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Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and respon-
sible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant
(MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity
and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The
current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive
measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the
identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using
reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach,
4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found
to be more promising vaccine candidates. We applied a molecular docking approach of selected
8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug
molecule with favorable interactions with the target active site residues of 5 drug target proteins viz.,
biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-
alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be
used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment
of multidrug-resistant staphylococcal infection.

Keywords: methicillin-resistant Staphylococcus aureus; core genome; reverse vaccinology; subtractive
genome approach; drug target; vaccine candidate; molecular docking

1. Introduction

Methicillin-resistant Staphylococcus aureus is a major human and animal pathogen, lead-
ing to cause infections ranging from skin and soft tissue infections (SSTI) to life-threatening
infections such as endocarditis, bacteremia, and osteomyelitis [1–4]. The genomic plasticity
of MRSA has facilitated the acquisition of antibiotic resistance genes (ARGs) and virulence
factors-encoding genes (VFGs) that led to the emergence of multidrug-resistant (MDR) and
hypervirulent MRSA. The emergence of the MDR strain has led to highly challenging issues
in antibiotic therapy [5]. Consequently, the morbidity and mortality rates caused by MRSA
infections have a substantial impact on health concerns [6]. The mortality rates of MRSA
infections are higher than the combined mortality rates of HIV/AIDS, Parkinson’s disease,
emphysema, and homicide [7,8]. Thus, the prevention and control of multidrug-resistant
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MRSA infections have become the main concern in the public health sector [9,10]. The
treatment of MRSA infections generally relies on conventional antibiotic therapy, even
though the number of MDR cases has been increasing rapidly. Conventional drug discov-
ery methods are laborious, expensive, time-consuming, and often find few drug targets
or lead compounds [11,12]. This strongly suggests that there is a continuous need to
search for additional drug or vaccine molecules in their genomes that would improve
long-lasting protection [13]. With the advancement in genome sequencing technologies, the
number of bacterial genome sequences has increased rapidly, which provides an excellent
opportunity to accelerate the drug target or vaccine candidate discovery process through
computational approaches such as comparative and subtractive genomics, and reverse
vaccinology [14,15]. These approaches enable an evaluation of bacterial proteins that can
bind to drug molecules or induce an adaptive immune response [16]. The surface-exposed
proteins mediate the initial process of pathogen attachment and evoke immune responses,
regarded as suitable vaccine candidates [17,18]. This in silico technique optimizes the
prediction of drug target and vaccine candidate proteins of different pathogens that are
challenging to culture in the laboratory. Recently, such computational approaches had pop-
ular results for the rapid discovery of novel targets in various human pathogens including
SARS-CoV-2 [19,20], Ebola virus [21], Mycobacterium tuberculosis [22], Helicobacter pylori [23],
Salmonella typhi [24], serogroup B Neisseria meningitides [25], Streptococcus agalactiae [26], and
Acinetobacter baumannii [27]. These approaches allowed to fill the gap between genomic data
and the identification of 3D structures of therapeutic targets. The structural information
from high-throughput comparative modeling for large-scale proteomics data for inhibitor
identification potentially leads to the discovery of compounds able to prevent the survival
of pathogens. These proteins, which must show no cross-reaction with the host, have been
proposed as potential drug targets. This study would be extremely significant since MRSA
drugs could prevent the deaths and burden of hospital charges.

In this present study, the genomes of MRSA strains were studied using subtractive
genomics and reverse vaccinology approaches to identify the potential drug targets and
vaccine candidates. The overall aim was to identify drug molecules that show favorable
interactions, with low energy values, and high complementarity with the predicted targets
for global MRSA strains.

2. Results and Discussion

This study was carried out to identify the putative drug targets and vaccine candidates
against MRSA strains for proposing alternative prospective therapeutics. Earlier, the
development of new antimicrobial agents and vaccine therapies was limited due to a
computational technology bottleneck. However, in this post-genomic era, advances in
the fields of genomics, proteomics, coupled with the development of bioinformatics tools
have allowed for in silico identification of new drug candidates and vaccine targets from
genomics, and protein sequence resources using the subtractive genomic approach or
reverse vaccinology approach [28]. The reverse vaccinology approach is a powerful method
for the identification of unique yet uncharacterized sequences as possible therapeutic
targets [29–31]. Reverse vaccinology reduces the time needed to develop new vaccines and
offers flexibility even for non-cultivable pathogens [32]. This approach also allows not only
the detection of all the antigens as observed through the conventional methods but also the
discovery of novel antigens that function on a different paradigm [18].

2.1. Prediction of Core-Genome

A set of 1719 coding DNA sequences (CDSs) shared by all the strains were identified
and these sequences were extracted in the form of protein sequences and considered as
core proteome (Figure 1). Out of this core proteome, 1678 non-redundant protein sequences
were retrieved by using CD-HIT with a tolerance threshold set at 70% (Table S2).
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2.2. Identification of Essential Proteins and Non-Homologous Proteins

The non-redundant protein sequences of the core proteome have large numbers of
genes that are not essential for the survival of an organism [33]. Essential proteins show
potential targets for drug designing, because the mainstream of antibacterial compounds is
synthesized to dock essential proteins. This step primarily mines essential proteins of MRSA
strains that are necessary for their survival within the host. Such proteins are housekeeping
in nature and important for basic cellular functions [34]. When these essential proteins
are confirmed to be virulent, they can be of vital significance to unveil novel therapeutic
targets [35]. The essential core proteome that has homology among all the S. aureus strains
has the potential to serve as a universal drug/vaccine target towards combating multidrug-
resistant S. aureus strains [36]. The GEPTOP 2.0 server identified a total of 278 essential core
proteins (Figure 1, Table S2). Further, comparison of the core proteins of essential protein
sequences to the human host proteome resulted in a set of 98 targets as essential non-host
homologous (Sequence File S1), while a set of 184 targets as essential host homologous
proteins (Table S2). Proteins that are non-homologous and essential for pathogens are
integral to developing species-specific drug targets [37,38], and this subtractive proteomic
or genomic approach is very essential to avoid drug cross-binding with the human host
proteins and the possibility of the drug inducing adverse effects [39].

2.3. Characterization and Prediction of Subcellular Location of Proteins

The conserved non-host homologous proteins of MRSA strains can localize at differ-
ent regions including cytoplasmic, membrane, putative surface-exposed, and secretory.
Therefore, the localization of proteins is an important aspect of designing any therapeutic
agents such as drug targets or vaccine candidates [40]. Out of the 98 subcellular localized
and essential non-homologous proteins, 78 proteins were localized in cytoplasmic (CYT),
2 proteins were secretory (SEC), 6 proteins were potentially surface-exposed (PSE), and
12 proteins were membrane (MEM)-bound (Figure 1, Table S2 and Sequence File S2). The
proteins localized in cytoplasmic regions play a pivotal role in maintaining cell viability, and
therefore, these proteins are considered drug targets [41]. In the case of vaccine candidates,
the exposed proteins including membrane, putative surface-exposed, and secreted proteins
are suitable for reverse vaccinology [14]. The membrane proteins have more priority for
vaccine candidates due to their closer contact with the human host and initiating a cascade
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of immune responses. However, the proteins with more helices are difficult to purify from
the bacteria, thus membrane proteins containing fewer helices (≤2) are more preferred [42].

2.4. Potential Vaccine Target Candidates

In antigen-based vaccine design, adhesins are key molecules for the design of vaccines
against microbial infective agents [43]. With the advancement of bioinformatics, screening
of adhesion molecules in the bacterial genome has become quicker through homology-based
approaches. SPAAN (software program for the prediction of adhesins and adhesin-like
proteins using a neural network) program integrated with Vaxign v.2.0 tool is based on
highly curated datasets and neural networks that were optimally trained for compositional
attributes. The probability for a given protein likely to be an adhesin is the weighted
average of individual probabilities emerging from the five networks, based on the accuracy
of each network [44]. The search for candidate adhesion proteins can be a most promising
approach for identifying novel vaccine candidates [28].

The previous study on MRSA 252 genome revealed that IsaA, HlgA, SsaA, and IsdB
were the best immunogenic targets [45]. In the present study, the 20 proteins were localized
in secreted (SEC), surface-exposed (PSE), and membrane (MEM) regions. Among these
proteins, Vaxign v.2.0 identified the 4 best putative vaccine candidates viz., foldase protein,
ESAT-6 machinery protein, penicillin-binding protein (PBP) 1, and PBP2.

Foldase protein (PrsA) (WP_000782119.1) was found to be the most promising vaccine
candidate among other candidates since this membrane protein has an accessory role in
virulence [46]. This protein has high antigenicity (0.7662, and 0.7121 scores defined by Vaxi-
Jen, and ANTIGENPro, respectively), a great adherence score (0.68), low molecular weight
(35.623 kDa), no transmembrane helix, and 5 B-cell epitope peptides (Table 1). PrsA has a
PPIC-type PPIASE domain belonging to the Rotamase family (PF00639), this domain region
is in 146–245 amino acid (aa) positions of the protein sequence, and acts as interconversion
of cis-proline and trans-proline. It was reported that PrsA is a surface-exposed protein that
is essential for protein folding and is involved in cell wall biosynthesis as well as bacterial
pathogenicity [47,48]. This protein stimulates an antibody response and extends the pro-
tection against multiple mouse infections [49,50]. In Streptococcus sanguinis, this protein is
reported to be the vaccine candidate with the induction of opsonic antibodies [51]. Further,
PrsA is highly conserved in Legionella pneumophila and is significantly immunogenic, thus
offering the scope for the development of a DNA vaccine [52]. Our study suggested that
PrsA from MRSA could protect the different lineages of pathogenic S. aureus strains and
may be a novel protective antigen for MRSA vaccine development.

Table 1. Vaccine target candidates for methicillin-resistant S. aureus identified by Vaxign v.2.0.

Vaccine Target Protein ID * Length
(bp)

Mol. Wt.
(kDa)

Adherence
Score

B-Cell Epitope
Peptides

VaxiJen
Score

Trans-Membrane
Helix Allergen

Foldase protein
(PrsA) WP_000782119.1 320 35.623 0.68 5 0.7662 0 No

ESAT-6 machinery
protein (EssA) WP_000928935.1 152 17.392 0.58 1 0.7034 1 No

Penicillin-binding
protein 1 (PBP1) WP_001118663.1 744 82.738 0.53 10 0.6351 1 No

DD-transpeptidase
(PBP2) WP_000138351.1 727 80.356 0.82 10 0.6846 1 No

Protein ID * denotes NCBI protein accession ID.

The ESAT-6 machinery protein (EssA) protein is the conserved membrane protein
that is necessary for the synthesis and secretion of EsxA protein [53]. Secretion of EsxA
was prevented in the absence of the essA gene, and this protein might play a role in
the process of the pathogenesis for S. aureus. Previous studies indicated that EsxA was
the important candidate antigen for S. aureus vaccine development [54]. An immune
protective antigen, EssA is a highly homologous protein of Mycobacterium tuberculosis and
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has good virulence and immunogenicity [55]. EssA protein can induce a high level of
an immune response against Streptococcus agalactiae infection [52]. In this study, EssA
protein (WP_000928935.1) of S. aureus was found with a T7SS_EssA_Firm domain (PF10661)
located at 2–144 aa positions in its sequence. This protein was found to bear MHC adhesion
capacity with a score of 0.58; high antigenicity (0.7034, and 0.8367 scores defined by VaxiJen,
and ANTIGENPro, respectively), and one B-cell epitope peptide (Table 1 and Table S3).

Every core genome of S. aureus possesses four penicillin-binding proteins (PBP1-PBP4)
linked to peptidoglycan biosynthesis [56]. Among these PBPs, the first two, i.e., PBP1 and
PBP2, play important roles in S. aureus survival [57]. Earlier studies reported that PBP1
and PBP2 are considered potential therapeutic targets for their cellular importance. These
proteins were found interacting with the staphylococcal femXAB family protein, mur-
family proteins, Ddl, and MraY and play a curial role in the peptidoglycan biosynthesis
pathway [57,58]. Also, these proteins have immunogenic properties and could be vaccine
candidates in N. meningitidis [59]. These PBP1 and PBP2 have the highest antigenicity scores
of 0.9481, and 0.9454, respectively, defined by ANTIGENPro. It was reported that PBP1
from M. tuberculosis can be used to design a new TB vaccine [59]. Vaccination with PBP2
induces protection against a protein involved in chromosome-mediated antibiotic resistance
for meningococcal disease [35,60]. However, the information on these two proteins for the
vaccine development against S. aureus is scantly available. This study showed that PBP1 and
PBP2 proteins have the good characteristics of antigenic values, adhesion scores, stability,
and epitope numbers (Table 1 and Table S3). PBP1 protein has three conserved domains,
FtsI (COG0768), PASTA_PBP2x-like_1 (cd06576), and PASTA_PBP2x-like_2 (cd06575). FtsI
domain is found in 28–592 regions of the protein sequence, controlling cell cycle, cell
division, chromosome partitioning, and cell wall or membrane biogenesis. PASTA domains
of PBP2x-like_1, and PBP2x-like_2 are found in the 601–655, and 659–712 aa regions of PBP1
protein sequence. These domains catalyze the peptidoglycan synthesis, which is essential
for cell division and protects from osmotic shock and lysis. PBP2 is a DD-transpeptidase
essential for bacterial cell wall synthesis. This protein has a conserved domain—MrcB
(membrane carboxypeptidase B), which is found in the 46–727 aa regions of the sequence
which bind to the β-lactamthiazolidine ring system of β-lactam antibiotics.

The identified vaccine candidate proteins are localized in MEM regions and have
high stability, antigenic and non-allergen properties (Table 1). Also, these proteins have
an adhesion score > 0.51, ensuring that these can efficiently bind on MHC class I and II
molecules, and may induce either cellular or humoral adaptive immune responses [46]. It
was reported that clinical trials to design effective anti-Staphylococcal vaccines have not
been fruitful [61], thus numerous vaccines were reported that mainly focus to trigger B-cell
response and development of antibodies opsonization [62]. Additionally, the presence of
antigenic B-cell epitopes in these candidate proteins confirms the ability to interact with the
MHC class I molecule. The interaction of MHC class I-presented antigens with cytotoxic
CD8+ lymphocytes is one of the potential vaccine-induced immune responses [63]. The
prospective candidate proteins reported in this study fulfill all the prerequisites (subcellular
localization, antigenic and adhesin properties) of being potent vaccine candidates. Among
the identified vaccine candidates, PrsA and EssA proteins have higher antigenic properties
defined by VaxiJen than PBP1 and PBP2 proteins (Table 1). Previous studies suggested
that the protein with the highest antigenicity could be recognized by immune response
easily and evoke the immune responses [44,48,53,59,64]; therefore, PrsA and EssA proteins
could be effective vaccine candidates. Further, the multiple epitopes from the identified
vaccine candidates having different pathways could be used to develop a universal anti-
staphylococcal vaccine [65].

2.5. High-Throughput Structural Modelling and Druggability Analysis

The CYT protein sequences were selected for drug target analysis using MHOLline
2.0, an online web tool, to predict the modelome. In this analysis, proteins that belonged
to “very high”, “high”, and “good” structural qualities of the G2 model group were
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considered for further analysis. The G2 model predicted 19 proteins (9 very high quality,
8 high, and 2 good) as potential candidates for drug targets. The other factors involved
in drug target prioritization are low molecular weight, and high druggability [66]. The
ability of a protein to hold a pocket for the binding of small molecules is one of the key
steps in the identification of a drug target [67]. Therefore, pocket druggability analyses are
crucial in therapeutic drug discovery. In this study, we chose the 8 best potential drug target
candidates based on the drug score and binding site residues defined by the DoGSiteScorer
tool, and a molecular weight criterion of less than 90 kDa (Tables S4 and S5).

2.6. Virtual Screening and Molecular Docking Analysis

The ligands, drug-like molecules, were screened for favorable interactions with each
target protein. The top compounds were further used for flexible docking analysis with
the residues of most druggable cavities defined by the DoGSiteScorer web tool and MVD
software. As a result, the predicted protein–ligand interactions with the active site residues
of each target are represented in Table 2, with ZINC ID, MolDock score for the selected
ligand as well as hydrogen (H)-bonds involved in the interaction. In molecular docking,
lower energy scores represent better protein–ligand bindings compared to higher energy
values [68,69]. Hydrophobic interactions are the major contributors to the stability of pro-
teins. H-bonding also maintains protein stability, but to a lower extent than hydrophobic
interactions, even in the smallest globular proteins. Accordingly, hydrophobic binding
of a ligand to essential amino acid residues of protein is the main determinant of folding
configuration equilibria in many native proteins [70]. Additionally, the Simplified Molec-
ular Input Line Entry System (SMILES) format of drug molecules was analyzed for their
ADME/pharmacokinetic profile and drug-likeness parameters using the swissADME web
server [71].

Table 2. Docking studies of drug-like molecules (ZINC compounds) with eight drug target proteins.
The table shows the MolDock score, number of hydrogen bonds, and active site residues of target
proteins with the respective ZINC compounds.

Target Proteins Position (x, y, z) ZINC ID MolDock Score H-Bonds/Residues

Biotin protein ligase 53.60, 18.59, 18.89 ZINC4235426 −176.846 7/Tyr182, Arg227, Arg125,
and Arg122

HPr kinase/phosphorylase −60.93, 127.77, −83.27

ZINC4235426 −147.451 4/Lys259, Thr150,
and Asn227

ZINC4235924 −137.549 7/Gly151, Thr150, Asn227,
Lys258, Thr260, and Asn229

Thymidylate kinase 5.82, 10.91, 16.59

ZINC4259578 −139.656 3/Arg75, Arg97, and Arg110

ZINC4235426 −139.150 6/Arg75, Arg97, Glu106,
Tyr105, and Glu42

Phosphate acetyltransferase 17.38, 20.45, 53.06 ZINC4270981 −134.847 2/Gln325, and Leu299

UDP-N-acetylmuramoyl-L-
alanyl-D-glutamate-L-

lysine ligase
99.73, 29.35, 28.72 ZINC4235426 −125.654 4/Tyr45, Thr46, Val47,

and Glu155

UTP-glucose-1-phosphate
uridylyltransferase −19.38, −1,2.96, −16.82 ZINC428871 −122.664 1/Leu110

Fatty
acid/phospholipid synthesis 38.55, 51.23, 49.04 ZINC4237105 −130.756 1/Lys262

Pantothenate synthetase −6.64, −1.01, −43.92 ZINC4235426 −173.843 4/Met31, Gly148, His35,
and Thr30
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2.6.1. Biotin Protein Ligase

Biotin protein ligase (BPL) encoded by the birA gene plays are involved in biotin
homeostasis by biotinylation, and transcription repressor activities [72]. This enzyme is the
master regulator of all biotin-mediated metabolic processes in S. aureus and is an emerging
new drug target [72–74]. It is also reported that this enzyme is essential for fatty acid
biosynthesis and the tricarboxylic acid cycle pathways in the bacterium [75]. The crystal-
lographic structure of the BPL template (PDB ID: 6NDL from S. aureus) has two crystallo-
graphic native ligands, where BQX (1-[4-(6-aminopurin-9-yl)butylsulfamoyl]-3-[4-[(4~{S})-
2-oxidanylidene-1,3,3~{a},4,6,6~{a}-hexahydrothieno[3,4-d]imidazol-4-yl]butyl]urea) native
crystallographic ligand participating H-bond interaction on active site residues of its tem-
plate were Asp180, Arg125, Ser128, Arg120, Arg122, Lys187, Gln116, Ser93, Asn212, and
Thr94. In this study, cavity 1 defined by MVD tool having Volume (V):160.768 Å; Surface
(S):528.64 Å; Radius (R):20 Å of BPL template was docked with ZINC4235426 compound,
which resulted in the formation of seven H-bonds with the active site residues, Try182,
Arg227, Arg125, and Arg122, and showed a MolDock score of -176.846 (Figure 2a,b). Also,
the ZINC4237101 compound formed no H-bonds with the active site residues of the BPL
template and revealed the MolDock score of −167.239.
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(a) 3D surface representation of ZINC4235426 (red) and BPL interactions with hydrogen bonding sites
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(green dashed lines) with the compound (scaled ball and stick).

The redocking of the co-crystallized structure of native ligand with its protein was
an essential step to confirm that ligand bind within the binding pocket/cavity in the
appropriate conformation, also the generated RMSD values of less than 2 Å is considered
for docking accuracy [69]. The redocking of native ligand (BQX) with BPL (PDB ID: 6NDL)
generated the MolDock score of −177.821, and RMSD (root mean square deviation) value
of 1.8 Å, which indicated that the applied protocol is favorable for docking simulation.

2.6.2. HPr Kinase/Phosphorylase

HPr kinase/phosphorylase is a bifunctional enzyme that enhances the glycolytic inter-
mediates (carbon metabolism) and virulence progression in Gram-positive bacteria [76,77].
In Listeria monocytogenes, the metabolism of carbon sources inhibits the PrfA, a transcription
activator, and is involved in the virulence gene expression regulation [76]. This enzyme
is of clinical interest due to its regulatory roles in the infectious process and therefore
could be a new drug target. The template crystal structure of HPr kinase/P (1KO7 from
S. xylosus) interacted with native crystallographic ligand PO4. The cavity 1 (S:62.976 Å;
V:198.4 Å; R:8 Å) of Hpr Kinase/P defined by the MVD tool was selected for docking.
The ZINC4235426 compound formed four H-bonds with the active site residues, Lys259,
Thr150, and Asn227, and generated the MolDock score of −147.451 (Figure 3a,b). Also,
the ZINC4235924 compound formed seven H-bonds with the active site residues, Gly151,
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Thr150, Asn227, Lys258, Thr260, and Asn229 of HPr kinase/P, and revealed the MolDock
score of −137.549 (Figure 3c,d).
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Figure 3. The molecular docking analysis of HPr kinase (WP_000958224.1) with compounds
ZINC4235426 and ZINC4235924, respectively. (a,c) 3D surface representation of ZINC4235426
(red), ZINC4235924 (red), and HPr kinase interactions with hydrogen bonding sites (blue), and
hydrophobic interactions (cyan). (b,d) Residues (cyan) involved in the H-bond interaction (green
dashed lines) with the compound (scaled ball and stick).

2.6.3. Thymidylate Kinase (TMK)

Thymidylate kinase (TMK) is a nucleotide kinase that catalyzes deoxythymidine
monophosphate to deoxythymidine diphosphate using adenosine triphosphate (ATP) as
the source of the phosphoryl group and results in the biosynthesis of deoxythymidine
triphosphate (dTTP) for DNA synthesis [78]. Therefore, TMK is considered an attractive
potential target for antibacterial drug inhibition [79]. The crystal structure of TMK protein
(4HLC from S. aureus subsp. aureus MRSA252) has active site residues (Gln101, Arg70,
Arg48, and Ser97) that are involved in H-bond interactions with native ligand benzoic
acid (T05). Although, none of these residues were predicted to form H-bonds with the
ZINC4259578 compound. However, this compound was predicted to make three H-bonds
with other active site residues, Arg75, Arg97, and Arg110 of TMK protein, and carried a
MolDock score of −139.656 (Figure 4a,b). Also, the ZINC4235426 compound created six
H-bonds with the active site residues, Arg75, Arg97, Glu106, Tyr105, and Glu42 of TMK
protein with a predicted MolDock score of −139.150. The redocking of native ligand (T05)
with TMK (PDB ID: 4HLC) generated the MolDock score of −152.823, and RMSD value of
1.01 Å, suggesting that the applied docking protocol was highly preferred.
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2.6.4. Phosphate Acetyltransferase (Pta)

Phosphate acetyltransferase (Pta) plays an important role in acetate metabolism along
with acetate kinase. This enzyme catalyzes the uptake of carbohydrates and their conversion
into their respective phosphoesters during transport [80]. It is also involved in other
metabolic pathways such as taurine and hypotaurine metabolism, pyruvate metabolism,
and propanoate metabolism [81]. It was reported that this enzyme activity is important for
virulence in pathogenic bacteria including S. saprophyticus [82]. Therefore, it is essential for
the survival of bacteria and could be a putative drug target for the design and evaluation of
a new class of antimicrobials [80]. In the template crystal structure of Pta protein (PDB ID:
4E4R from S. aureus subsp. aureus MRSA252), the native crystallographic ligand 2-amino-2-
hydroxymethyl-propane-1,3-diol (TRS) created H-bonds in the active site residues, Gly130
and Asp305. However, none of these residues were involved in the H-bond formation with
the ZINC4270981 compound. Instead, this compound formed two H-bonds with the other
active site residues, Gln325, and Leu299 of Pta protein with a predicted MolDock score
of −134.847 (Figure 5a,b). The redocking of native ligand (TRS) with Pta (PDB ID: 4E4R)
revealed the MolDock score of −38.370, and RMSD value of −1.12 Å, indicating that the
applied protocol was fair for this protein.
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Figure 5. The molecular docking analysis of Pta (WP_000774281.1) with compound ZINC4270981.
(a) 3D surface representation of ZINC4270981 (red) and Pta interactions with hydrogen bonding sites
(blue), and hydrophobic interactions (cyan). (b) Residues (cyan) involved in the H-bond interaction
(green dashed lines) with the compound (scaled ball and stick).
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2.6.5. UDP-N-Acetylmuramoyl Alanyl-D-Glutamate-2,6-diaminopimelate Ligase (MurE)

The target enzyme MurE ligase is a complex molecule that initiates the peptidoglycan
biosynthesis [83] by adding meso-diaminopimelic acid to the nucleotide precursor UDP-N-
acetylmuramoyl-L-alanyl-D-glutamate during the synthesis of murein in the cytoplasm [84].
As this enzyme is vital to the survivability of S. aureus strains, it can be used as a potential
antibacterial drug target [57,58,83]. Based on the interaction between the crystallographic
structure of the MurE template (4C12 from S. aureus) and the crystallographic ligand uridine
5′ diphospho N-acetyl muramoyl-L-Alanyl-D-Glutamyl-L-Lysine (UML), it was found that
the active site residues involved in H-bond interactions were Ser456, Glu460, Asp406,
Thr152, Ser179, Arg187, Arg383, His205, Asn151, Thr153, Thr45, Thr46, Val47, Thr28, Ser30,
and Val47. However, the ZINC4235426 compound created four H-bonds with the active
site residues, Tyr45, Thr46, Val47, and Glu155 of MurE ligase with a MolDock score of
−125.654 (Figure 6a,b).

Molecules 2022, 27, x FOR PEER REVIEW 10 of 21 
 

 

 

 
(a) (b) 

Figure 5. The molecular docking analysis of Pta (WP_000774281.1) with compound ZINC4270981. 
(a) 3D surface representation of ZINC4270981 (red) and Pta interactions with hydrogen bonding 
sites (blue), and hydrophobic interactions (cyan). (b) Residues (cyan) involved in the H-bond inter-
action (green dashed lines) with the compound (scaled ball and stick). 

2.6.5. UDP-N-Acetylmuramoyl Alanyl-D-Glutamate-2,6-diaminopimelate Ligase (MurE) 
The target enzyme MurE ligase is a complex molecule that initiates the peptidoglycan 

biosynthesis [83] by adding meso-diaminopimelic acid to the nucleotide precursor UDP-
N-acetylmuramoyl-L-alanyl-D-glutamate during the synthesis of murein in the cytoplasm 
[84]. As this enzyme is vital to the survivability of S. aureus strains, it can be used as a 
potential antibacterial drug target [57,58,83]. Based on the interaction between the crystal-
lographic structure of the MurE template (4C12 from S. aureus) and the crystallographic 
ligand uridine 5′ diphospho N-acetyl muramoyl-L-Alanyl-D-Glutamyl-L-Lysine (UML), 
it was found that the active site residues involved in H-bond interactions were Ser456, 
Glu460, Asp406, Thr152, Ser179, Arg187, Arg383, His205, Asn151, Thr153, Thr45, Thr46, 
Val47, Thr28, Ser30, and Val47. However, the ZINC4235426 compound created four H-
bonds with the active site residues, Tyr45, Thr46, Val47, and Glu155 of MurE ligase with 
a MolDock score of −125.654 (Figure 6a,b).  

  
(a) (b) 

Figure 6. The molecular docking analysis of MurE (WP_000340119.1) with compound ZINC4235426. 
(a) 3D surface representation of ZINC4235426 (red) and MurE interactions with hydrogen bonding 
sites (blue), and hydrophobic interactions (cyan). (b) Residues (cyan) involved in the H-bond inter-
action (green dashed lines) with the compound (scaled ball and stick). 

The redocking of the native ligand (UML) with MurE (PDB ID: 4C12) generated the 
MolDock score of −167.754 and RMSD value of 4.75 Å. The RMSD value of redocking 
found above the cutoff value (<2 Å) could be the reason for the large ligand size (120 at-
oms), and more rotatable bond (26 flexible torsions). This finding was supported by the 
earlier study, which suggested that redocking accuracy decreases as the number of 

Figure 6. The molecular docking analysis of MurE (WP_000340119.1) with compound ZINC4235426.
(a) 3D surface representation of ZINC4235426 (red) and MurE interactions with hydrogen bonding
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interaction (green dashed lines) with the compound (scaled ball and stick).

The redocking of the native ligand (UML) with MurE (PDB ID: 4C12) generated the
MolDock score of −167.754 and RMSD value of 4.75 Å. The RMSD value of redocking
found above the cutoff value (<2 Å) could be the reason for the large ligand size (120 atoms),
and more rotatable bond (26 flexible torsions). This finding was supported by the earlier
study, which suggested that redocking accuracy decreases as the number of rotatable bonds
increases, regardless of the docking program used [85]. Also, the typical 2 Å RMSD cutoff
for docking accuracy may not be reliable for the ligands with a large size and number of
rotatable bonds [86].

2.6.6. UTP-Glucose-1-Phosphate Uridylyltransferase (UGPase)

This enzyme, also known as UDP-glucose pyrophosphorylase or UGPase, is ubiqui-
tous due to its indispensable roles in glycogen synthesis and production of glycolipids,
glycoproteins, and proteoglycans [87,88]. It is also required for the capsular polysaccharide
biosynthesis and is a determinative virulence factor in Streptococcus pneumoniae [89]. A
defective UGPase fails to incorporate galactose into its cell wall [89]. The indispensability
of the UGPase projects the enzyme as a potential drug target [90]. In the template crystal
structure of UGPase (PDB ID: 5VCT from Burkholderia ambifaria MC40-6), the native crystal-
lographic ligand citric acid (CIT) created two H-bonds in the active site residues, Lys16 and
Leu14. However, in the case of the ZINC428871 compound, none of these residues were
involved in the H-bond formation with compounds. Instead, the ZINC428871 compound
formed a single H-bond with the other active site residues, Leu110 of UGPase, with a
predicted MolDock score of −122.664 (Figure 7a,b). The redocking of native ligand (CIT)
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with UGPase (PDB ID: 5VCT) achieved a MolDock score of 29.116, and RMSD value of 1.84,
which suggested that the applied docking simulation protocol was satisfied for this protein.
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2.6.7. Putative Fatty Acid Synthesis Protein (PlsX)

Putative fatty acid synthesis protein (PlsX) is the key enzyme that coordinates the fatty
acid synthase II (FASII) pathway to the phospholipid synthesis pathway and allows passage
of unsaturated fatty acids into the membrane [91]. The FASII pathway is used by bacteria
to produce the fatty acid components of phospholipids essential in human pathogens [92].
The essential role of fatty acid in membrane structure integrity has provided attention on
targeting this pathway [93]. The B-chain structure of the 1U7N template from Enterococcus
faecalis for PlsX has no native ligand. Therefore, cavity 1 (V:180.224 Å; S:660.48 Å, R:19 Å)
identified by the MVD tool was selected for docking with the ZINC4237105 compound.
This compound formed one H-bond to the active site residue, Lys262 of PlsX protein, with
a MolDock score of −130.756 (Figure 8a,b).
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(green dashed lines) with the compound (scaled ball and stick).
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2.6.8. Pantoate Beta-Alanine Ligase (PanC)

Pantoate beta-alanine ligase (PanC) is the last enzyme involved in pantothenate biosyn-
thesis. It catalyzes the adenosine triphosphate (ATP)-dependent condensation of pantoate
and β-alanine to form pantothenate (vitamin B5) [94]. The essentiality of PanC for the
growth and survival of S. aureus can be gauged by the fact that the enzyme is central
to fatty acid metabolism [95]. Based on a structural comparison with a crystallographic
structure of PanC template (PDB ID: 3AG6 from S. aureus subsp. aureus NCTC 8325), the
active site residues involved in H-bonds with the crystallographic native ligand pantoyl
adenylate (PAJ) were Gln154, Gln62, Met31, Gly148, His35, His38, Lys185, and Val177. The
ZINC4235426 compound created four H-bonds with the active site residues, Met31, Gly148,
His35, and Thr30 of PanC protein, with a MolDock score of −173.843 (Figure 9a,b). The
redocking of native ligand (PAJ) with PanC (PDB ID: 3AG6) generated the MolDock score
of −174.601, and the RMSD value of −1.57 Å, indicating that the used protocol for docking
simulation was highly preferable.
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interaction (green dashed lines) with the compound (scaled ball and stick).

The Swiss ADME analysis results showed that all the drug molecules listed in Table 2
satisfy Lipinski’s rule of five with zero violations and had no PAIN alerts. Additionally,
ZINC4235426, ZINC4259578, and ZINC428871 assured the properties of drug-likeness
(Ghose, Veber, Egan, and Muegge). The Kp values of the drug molecules are in the ranges
of −6.21 to −7.32 cm/s, suggesting low skin permeability [65]. The ZINC4235924 and
ZINC4270981 molecules were found to have high blood–brain barrier (BBB) permeability.
All the compounds are substrates of permeability glycoprotein (P-gp) except ZINC428871.
The logP values are predicted in the ranges of 0.82 to 4, indicating that the drug molecules
have optimal lipophilicity. The drug molecules showed high gastrointestinal (GI) absorp-
tion and bioavailability scores, and have non-carcinogenicity.

3. Materials and Methods
3.1. Genome Sequences

The genome sequences of sixteen MRSA strains belonging to community-associated
and hospital-associated strains with the most predominant clonal complexes were retrieved
from the NCBI database (http://www.ncbi.nlm.nih.gov/genbank/; accessed on 25 July
2020). The genomes were re-annotated using RAST (Rapid Annotation using Subsystem
Technology) platform [96] to avoid unexpected and inappropriate gene interpretation
results. The features of these MRSA strains were summarized in Table S1.

http://www.ncbi.nlm.nih.gov/genbank/
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3.2. Prediction of Core Proteome

The identification of conserved proteins (core proteome) among the sixteen genomes
was analyzed using reciprocal best BLAST hits of all CDS in EDGAR v.2.0 software frame-
work [97]. In this analysis, the genome of S. aureus subsp. aureus HO 5096 0412 (HE681097.1)
was used as a reference strain, and the rest of all the MRSA genomes were compared with
the reference strain. Only those proteins that were common in all the strains were selected
as the core proteome.

3.3. Identification of Essential Non-Homologous Proteins

Paralogs or redundant sequences from the MRSA core proteome were removed using
the CD-HIT module with sequence identity cutoff of 0.7 (70%) in CD-HIT suite [98]. CD-
HIT suite is widely used for comparing and clustering proteins that satisfy the sequence
identity cutoff and generate one representative sequence of each cluster as well as a list of
clusters. Further core essential proteins of S. aureus were analyzed using GEPTOP 2.0 with
an essentiality score cutoff of 0.24 [99]. Geptop provides a platform for the identification
of essential genes for prokaryotic organisms by comparing the orthology and phylogeny
of query proteins against the datasets defined experimentally in the database of essential
genes (DEG). The essential non-paralogous protein sequences were subjected to BLASTp
against the genome of Homo sapiens [100] using default parameters. The resultant sequences
showing significant similarity with the Human host were discarded, while non-homologous
sequences with no hit were selected for subsequent analysis.

3.4. Characterization and Prediction of Subcellular Localization

The essential non-host homologous protein sequences were used for the prediction
of drug targets and vaccine candidates. The non-host homologous protein sequences
were used for the prediction of subcellular location using optimized PSORTb 3.0 [101]
and CELLO (subCELlular LOcalization predictor) v.2.5 [102]; PSORTb and CELLO servers
using a support-vector machine (SVM)-based method to predict the subcellular localization
of proteins as cytoplasmic (CYT), secreted (SEC), potentially surface-exposed (PSE), and
membrane (MEM).

3.5. Reverse Vaccinology Approach for Prediction of Putative Vaccine Candidates

The proteins localized in the extracellular or outer membrane regions of the organ-
ism are highly important for reverse vaccinology since these proteins are the first to be
in contact with host immune cells and stimulate immune responses [103]. The secreted
(SEC), potentially surface-exposed (PSE), and membrane (MEM) protein sequences were
submitted to the Vaxign v.2.0 tool [104] to predict the major histocompatibility complex
(MHC class I and II) binding properties with adhesion probability greater than 0.5, the
number of transmembrane helices, and no similarity to host proteins. Vaxign used dif-
ferent computational programs such as pSORT for subcellular localization, HMMTOP
for transmembrane helices prediction, SPAAN for adhesin probability identification, Or-
thoMCL for the detection of human host orthologue proteins, and Vaxitope for prediction
of MHC-I- and MHC-II-binding epitopes present in the input protein sequence [104]. B-cell
epitopes were predicted using SVMTriP with epitope length 20 amino acid (aa) parame-
ter [105]. The antigenic epitope prediction approach by SVMTriP is based on the amino
acid properties (hydrophilicity, solvent accessibility, secondary structure, flexibility, and
antigenicity). This tool utilizes Support Vector Machine (SVM) by combining the Tri-
peptide similarity and Propensity scores (SVMTriP) for better prediction performance. The
antigenicity of vaccine candidate proteins was predicted using the VaxiJen v.2.0 server
with a threshold of 0.4 [64], and ANTIGENpro (http://scratch.proteomics.ics.uci.edu/;
accessed on 8 March 2022) [106]. VaxiJen employed auto and cross-covariance (ACC)
transformation of protein sequences into uniform vectors of major amino acid properties
to evaluate the antigenicity [64]. Allergenicity of vaccine candidate proteins was identi-
fied using AllerTOP v.2.0, an online server (http://www.ddg-pharm fac.net/AllerTOP;

http://scratch.proteomics.ics.uci.edu/
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accessed on 5 February 2022). AllerTOP utilizes the k-nearest neighbors (kNN), auto- and
cross-covariance (ACC) transformation, and amino acid E-descriptors machine learning
techniques for the classification of allergens by exploring the physiochemical properties
of proteins. The instability index and molecular weight (mol. wt) of the vaccine candi-
date proteins were analyzed using the ProtParam tool [100]. The sequence-based domain
information of vaccine candidates was retrieved from the conserved domain database,
CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 8 January
2022) [107].

3.6. High-Throughput Structural Modelling

The essential non-host homologous cytoplasmic (CYT) protein sequences were sub-
jected to analyze for potential drug targets, since these proteins play a role in the basic
survival processes of the organism. These CYT proteins avoid cross-binding of drugs
with human proteins, and drug side effect probability [108]. These CYT proteins were
submitted to the MHOLline 2.0 server [109] to model three-dimensional (3D) structures of
cytoplasmic proteins. This software integrates with HMMTOP, BLAST, BATS, MODELLER,
and PROCHECK to analyze and classify potential drug targets based on their structural
quality. The submitted protein sequences detected the presence of transmembrane regions
by the HMMTOP program, and template structure against the Protein Data Bank by BLAST
algorithm. Further, the BATS (Blast Automatic Targeting for Structures) tool conducts
refinements in the template search, which is a key step for the model construction. The
BATS program generates the BLAST output files into G0, G1, G2, and G3, in which G0
represent non-aligned sequence, G1 indicate E > 10 × 10−5 or identity < 15%, G2 sig-
nify E ≤ 10 × 10−5, identity ≥ 25%, and length variation index (LVI) ≤ 0.7, G3 imply
E ≤ 10 × 10−5, identity ≤ 15% to <25% or LVI > 0.7. The G2 group was selected for the
3D model construction and generates the files for automated alignment used by the MOD-
ELLER program. The generated 3D model was evaluated based on their stereochemical
quality by the PROCHECK program. Also, MHOLline 2.0 server provides information on
the 3D model, a Ramachandran plot, structural quality, and enzymatic function.

3.7. Druggability Analysis of Drug Targets

The drug target proteins from the G2 group belonged to very-high-, high- and good-
quality proteins that were analyzed for druggability using DoGSiteScorer [110], an auto-
mated pocket detection and analysis tool for calculating the druggability of protein cavities.
For each detected cavity, the tool returns the pocket residues and a druggability score
ranging from 0 to 1. The druggable scores closer to 1 are more druggable and likely to
bind ligands with high affinity [110]. The druggability cavity of each drug target with a
druggable score greater than 0.7 was selected for the docking analysis. Also, to determine
the potential drug targets, the molecular weight of protein with less than 100 kDa was
considered as a therapeutic target, suggesting that these proteins have a possibility to
experimentally research for drug development [111]. The molecular weight (mol. wt) of the
target proteins was calculated using the ProtParam tool [100]. We chose the eight best drug
targets based on the above parameters and further analyzed them for molecular function
(MF) and biological process (BP) using UniProt [112].

3.8. Ligand Libraries and Docking Analyses

The ligands, drug-like molecules (Natural Product and its derivatives) described
earlier by [113] were obtained from the ZINC 15 database [114] and the in-house library
was constructed. The 3D structures of all the target proteins were inspected for structural
errors such as wrong bonds, missing atoms, and protonation states through Molegro Virtual
Docker (MVD) 6.0 [68]. The cavities generated by MVD for each target were compared
with the cavities detected by DoGSiteScorer (druggability ≥ 0.80). The most druggable
cavity defined by MVD was subjected to virtual screening. The MolDock Optimizer search
algorithm was used in this analysis, which is based on a differential evolutionary algorithm,

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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using the default parameters, that are (a) population size = 50; (b) scaling factor = 0.5;
(c) crossover rate = 0.9. The 3D poses and 2D representation of docked molecules were
analyzed in PyMOL 2.4.1 [115] and Discovery Studio Visualizer 2020 [116].

4. Conclusions

Methicillin-resistant S. aureus is the leading cause of nosocomial and community
infections. The genome plasticity of S. aureus facilitates the emergence of hypervirulent
strains and poses a greater threat to public health. To promote long-term protection
against multidrug-resistant (MDR) S. aureus infections, there is an urgent need for the
development of novel vaccine candidates or drug target proteins. In the present study,
reverse vaccinology and subtractive genome approaches were applied to predict potential
vaccine/drug targets, which can be used in the development of promising vaccines and
drugs for MDR S. aureus. The predicated vaccine candidate proteins were based on diligent
analysis of protein sequences and different immune databases. These studies reduce
time, labor, and costs for researchers, and finding results could be for desired solutions to
prevent MRSA infections. A reverse vaccinology approach recommended two proteins
(PrsA, and EssA) that have a high potential for vaccine candidates. A molecular docking
approach of selected drug target proteins with the drug-like molecules revealed that the
ZINC4235426 is a potential drug molecule with favorable interactions and low MolDock
Scores with the target active site residues of 5 drug target proteins viz., biotin protein
ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-
D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identification of
molecules in our current in silico study could be potentially used as new drugs for the
treatment of MRSA infections. The identified proteins can be used for further rational
drug or vaccine design to identify novel therapeutic agents for the treatment of MDR
staphylococcal infection. Further, the identified proteins through in silico approaches are
required to be validated using in vitro and in vivo experiments to find new methods of
treating MRSA strain-induced life-threatening diseases.
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www.mdpi.com/article/10.3390/molecules27072083/s1, Table S1: Features of sixteen whole-genome
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and drug target proteins, Table S2: Subtractive genome analysis of methicillin-resistant S. aureus
strains, Table S3: Linear B-cell epitopes of 4 putative vaccine candidates of S. aureus determined by
SVNTrip (20mers), Table S4: Drug target prioritization parameters and functional analysis of eight
protein targets, Table S5: Identified druggable pocket with its volume, surface area and drug score
of each target protein obtained from DoGSiteScorer, Sequence S1: Non-homologous sequences, and
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