additional inclusion criteria were as follows: (1) age range from 40

to 65 years; (2) a H&Y stage equal to or less than 3.0 while in an

‘‘off’’ state; and (3) disease duration of less than 10 years. Patients

were divided into two groups: those with depression (PDD group)

and those without (nD-PD group). A diagnosis of depression was

made using the Diagnostic and Statistical Manual of Mental

Disorders version four (DSM-IV) criteria [28]. Shortly, all PDD

patients must have one or more of the two core criteria (depressed

mood, loss of interest or pleasure) and last for more than two

weeks. Neurological evaluation, which was conducted during the

‘‘off’’ medication state (wherein subjects refrained from taking

their PD medications for at least 12 hours prior to assess), included

the Hoehn and Yahr (H&Y) scale [29] and the unified Parkinson’s

disease rating scale (UPDRS III) and the Mini-Mental State

Examination (MMSE) [30]. The patients then were administered

the Hamilton Depression Rating Scale (HAMD) [31] and the self-

rating depression scale (SDS) [32]to assess their depression. All

neuropsychological evaluation and fMRI scans (for ReHo and

functional connectivity analysis) were implemented around the

same time.

25 normal subjects (16 males, 9 females, mean age of 56.7 years,

age range 49–65 years) who were matched in terms of age and sex

with patients served as controls. All normal subjects had a normal

neurological status and were without history of neurological or

psychiatric diseases. Detailed neuropsychological examination

included MMSE, HAMD and SDS were used to excluded

dementia and depression in all normal subjects.

All subjects recruited into the study gave their written informed

consent approved by the Ethics Committee of the First Affiliated

Hospital, Chongqing Medical University in China in accordance

with the Declaration of Helsinki.

Data Acquisition
All magnetic resonance images were acquired using a GE Signa

HDxt 3.0 T scanner (General Electric Medical Systems, USA)

with a standard eight-channel head coil. Foam padding was used

to minimize head motion and noise. High-resolution 3D-T1

(repetition time [TR] = 8.3 ms, echo time [TE] = 3.3 ms, flip

angle = 15u thickness/gap = 1.0/0 mm, field of view

[FOV] = 2406240 mm, matrix = 2566192) and conventional

MRI (T2-weighted FLAIR, TR = 8000 ms, TE = 126 ms,

TI = 1500 ms, thickness/gap = 5.0/1.5 mm,

FOV = 2406240 mm, matrix = 2566192) images were acquired.

R-fMRI data were acquired using an echo-planar image (EPI)

pulse sequence with the following parameters: 33 axial slices,

thickness/gap = 4.0/0 mm, in-plane resolution = 64664 pixels,

TR = 2000 ms, TE = 40 ms, flip angle = 90u,
FOV = 2406240 mm. A total of 240 time points were obtained

(duration = 8 min). During R-fMRI acquisition, all subjects were

asked to relax, remain still with their eyes closed, and not to move

or fall asleep.

Data Processing
The data were analyzed using Statistical Parametric Mapping

(SPM8) (http://www.fil.ion.ucl.ac.uk), Resting state fMRI data

analysis Toolkit (REST) software [33] (http://www.restfmri.net),

and the Data Processing Assistant for Resting-State fMRI -

Advanced (DPARSFA; http://www.restfmri.net), [34] with Ma-

tlab version 7.10.0.499 [35].

The first 10 time points were discarded to account for scanner

calibration and the acclimatization of subjects to the scanning

environment, after which 230 time points remained. The

preprocessing procedures included: time alignment across slices,

motion correction, within-subject registration between T1 and EPI

images, T1 segmentation, and the application of normalization

parameters to the BOLD fMRI datasets to register them to

Montreal Neurologic Institute (MNI) space, with voxels resampled

at 36363 mm. Linear trends were removed and a temporal filter

(0.01 Hz,f,0.08 Hz) was applied to eliminate low frequency

drift and physiological high frequency noise. Head motion can

influence on result even though traditional realignment was

performed [36,37]. All images were realigned to the first image to

account for head motion. All subject had a maximum displace-

ment in any of the cardinal directions (x, y, z) less than 2 mm, or a

maximum spin (x, y, z) less than 2u. In addition, following previous

studies [38], the mean relative displacement was used to measure

subjects’ head motion in scanner.

ReHo Analysis
Individual ReHo maps were generated for each subject using

the REST software; Kendall’s coefficient of concordance (KCC)

was calculated at each voxel to establish similarities between the

time series of each specific voxel and its 26 neighboring voxels

[20]. The KCC value was calculated to this voxel, and an

individual KCC map was obtained for each subject. To reduce the

influence of individual variations in the KCC value, ReHo maps

normalization was performed by dividing the KCC among each

fMRI Study of Parkinson’s Disease with Depression
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voxel by the averaged KCC of the whole brain. The calibrated

ReHo maps were further smoothed using an isotropic Gaussian

kernel with a full-width at half maximum (FWNM) of 46464 mm

[25].

Functional-connectivity Analysis
Five regions with PDD group vs nD-PD group ReHo

significantly differences were defined as regions of interest (ROIs).

Five areas were selected as seed regions based on the ReHo

findings. These included the left middle frontal gyrus, right inferior

frontal gyrus, left amygdala and bilateral lingual gyrus. The ROIs

were used as the seeds for functional connectivity analysis in the

resting state using REST. A seed reference time course was

obtained by averaging the time courses within each ROI.

Correlation analysis was carried out between the seed reference

and the whole brain in a voxel-wise manner [39]. In the

correlation analysis, eight nuisance covariates were regressed,

including: the white matter signal, the cerebrospinal fluid signal,

and six head motion parameters.

Statistical Analysis
Differences of age, MMSE scores, HAMD scores and SDS

scores among the three groups were compared by using one-way

analysis of variance (ANOVA), and Pearson x2 test was applied to

compare patient medications. Student t test was employed to

compare the illness duration and disease stage between PDD and

nD-PD group.

An ANOVA was performed on the resting-state REST data to

identify the ReHo maps from the patients and control group.

Voxels with a p value less than 0.05 and a cluster size greater than

1836 mm3 (68 voxels) were considered significantly different,

corresponding to a corrected p value less than 0.05 as determined

by AlphaSim correction in REST software. Subsequently, the

regions that showed significant differences were extracted as a

mask, and the RS-fMRI measures (i.e., ReHo values and the

strength of the functional connectivity) were subjected to post hoc

analysis. Statistical comparisons of the RS-fMRI measures

between each pair of groups (PDD vs nD-PD, PDD vs NC, nD-

PD vs NC) were performed using a two-sample post hoc t-test.

Corresponding to a corrected p value less than 0.05 as determined

by AlphaSim correction, a cluster size greater than 1755 mm3 (65

voxels) were considered significantly different.

Results

Demographic and Clinical Data
We acquired resting fMRI data from 41 patients and 25 normal

controls. Twenty of the patients were classified as depressed

according to the DSM-IV criteria. PDD showed higher HAMD

and SDS scores compared with those with nD-PD group

(P,0.001). According to the DSM-IV criteria, all patients in

PDD group had a minor depressive disorder. There was no

difference between the depressed and non-depressed patient

groups in terms of: duration of PD, H&Y stage, side initially

affected, medication or MMSE score (P.0.05). Importantly,

depressed PD patients were matched regarding PD motor severity

(according to UPDRS III) to nD-PD patients. Age and gender did

not differ in PD groups with controls as well as between patient

groups (Table 1).

Head Motion
There was no significant difference in head motion by measured

mean head motion between the three groups using ANOVA

analysis (P = 0.31). Therefore, the patients with PD and normal

controls in the present study were similar in head motion

characteristics.

ReHo
An ANOVA revealed significant differences in the ReHo index

between the PDD, nD-PD and NC groups in the following

regions: bilateral pallidum, bilateral insula, bilateral precentral

gyrus, bilateral lingual gyrus, bilateral cerebellum, left amygdala,

left middle frontal gyrus, left hippocampus, right inferior frontal

gyrus and right superior frontal gyrus (P,0.05; AlphaSim

corrected). A two-sample two-tailed t-test was then performed to

determine differences in the fitted mean ReHo indices for each

pair of (PDD, nD-PD and NC) groups. Compared with the nD-PD

group, the PDD group showed increased regional activity in the

left middle frontal gyrus and right inferior frontal gyrus, and

decreased ReHo values in the left amygdala and bilateral lingual

gyrus (P,0.05, AlphaSim corrected; Table 2 and Figure 1).

Compared with the NC group, the PDD patients showed

significant ReHo increases in the right cerebellum and right

inferior frontal gyrus, and decreases in the bilateral pallidum,

bilateral precentral gyrus, left hippocampus, left insula and right

lingual gyrus (AlphaSim corrected, P,0.05; Table 2). In addition,

compared with the NC group, the nD-PD group’s ReHo values

were significantly increased in the right superior frontal gyrus and

bilateral cerebellum, and no region decreased (AlphaSim correct-

ed, P,0.05; Table 2). The details of the peak coordinates and

cluster sizes are listed in Table 2.

Functional Connectivity
Functional connectivity analysis in a voxel-wise manner was

performed to explore differences in the brain networks of the three

groups. Based on the ReHo findings, we defined five regions of

interest (ROIs): left middle frontal gyrus, right inferior frontal

gyrus, left amygdala and bilateral lingual gyrus. In the PDD group,

the left middle frontal gyrus showed significant increased

connectivity with the right superior parietal gyrus and left

caudate,and significant decreased connectivity with the left inferior

temporal gyrus compared with the nD-PD group (P,0.05,

AlphaSim corrected; Table 3 and Figure 2a). In the PDD

group,the right inferior frontal gyrus showed significant increased

connectivity with the left lingual gyrus and right insula, and

significant decreased connectivity with the left amygdala, left

cerebellum, right cuneus and right precentral gyrus compared with

the nD-PD group (P,0.05, AlphaSim corrected; Table 3 and

Figure 2b). In the PDD group,the left amygdala showed significant

increased connectivity with the left middle frontal gyrus and left

superior occipital gyrus, and significant decreased connectivity

with the right inferior frontal gyrus compared with the nD-PD

group (P,0.05, AlphaSim corrected; Table 3 and Figure 2c). In

patients with PDD, the left lingual gyrus showed significant

increased connectivity with the bilateral median cingulated gyrus,

and significant decreased connectivity with the right superior

frontal gyrus and left middle frontal gyrus compared with the nD-

PD group (P,0.05, AlphaSim corrected, Table 3 and Figure 2d).

Meanwhile, when PDD comparing with nD-PD group, the right

lingual gyrus of PDD group has been observed significant

decreased connectivity with the right superior frontal gyrus

(P,0.05, AlphaSim corrected, Table 3 and Figure 2e). No

increased FC was found in the PDD group relative to the nD-PD

group (P,0.05, AlphaSim corrected). In addition, for the PDD

group, the prefrontal gyrus showed significant increased connec-

tivity with the left hippocampus and lingual gyrus, and had

significant decreased connectivity with the left amygdala and left

temporal pole compared with the NC group. In the nD-PD group,

fMRI Study of Parkinson’s Disease with Depression
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decreased functional connectivity with the prefrontal gyrus was

observed for the basal ganglia and cerebellum, and there was

increased functional connectivity with the hippocampus and

medial cingulate gyrus compared with the NC group (P,0.05,

AlphaSim corrected).

Table 1. Demographic information for the PDD/nD-PD and control groups.

Group N PDD nD-PD NC P-Value

(Male/Female) N = 20 (13 m/8 f) N = 21 (13 m/7 f ) N = 25 (16 m/9 f )

Age (Y) 55.967.4 57.366.1 56.765.3 0.250 w

Disease duration (Y) 3.461.7 4.062.4 NA 0.224 m

Disease stage (H&Y) 2.160.75 1.9560.63 NA 0.154 m

Side initially affected, R/L 12/8 11/10 NA 0.623 N

UPDRS III 39.4610.8 43.868.2 NA 0.078 m

MMSE (Mean 6Sem) 26.961.7 27.662.0 29.260.9 0.096 w

HAMD (Mean 6 Sem) 19.365.0 6.462.1 5.661.9 ,0.001 w

SDS (Mean 6 Sem) 6465.5 29.665.3 25.360.9 ,0.001 w

L-Dopa dose (mg/d) 406.26171.5 398.86242.2 NA 0.315 m

No. (%) of patients treated with pramipexole 17(85) 15(75) NA 0.421 N

No. (%) of patients treated with piribedil 7(35) 6(30) NA 0.700 N

NC: normal control, PDD: Parkinson disease patients with depression, nD-PD: non-depressed Parkinson’s disease patients, NA: not applicable, w: one-way analysis of
variance (ANOVA), m: two sample t-test, N: Pearson x2 test.
doi:10.1371/journal.pone.0084705.t001

Table 2. Brain regions exhibiting decreased and increased regional homogeneity among three groups.

Brain region Brodmann area Cluster size MNI T value

x y z

PDD,nD-PD

Left lingual gyrus 18 95 218 279 213 23.98

Left amygdala 34 105 220 24 215 23.81

Right lingual gyrus 18 89 13 287 27 23.44

PDD.nD-PD

Left middle frontal gyrus 46 98 236 19 39 4.44

Right inferior frontal gyrus 45 101 49 25 5 3.52

PDD,NC

Left hippocampus 20 107 232 220 213 25.01

Left pallidum 103 223 21 0 24.26

Left insula 48 108 237 214 12 23.87

Right precental gyrus 6 111 51 5 45 23.81

Right pallidum 111 19 6 0 23.63

Right fusiform gyrus 37 97 26 263 211 23.61

Left precental gyrus 6 107 248 25 46 23.54

PDD.NC

Right inferior frontal gyrus 45 98 53 21 2 4.20

Right cerebellum 109 37 250 245 3.09

nD-PD .NC

left cerebellum 90 219 250 255 3.66

Right cerebellum 91 20 249 255 3.53

Right superior frontal gyrus 8 115 10 27 54 3.38

NC: normal controls, PDD: Parkinson’s disease patients with depression, nD-PD: non-depressed Parkinson’s disease patients. A.B: Compared with B group, A group
showed increased ReHo values. A,B: Compared with B group, A group showed decreased ReHo values (P,0.05, AlphaSim corrected).
doi:10.1371/journal.pone.0084705.t002
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Discussion

The present study demonstrated that the ReHo of spontaneous

activity in the brain and the patterns of connectivity of brain

networks were abnormal in PDD patients during resting state.

Compared with the nD-PD group, the PDD patients showed

significant ReHo value decreases in the bilateral lingual gyrus and

left amygdala, and increases in the left middle frontal gyrus and

right inferior frontal gyrus. Functional connectivity analysis

revealed decreased connectivity with prefrontal gyrus was

observed in PDD in the left amygdala, Left inferior temporal

gyrus and left cuneus, while increased connectivity with the

prefrontal gyrus was in the right superior parietal gyrus, left lingual

gyrus and right insula compared with the nD-PD patients.

The ReHo approach adopted is based on the hypothesis that

brain activity occurs in voxel clusters rather than a single voxel,

thus the KCC was used to evaluate the similarity of the time series

Figure 1. Differences in ReHo values between the PDD and nD-PD groups. (P,0.05, AlphaSim corrected).
doi:10.1371/journal.pone.0084705.g001

Table 3. Differences of functional connectivity between PDD and nD-PD.

Seed Region Brodmann area MNI Cluster size T value

x y z

Left middle frontal gyrus

Right superior parietal gyrus 7 28 270 56 118 4.48

Left caudate 25 26 22 0 118 4.09

Left inferior temporal gyrus 20 246 215 220 119 23.69

Right inferior frontal gyrus

Left lingual gyrus 18 232 293 214 112 4.18

Right insula 48 40 8 7 115 3.42

Right cuneus 7 4 277 42 93 24.29

Right precental gyrus 4 54 212 44 96 23.42

Left amygdala 34 219 24 214 89 23.17

Left cerebellum 227 277 230 107 23.04

Left amygdala

Left middle frontal gyrus 11 226 52 5 118 3.69

Left superior occipital gyrus 7 218 263 40 112 3.53

Right inferior frontal gyrus 45 50 20 0 96 24.32

Left lingual gyrus

Right superior frontal gyrus 8 8 27 64 92 24.61

Left middle frontal gyrus 8 31 27 52 86 24.95

Right median cingulate gyrus 13 215 52 112 4.87

Left median cingulate gyrus 24 25 3 42 84 4.72

Right lingual gyrus

Right superior frontal gyrus 8 8 27 64 92 24.61

doi:10.1371/journal.pone.0084705.t003
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of a given voxel to those of its nearest neighbors [20]. It can reflect

neural synchronization of local brain areas. Synchronized

oscillatory activity in the cerebral cortex is thought to be essential

for coordination and integration across space and time of activity

in anatomically distributed but functionally related neural

elements [40]. The increased ReHo may reveal abnormal

enhancement in the intraregional neural activity. On the contrary,

reduced ReHo of the local brain regions reflects the consistency of

reduced neuronal activity in those areas which suggests that the

brain dysfunction may exist.

In the current study, the ReHo values for the PDD patients

were decreased in the left amygdala and bilateral lingual gyrus,

and increased in the left middle frontal gyrus and right inferior

frontal gyrus. The middle frontal gyrus, inferior frontal gyrus and

amygdala have been recognized as the key regions associated with

mood regulation [41,42,43]. In non-PD patients with a major

depressive disorder, the medial and inferior frontal cortex regions

appear to be relatively consistently overactive at rest, and

overactive during the induction of negative affect [44]. The

aberrant ReHo in those regions in our study may represent

spontaneous neural dysfunction in mood processing and top-down

modulation in PDD. The abnormal spontaneous neural activity in

the medial frontal gyrus might be an important factor for the

development of depressive symptoms in PD [6,45]. The results of a

diffusion tensor imaging study showed a decrease in fractional

anisotropy values in the white matter of the frontal lobes bilaterally

in a PDD patient. Fibers to the striatum and thalamus constitute

part of the limbic basal ganglia-thalamocortical circuits, which are

important for mood regulation [6,46]. The decreased ReHo in

amygdala in the present study reflects the local destruction of the

synchronization of spontaneous low-frequency BOLD fluctuations

in the region and implies functional deficits. The degeneration of

dopaminergic pathways induces an abnormal function of amyg-

dale in PD [47]. The amygdala mediates fear and anxiety

processing [48], and functional abnormalities in this region

correlate with the severity of endogenous depression [49]. A

depressed PD cohort were shown to have lower [11C] RTI-32

binding in the amygdala compared with a non-depressed PD

group [50]. Together, the findings suggest that abnormal

spontaneous neural activity in the frontal gyrus and amygdala

might partly contribute to the pathogenesis of emotional

symptoms seen in PD patients.

Compared with the nD-PD group, the PDD patients in the

current study showed significant ReHo value decreases in the

bilateral lingual gyrus. The lingual gyrus is assumed to play a

critical role in the visual recognition circuit [51,52] and be

involved in the perception of mood [53]. The disturbances of the

visual recognition network may partly contribute to the dysfunc-

tional emotional behavior of PD patients with depressive

symptoms. We therefore speculate that there might be an

association between the ReHo value changes in these regions in

PDD patients and the mood symptoms seen in these patients. The

results support the hypothesis that PD patients with depressive

symptoms show disruption of the mood regulation network.

Resting-state functional connectivity refers to temporal corre-

lations between remote brain regions. Using a functional

connectivity analysis, a previous study found highly synchronous

low frequency fluctuations of resting-state BOLD signals among

different cortices in healthy adults [14,54,55]. Brain regions with

similar functions and known anatomical connections have shown

strong correlations at rest [11,56]. Studies of the interactions

between brain areas may provide more valuable information

regarding our understanding of functional changes than simply

investigating regional brain activity. The current study therefore

used a seed-based correlation analysis to explore resting-state

functional connectivity patterns of the abnormal ReHo brain

regions in PDD and nD-PD patients. On the basis of the ReHo

finding, we further explore the alterative connection pathways

with other brain regions at the whole brain level using functional

connectivity analysis.

Using a functional connectivity analysis in a voxel-wise manner,

our study showed altered connectivity between the amygdala and

prefrontal gyrus in the PDD group. A previous study of functional

connectivity using structural equation modeling indicated a mood

processing bias, with disconnection between the amygdala and

prefrontal cortex in depression without PD [57]. In addition,

Perlman et al. stated that distinguishable patterns of abnormal

amygdala–prefrontal cortex circuitry may result in abnormal

mood processing and regulation, which may underlie changes

from remission to depression in bipolar disorder [58]. Consistent

with these studies, alterations in the strength of connectivity

between the amygdala and prefrontal brain regions in the current

study provide a neural basis for disrupted emotional recognition

processing in the PDD patient.

Our findings showed significantly increased connectivity

between the right inferior frontal gyrus and the right insula in

PDD compared with nD-PD group. Fitzgerald et al. have shown

the inferior frontal gyrus to be influenced by both basal activity

and by responses to affective stimuli in depressed patients without

PD [44]. The insular cortex has also been implicated in the mood

regulation network [59,60], and potentially plays a role in

integrating subcortical and cortical mood processes [61]. Suslow

et al. have revealed activation in the insular cortex associated with

negative priming [62]. Meanwhile, the PDD patient showed

decreased FC between the right inferior frontal gyrus and left

cerebellum, compared with the nD-PD group in our study. The

cerebellum has been demonstrated to be involved in emotion and

cognition in recent years [63,64]. Decreased FC also was observed

between the cerebellum and inferior frontal gyrus in treatment-

resistant depression patients relative to healthy controls [65].

Hence we speculate that, in our study, altered FC between the

right inferior frontal gyrus and left cerebellum may indicate mood

dysregulation seen in PDD.

When comparing the PDD group with nD-PD group, a

significant increased in functional connectivity between the left

middle frontal gyrus and the right parietal gyrus. A previous study

emphasized the general role of the right parietal lobe in the

regulation of anticipation of negative stimuli [66]. In addition, the

parietal lobe appears to be important in attention [67,68].

Therefore, the impairment of brain regions implicated in the

mood regulation network within a PDD patient may be reflected

Figure 2. Statistical parametric map showing the significant differences of functional connectivity between PDD and nD-PD
groups. (a) Differences in functional connectivity for the left middle frontal gyrus seeds between the PDD and nD-PD groups. (b) Differences in
functional connectivity for the right inferior frontal gyrus between the PDD and nD-PD groups in the resting state. (c) Differences in functional
connectivity for the left amygdala seeds between the PDD and nD-PD groups. (d) Differences in functional connectivity for left lingual gyrus seeds
between the PDD and nD-PD groups. (e) Differences in functional connectivity for right lingual gyrus seeds between the PDD and nD-PD groups. T
score bars are shown on the right. Green spot: the position of the region of interest.
doi:10.1371/journal.pone.0084705.g002
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by increased attention towards negative stimuli and decreased

responses to positive stimuli.

Our results for the PDD group showed increased functional

connectivity with the right inferior frontal gyrus ROIs in the left

lingual gyrus, and decreased functional connectivity in the right

cuneus compared with nD-PD patients. The lingual gyrus and

cuneus are regarded by some as key regions of the visual

recognition circuit [69]. The abnormality connectivity of the visual

cortical areas including the lingual cortex has been observed in

major depression patient without PD [70], which may be related

to impaired selective attention and working memory [71]. Cant

et al. suggested that the cuneus may be involved in the extraction

of object color relatively early in visual processing, whereas

information about texture may implicate the lingual gyrus [72]. It

is acknowledged that emotional modulation can influence the

processing of a visual cue [73]. Our findings may therefore reflect

a visual recognition processing characteristic of PD patients with

depressive symptoms.

When comparing the PDD group with the nD-PD group, the

bilateral lingual cortex showed significant increased connectivity

with the bilateral median cingulate gyrus, and significant

decreased connectivity with the right superior frontal gyrus and

left middle frontal gyrus compared with the nD-PD group. The

lingual gyrus were regarded as the key regions related to visual

recognition circuit [52] and may be involved in the perception of

mood [53]. Previous task related fMRI study noted that an

alteration of visual cotex activity in depression without PD was

associated with a reduction of distractors processing compared

with healthy controls [71]. The middle frontal gyrus and superior

frontal gyrus assumed to play an important role in emotional

processing, such as attention to emotion, identification, or

regulation of emotion [41,74]. The altered functional connectiv-

ities between visual cortex and prefrontal gyrus have been found in

major depression without PD patients, which would pay more

attention toward distracting information [71]. The median

cingulate gyrus, which are considered to be a key structure of

the pain matrix [75,76], may integrate emotional signal [77]. The

region showing a positive activity, when normal adult observed

painful stimuli [78]. Consistent with these studies, the abnormal

connectivity might indicate that lingual gyrus might partially

participate in mood regulation of PDD.

Comparative differences in network connectivity between the

PDD group and normal controls may reveal both parkinsonian

and depressive characteristics. We found increased brain network

connectivity between the prefrontal gyrus and lingual gyrus,

decreased connectivity between the limbic system and prefrontal

gyrus in the PDD group compared with normal subjects. This

difference is consistent with a previous study which showed that

the loss of white matter within the cortical–limbic network was

positively associated with depression in PD patients [46]. Most

studies have shown these regions to be the core mood regulation

network regions [44,57].

Compared with normal subjects, the current study found that

the nD-PD patients had decreased functional connectivity between

the prefrontal gyrus and the basal ganglia and cerebellum, and

increased functional connectivity with the hippocampus and

medial cingulate gyrus. Researchers have reported that impaired

control could arise from the dysfunction of the basal ganglia, or the

thalamus and/or frontal lobes [79]. These results might partially

explain the movement disorder symptoms seen in these patients

[17].

The limitations of our study include the relatively small sample

size and the clinically heterogeneous group. L-DOPA might

influence brain activity over time [23,80,81]. In our study, all

patients with PD were assessed while stopped their medication for

12 hours prior to scanning to minimize the impact of medicine.

However, the potentially confounding effects of chronic dopami-

nergic medications could not be avoided, absolutely elimination of

medications influence is impossible. Female sex, younger age of

onset and right-sided symptom were previously reported to be risk

factors for depression in Parkinson’s disease [82,83,84,85]. PDD

and nD-PD group did not differ in age, gender and side of onset,

so the impact of those factors did not be considered. All patients

had a minor and no patient had a major depressive disorder in this

study. Therefore the correlation between the severity of the

depression and ReHo with functional connectivity has yet to be

revealed in the study. Future studies will need to a large-scale,

clinically homogeneity sample to investigate the functional

changes of ReHo and connectivity over the evolution of depression

in PD.

Taken together, the current results show that patterns of

neuronal coherence in resting state were altered in PDD patients.

There were widespread differences in the ReHo values between

PDD and nD-PD patients within the left middle frontal gyrus,

right inferior frontal gyrus, left amygdala and bilateral lingual

gyrus. Our findings suggest decreased functional connectivity

within the prefrontal-limbic system, and increased functional

connectivity in the prefrontal cortex and lingual gyrus in PDD

compared with nD-PD group. Therefore, abnormal activity in this

region may contribute to the development of depression.
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