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Prostate cancer (PCa) is the most common cancer among men in the U.S. African 
American (AA) men have a higher incidence and mortality rate compared to European 
American (EA) men, but the cause of PCa disparities is still unclear. Epidemiologic stud-
ies have shown that vitamin D deficiency is associated with advanced stage and higher 
tumor grade and mortality, while its association with overall PCa risk is inconsistent. 
Vitamin D deficiency is also more common in AAs than EAs, and the difference in serum 
vitamin D levels may help explain the PCa disparities. However, the role of vitamin D 
in aggressive PCa in AAs is not well explored. Studies demonstrated that the active 
form of vitamin D, 1,25-dihydroxyvitamin D, has anti-inflammatory effects by mediating 
immune-related gene expression in prostate tissue. Inflammation also plays an important 
role in PCa pathogenesis and progression, and expression of immune-related genes 
in PCa tissues differs significantly between AAs and EAs. Unfortunately, the evidence 
linking vitamin D and immune response in relation to PCa is still scarce. This relationship 
should be further explored at a genomic level in AA populations that are at high risk for 
vitamin D deficiency and fatal PCa.
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inTRODUCTiOn

Prostate cancer (PCa) is the most common cancer among men in the U.S., and African American 
(AA) men have higher PCa incidence and mortality than other racial/ethnic groups. Social and 
behavioral factors affect stage, grade, treatment choice, and mortality (1, 2), but the etiologies for 
the PCa disparities are still being elucidated. Epidemiologic studies have showed that vitamin D 
deficiency is associated with advanced stage, higher tumor grade, and mortality (3–5), while its 
association with overall PCa incidence is inconsistent (6–9). Vitamin D deficiency is also common 
in AAs, even AAs living in southern U.S. (10–12), and differences in serum vitamin D levels may 
help explain PCa disparities (13, 14). However, epidemiologic studies have mainly been conducted in 
men of European descent, and the role of vitamin D in AAs, who are more likely to have aggressive 
PCa, has not been well explored.

Several pathways for how vitamin D affects PCa pathogenesis and progression have been 
explored. The active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D], inhibits tumor 
cell proliferation and induces apoptosis (15, 16) 1,25(OH)2D also modulates expression of immune-
related genes in prostate tissue (17). 1,25(OH)2D binds to vitamin D receptor (VDR) and regulates 
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expression of hundreds of genes that have vitamin D response 
elements (VDREs), a segment of DNA found in the promoter 
region of vitamin D target genes. This transcriptional regulation 
by 1,25(OH)2D and VDR can affect the production of immune-
related biomarkers (18, 19). Inflammation also plays an important 
role in PCa pathogenesis (20), and expression of immune-related 
genes in PCa tissues differs significantly between AAs and 
European Americans (EAs) (21–23).

In this review, we discuss the relationships and interactions 
between vitamin D and immune response. Many recent studies 
have shown the role of vitamin D on immune response, but the 
evidence linking vitamin D and immune response in the context 
of PCa is still scarce. We argue that this relationship should be 
investigated at genomic level, especially in AA populations that 
are at high risk for both PCa and vitamin D deficiency.

PROSTATe CAnCeR DiSPARiTieS 
AnD AFRiCAn AMeRiCAnS

African American men have a 59% higher incidence and more 
than a twofold higher mortality rate compared to EA men (24). 
AAs are often diagnosed with PCa at younger ages and have PCa 
with a higher Gleason score, clinical stage, and prostate-specific 
antigen (PSA) level (25–28). AA patients with low risk PCa tend 
to have worse clinical features after undergoing prostatectomy 
(29, 30). Molecular differences in tumors from AAs and EAs 
exist and may result in a faster growth or earlier transformation 
to aggressive PCa in AAs compared to EAs (31–33). The cause 
of tumor biological differences between AAs and EAs is still 
unknown, but ancestry-related factors, such as genetic variation, 
vitamin D deficiency, and immune functions, may contribute.

viTAMin D AnD PROSTATe CAnCeR

Vitamin D is believed to have protective effects on PCa, especially 
for aggressive PCa (34, 35). Epidemiologic studies have shown 
that PCa patients with low serum 25-hydroxyvitamin D [25(OH)
D] levels are likely to have higher PCa stage, grade, and mortality 
(3, 4, 36–38). On the other hand, association with overall PCa 
risk is inconsistent, and many studies have shown no association  
(4, 6, 7, 9, 39–42). Interestingly, the Selenium and Vitamin E 
Cancer Prevention Trial revealed that both low and high vitamin 
D levels increased PCa risk (43). Because vitamin D deficiency 
is very common among AAs (44–49), the higher prevalence of 
vitamin D deficiency may account for a proportion of PCa dis-
parities (13, 14, 34). However, only a few studies demonstrated 
the association of vitamin D and PCa in AAs (5, 50).

25(OH)D is the main circulating form of vitamin D, and it 
is metabolized to the biologically more active, but less abun-
dant, 1,25(OH)2D in the kidney by 1α-hydroxylase (Figure  1) 
(51). Both forms of vitamin D are transported to the prostate 
and other organs, and 1α-hydroxylase present in the prostate 
converts 25(OH)D to 1,25(OH)2D (52). Because 25(OH)D is 
more abundant than 1,25(OH)2D, both metabolites may have 
important roles in the prostate. Results of various experiments 
suggest that 1,25(OH)2D inhibits growth of prostate epithelial 

cells and PCa cells by inducing cell cycle arrest and apoptosis 
(15, 53–55). Vitamin D inhibits the tumor cell proliferation and 
induces apoptosis through activities of the VDR (56). 1,25(OH)2D 
attaches to the VDR, a transcription factor that binds to VDREs 
usually in the promoter region of vitamin D-responsive genes. 
Subsequently, activated VDR interacts with coactivators or core-
pressors to activate or repress these vitamin D-responsive genes. 
The VDR is expressed in prostate epithelium (57). Expression of 
VDR decreases after age 60 (58), and PCa patients with low VDR 
expression are more likely to have advanced and lethal PCa (59).

inFLAMMATiOn AnD PROSTATe CAnCeR

Inflammation may play a role in PCa pathogenesis and progres-
sion (20, 60–62), but epidemiologic studies have shown conflicting 
evidence. In the placebo arm of the Prostate Cancer Prevention 
Trial, men who had at least one biopsy core with inflammation 
in benign prostate tissue had increased odds of overall PCa and 
high grade PCa (63). In the REduction by DUtasteride of Prostate 
Cancer Events (REDUCE), use of aspirin and/or non-steroid 
anti-inflammatory drugs (NSAIDs) reduced odds of overall PCa 
and high-grade PCa (64), but baseline acute and chronic inflam-
mation was associated with reduced PCa risk at follow-up (65).

Although evidence linking inflammation and PCa is limited in 
EA populations, and prostate biopsy specimens from AA patients 
revealed infiltration of immune cells more frequently than speci-
mens from EA patients (66). The difference in the inflammatory 
prostatic microenvironment between AAs and EAs may explain 
some of the PCa disparities. Microarray gene expression studies 
revealed different gene expression patterns between AA and EA 
prostate tumors for genes in immune-related pathways, including 
cytokines (e.g., IL1B, IL6, and IL8), which were over-expressed 
in PCa tissues from AAs compared to tissues from EAs (21–23, 
67). Many genes were also differentially expressed in the stromal 
compartment, and approximately 20% of the identified pathways 
are immune-related, especially cytokine-mediated pathways 
(23). Giangreco et  al. (57) also found that expression of IL6 is 
more than 18-fold higher in PCa-associated stroma than in PCa 
or benign epithelium. These studies suggested that both stromal 
and epithelial cells differentially express immune-related genes 
and contribute to the inflammatory environment. The stroma 
surrounding epithelium is known to play an important role in 
prostate development as well as PCa progression. The stroma 
microenvironment is complex and consists of monocytes, 
macrophages, T cells, and neutrophils alongside smooth muscle 
cells, myofibroblasts, fibroblasts, and collagen fibers (68). Stromal 
components regulate epithelial cell differentiation and prolifera-
tion and also mediate immune response of epithelial cells. The 
prostatic stroma becomes reactive early in PCa development and 
coevolves with epithelial cells during progression (68, 69).

Genetic variants may affect expression of genes involved 
in immune response and also angiogenesis. Genetic studies 
conducted mainly in EAs showed associations of inflammation 
pathway gene single nucleotide polymorphisms (SNPs) with PCa, 
and evidence of associations with aggressive PCa was stronger 
(70–74). Recent studies in African descent populations also 
showed that SNPs in many inflammatory genes were associated 
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FiGURe 1 | vitamin D inflammation pathways of prostate cancer. Vitamin D metabolites are transported to the prostate. 25(OH)D is locally metabolized 
to 1,25(OH)2D, and 1,25(OH)2D binds to vitamin D receptor (VDR) with coactivators. This vitamin D and VDR complex modulates immune response by 
regulating expression of vitamin D target genes. The genes involved in immune response can be direct targets with vitamin D response element or in downstream 
in the pathways.
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with PCa (74–79). Allele frequencies of cytokine gene SNPs dif-
fer significantly between AAs and EAs, and the frequencies of 
alleles that upregulate proinflammatory cytokines are higher in 
AAs than in EAs (80, 81). Cytokines modulate immune response 
involved in angiogenesis, and proinflammatory cytokine levels 
are elevated in advanced PCa patients (82–84). The levels of 
inflammatory markers in serum also vary between racial/ethnic 
groups, and AAs have higher levels of circulating proinflamma-
tory markers than EAs (85, 86).

However, the effects of genomic variants on the expression of 
inflammatory genes and the production of cytokines have not 
been well explored. Moreover, chronic inflammation may cause 
epigenetic changes and genomic instability, which may promote 
aggressive PCa in AAs. Additionally, more research is needed to 
uncover biologically significant environmental exposures that 
contribute to the differential immune response between AAs 
and EAs.

viTAMin D AnD inFLAMMATiOn

In addition to calcium homeostasis, vitamin D also functions as a 
modulator of innate and adaptive immune response. Population-
based studies, as well as molecular studies, have demonstrated 
that vitamin D is implicated in many immune-related diseases, 
such as asthma, atherosclerosis, type 2 diabetes, and autoim-
mune diseases (87, 88). Serum 25(OH)D levels are also inversely 
associated with circulating proinflammatory cytokine levels 
(89–96). Vitamin D supplementation and fortification likely 

reduce serum proinflammatory markers’ levels (97–101), but 
other supplementation trials have shown no significant effects of 
vitamin D supplementation on proinflammatory markers levels 
(102–105). One study explored the relationship between circulat-
ing 25(OH)D and proinflammatory markers in AAs (105). In that 
study, baseline 25(OH)D levels was significantly associated with 
C-reactive protein levels, but 3 months of supplementation did 
not affect inflammatory markers’ levels. These studies varied in 
the participants’ baseline 25(OH)D levels, length of the trials, and 
supplementation dosage. In addition, individual genetic variation 
in vitamin D metabolism and signaling may impact response to 
vitamin D supplementation and effectiveness of supplementation 
to regulate inflammatory response (106).

Vitamin D modulates immune response by regulating expres-
sion of immune-related genes, such as cytokines, in very complex 
ways through the VDR activities. VDR is a nuclear transcription 
factor that interacts with a multitude of signaling pathways and 
thereby regulates the inflammatory response through transcrip-
tion (88). Genome-wide screening using non-prostate cell lines 
(immune cells and colorectal cancer cells) recently identified 
over 10,000 new VDR-binding sites (107), and many cytokines, 
cytokine receptors, and other immune-related genes were identi-
fied as VDR targets (108–110). Vitamin D supplementation can 
also alter the expression of genes involved in immune response, 
including CD14, the gene that encodes surface antigen expressed 
on monocytes and macrophages, and NFKBIA, a gene for a 
protein that inhibits NF-κB, which plays a key role in regulat-
ing the immune response to infection (106, 111). Other studies 
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found that polymorphisms in the VDR affect cytokine expression 
and protein production in peripheral blood mononuclear cells 
(112–114).

1,25(OH)2D binds to the VDR present on B cells, T cells, and 
antigen-presenting cells and affects the local immunologic milieu 
(115). The VDR gene expression and VDR signaling affect T cell 
development, differentiation, and function (116). In vitro studies 
have also shown that 1,25(OH)2D reduces production of proin-
flammatory cytokines, including IL-6, IL-8, and tumor necrosis 
factor α (TNF-α), in monocytes, macrophages, and preadipocytes 
(117–119). The prostate, like many other organs, harbors immune 
cells, and the cytokines produced by immune cells in the prostate 
may promote PCa pathogenesis, proliferation, and metastasis.

iMPLiCATiOnS FOR PROSTATe CAnCeR

In the prostate, 1,25(OH)2D inhibits production of proinflamma-
tory molecules that contribute to PCa initiation and growth (16, 
17), but the molecular pathways involving vitamin D and inflam-
mation in the context of PCa is not well explored. We know that 
for prostate epithelial cells treated with 1,25(OH)2D, TNFα, IL6, 
and IL8 expression is suppressed, while TNFα and PTGS2 expres-
sion is suppressed in stromal cells (57). PTGS2 encodes COX-2, 
cyclooxygenase 2, an enzyme that converts arachidonic acid to 
proinflammatory prostaglandins. PTGS2 levels are higher in PCa 
(120, 121) and 1,25(OH)2D suppressed PTGS2 expression in PCa 
cells (122). 1,25(OH)2D also inhibits NF-κB signaling reducing 
IL-8 production (123). NF-κB is a protein complex involved in 
the regulation of transcription of numerous genes involved in 
inflammatory and immune response. Specifically, 1,25(OH)D 
reduces downstream production of IL-8 production by inhibiting 
the binding of NF-κB to DNA response elements (Figure 1).

Genome-wide screening using non-prostate cell lines found 
little overlap in VDR-binding sites, suggesting VDR binding is 
cell-specific (107). Thus, a study using prostate tissue is neces-
sary in order to identify prostate-specific VDR-binding sites and 
to further understand the role of vitamin D in PCa. However, 
microarray studies using PCa cell lines have identified some VDR 
targets, and some of the targets are genes mediating downstream 
productions of cytokines (18, 19). One of the VDREs that were 
identified is mitogen-activated protein kinase phosphates 5 
(MKP5). MKP5 was upregulated in response to 1,25(OH)2D 
treatment (18). Upregulation of MKP5 inactivated p38 resulting 
in reduced IL-6 production (124). 1,25(OH)2D also attenuated 
TNF-α-stimulated p38 activity to reduce IL-6 production.

1,25(OH)2D can also impact inflammation and PCa through 
its regulation of microRNAs (miRNAs) expression. miRNA is a 
small non-coding RNA molecule of about 22 nucleotides that has 
post-transcription gene regulatory functions. Studies have identi-
fied miRNAs that are regulated by 1,25(OH)2D (125–128), and 
eight miRNAs, including miR-100 and mi125b, were positively 
correlated to prostatic 1,25(OH)D levels from PCa tissues from 
the vitamin D supplementation clinical trials (129, 130). Some 
of these miRNAs are also involved in the regulation of cancer-
associated inflammatory response (16, 131).

The aforementioned studies provided some mechanistic 
insights into vitamin D regulation of prostatic inflammation. 

PCa develops and grows slowly over decades, indicating that the 
protective effects of vitamin D must include regulatory processes 
other than cell proliferation. Given the well-characterized actions 
of vitamin D on immune cells, vitamin D’s anti-inflammatory 
actions are likely to influence PCa initiation and progression. 
However, previous studies have only identified a few vitamin 
D inflammatory pathways, which could putatively lead to 
PCa, and there are other relationships between vitamin D and 
immune-related genes for PCa initiation and progression remain 
unexplored. Further investigation is necessary to elucidate the 
mechanisms, by which vitamin D regulates immune gene expres-
sion in indolent and aggressive prostate tumors.

CLiniCAL SiGniFiCAnCe AnD 
FUTURe DiReCTiOnS

Understanding how vitamin D affects PCa initiation and progres-
sion may contribute to the development of better primary preven-
tion and therapeutic strategies using vitamin D supplementation, 
especially AAs who are at high risk for both vitamin D deficiency 
and aggressive PCa. In a vitamin D supplementation trial among 
healthy AA men from Boston, 3 months of supplementation use 
did not lower PSA levels (132), but there are several clinical trials 
that have demonstrated benefits of vitamin D supplementation in 
PCa patients. PSA velocity and PSA doubling time are strong pre-
dictors of PCa mortality, and persistently rising PSA levels after 
radical prostatectomy or radiation therapy indicates biochemical 
recurrence (133). In vitamin D supplementation trials among 
PCa patients, supplementation reduced PSA levels and rate of 
PSA rise, and increased PSA doubling time (130, 134, 135). In 
a pilot clinical trial of low risk PCa patients who were on active 
surveillance and had a repeat biopsy at 1 year (27% AAs), sup-
plementation did not lower their PSA levels, but men on supple-
ments had a decreased number of positive cores and no increase 
in Gleason Score (136). In another vitamin D supplementation 
trial in Canada that included four (6%) black Canadians, prostatic 
25(OH)D and 1,25(OH)2D were significantly higher in supple-
ment groups (130). In laser-capture microdissected PCa epithe-
lium from the study, PTGS2 expression was lower in the highest 
prostatic 1,25(OH)2D tertile compared to the lowest tertile (57).

In these vitamin D supplementation trials, supplementation 
improved clinical characteristics of many PCa patients but not 
all. Future studies need to investigate dosage necessary for the 
non-responders and genetic variations, epigenomic changes, 
and biological and behavioral factors that modify the efficacy 
of vitamin D supplementation in non-responders. For example, 
VDR and inflammatory gene variants may alter the effectiveness 
of vitamin D supplementation. It is also possible that combined 
use of vitamin D supplement and NSAIDs that inhibit COX-2 
enzymatic activities is more effective for primary prevention and 
clinical management (17, 122).

Despite the high PCa incidence and mortality in AAs and 
tumor biological differences between AAs and EAs, AAs are still 
underrepresented in PCa epidemiologic studies, clinical trials, and 
molecular mechanistic studies. Differences in genetic variation 
partly account for the PCa disparities between AAs and other racial/
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ethnic groups (137–141). However, genome-wide association study 
in AAs did not identify immune and vitamin D-related gene variant 
as a risk locus for PCa, and it is likely that behavioral and biological 
factors, such as serum vitamin D levels, modify the associations 
between immune and vitamin D-related gene variants and PCa. 
Future studies need to explore these behavioral and biological 
factors that modify the relationship between PCa and immune 
response. Vitamin D may modify associations between sequence 
variants in immune-related genes and PCa. Sequence variants, 
especially in and around VDRE, may have heterogeneous effects 
on PCa between vitamin D-deficient and -sufficient individuals.

Future studies also need to explore the epigenomic effects of 
vitamin D. Vitamin D may regulate immune response through 
epigenetic mechanisms. Vitamin D supplementation may induce 
epigenetic changes to VDR and VDR targets (142, 143). Diverse 
methylation patterns were observed between a 1,25(OH)2D-
responsive non-malignant prostate cell line and a non-responsive 
PCa cell line after treatment with vitamin D (144). It is clear 
though those actions of the VDR are very complex. Epigenetic 
regulations by VDR involve interactions with corepressors, such 
as NCOR1, histone deacetylases (HDACs), and miRNA, to repress 
transcription and with coactivators and histone acetyltransferases 
(HATs) for gene transcription (142, 145). However, the epigenetic 

regulatory role of vitamin D in inflammatory response in PCa 
cells has not been explored.

In conclusion, chronic vitamin D deficiency may create a tumor 
microenvironment with increased inflammation. This type of tumor 
microenvironment could be more common in PCa from AA patients 
than EA patients or could cause tumors to become more aggressive. 
However, the vitamin D inflammation pathways have not been a 
well-explored mechanism in PCa pathogenesis and progression. 
Future studies need to explore this relationship in order to improve 
our understanding of the biologic basis of PCa health disparities.
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