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Abstract
An enzymatic crosslinking strategy using hydrogen peroxide (H2O2) and horseradish

peroxidase (HRP) has been receiving increasing attention for use with in situ-formed hydrogels
(IFHs). Several studies have reported the application of IFHs in cell delivery and tissue
engineering. IFHs may also be ideal carrier materials for bone repair, although their potential as
a carrier for basic fibroblast growth factor (bFGF) has yet to be evaluated. Here, we examined
the effect of an IFH made of dextran (Dex)-tyramine (TA) conjugates (IFH-Dex-TA) containing
bFGF in promoting bone formation in a fracture model in mice. Immediately following a
fracture procedure, animals either received no treatment (control) or an injection of IFH-Dex-
TA/phosphate-buffered saline (IFH-Dex-TA/PBS) or IFH-Dex-TA containing 1 μg bFGF (IFH-
Dex-TA/bFGF) into the fracture site (n=10, each treatment). Fracture sites injected with IFH-
Dex-TA/bFGF showed significantly greater bone volume, mineral content, and bone union than
sites receiving no treatment or treated with IFH-Dex-TA/PBS alone (each n=10). This Dex-TA
gel may be an effective drug delivery system for optimizing bFGF therapy.
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Introduction
About 5-10% of fractures result in delayed or poor non-union healing at the fracture site. These
cases may lead to functional disability due to deformed healing or pseudoarthrosis [1].
Therefore, the use of bioactive materials that encourage the bone formation and healing may
improve fracture healing.

One method that is used to increase the speed of fracture healing involves the local application
of growth factors [2]. Methods that aim to promote bone formation via the sustained release of
growth factors using various carriers have been reported. One growth factor known to be active
at fracture-healing sites is basic fibroblast growth factor (bFGF). Fibroblast growth factors
(FGFs) consist of a family of 23 structurally related polypeptides that play a critical role in
angiogenesis and mesenchymal cell mitogenesis [3,4]. bFGF is expressed in periosteum during
mesenchymal cell proliferation and chondrogenesis and promotes the growth of many types of
cells, such as osteoblasts and chondrocytes [2,5-7]. Among FGF family members, the
accumulation of bFGF is greatest in the bone matrix, and it is expressed in periosteum early in
bone formation [5,8,9]. In several animal-model studies, locally applied recombinant human
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bFGF (rhbFGF) has shown osteogenic properties in the regeneration of bone fractures and
defects, as well as osteoporotic bone [10-12]. Moreover, several clinical trials have recently
reported that bFGF accelerates bone union following osteotomy and in tibial shaft
fractures [2,7]. These properties indicate that bFGF is effective in promoting bone formation
and is a growth factor with therapeutic potential in clinical settings. However, despite this
osteogenic potential of bFGF, its efficiency diminishes rapidly following the diffusion in body
fluid from bone defect sites [13]. Moreover, bFGF at high doses can produce adverse side effects,
including thrombocytopenia, renal toxicity, and malignant cell activation [14,15]. Accordingly,
the use of bFGF should ideally be restricted to a form where it is combined with a carrier to
promote retention at wound sites. This in turn highlights the need for growth factor delivery
carriers that provide the sustained release of bFGF at fracture sites [10-12,16].

Implantable carriers such as absorbable collagen sponge or hydroxyapatite have been used to
aid fracture healing in clinical settings. However, these biomaterials require surgical incision
for implantation, and the method is accordingly invasive [17]. In contrast, injectable materials
have the advantage of being less invasive than implantable materials but, compared to
implantable materials, generally diffuse only from the injection site [18]. Therefore, a material
that is injectable and has the advantages of an implantable material may be an ideal candidate
for a bFGF carrier. In this regard, attention has been recently focused on an enzymatic
crosslinking strategy using hydrogen peroxide (H2O2) and horseradish peroxidase (HRP) for use

with in situ-formed hydrogels (IFHs) made of natural polysaccharides, such as dextran (Dex),
pullulan, and hyaluronic acid [19]. IFHs have suitable properties for biomedical applications,
including good cytocompatibility, tunable reaction rate, and substrate specificity, and several
studies have reported their use in cell delivery and tissue engineering for bone or cartilage
repair [20-22]. IFHs may also be ideal carrier materials for bone repair, although their potential
as a carrier for bFGF has yet to be examined.

Here, we examined the effect of an IFH made of Dex (IFH-Dex) containing bFGF for promoting
osteogenesis in a fracture model in mice.

Materials And Methods
Synthesis of dextran-tyramine conjugates (Dex-TA)
Dextran-tyramine conjugates (Dex-TA) were synthesized by referring to previous reports [23].
Dextran was combined with PNC to form derivatives of p-nitrophenyl carbonate, which were
treated with tyramine (TA) by aminolysis. Dextran produced by Meito Sangyo Co. (40 g, 471
mmol OH) (Meito Sangyo Co., Ltd., Nagoya, Japan) was dissolved in DMF (1,600 mL, containing
LiCl 30.9 g) under nitrogen at 90 ˚C. After the dextran was dissolved, the mixture was allowed to
cool and at 0 ˚C. PNC (23.8 g, 120 mmol) and pyridine (9.2 ml) were combined with the solution
under stirring. The feeding molar ratio of PNC to hydroxyl groups with dextran was about 0.25.
The reaction was allowed to continue overnight. Dextran activated with p-nitrophenyl
carbonate groups (denoted as Dex-PNC) was then precipitated in cold ethanol (2,000 ml),
followed by filtering and careful washing with ethanol and diethyl ether, and drying in a
vacuum oven.

Subsequently, Dex-PNC was dissolved in 740 mL of DMF, and TA (9.1 g, 65 mmol) was added
under nitrogen. The reaction was continued for three hours at room temperature. The product
was then precipitated in cooled ethanol (800 ml), filtered, and washed carefully with diethyl
ether and ethanol. The Dex-TA conjugates were purified further using ultrafiltration against
deionized water and isolation following lyophilization. 1H NMR was used to establish the
composition of the Dex-TA conjugates. The degree of substitution (DS) (1H NMR) was 12. 1H
NMR (D2O): d 2.60 and 2.88 (m, -CH2-CH2-), 3.20-3.84 (m, dextran glucosidic protons), 4.84 (s,
dextran anomeric proton), 6.72 and 7.01 (m, TA aromatic protons). DS, defined as the number of
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substituents/100 anhydroglucosidic rings (AHG rings) in dextran, was evaluated using 1H NMR
by comparison of signal integrals at d 5.0 and d 6.5-7.5 for Dex-TA, in reference to the previous
method [23].

Preparation of IFH-Dex-TA
IFH-Dex-TA was prepared by cross-linking Dex-TA polymer in the presence of HRP as the
catalyzing enzyme, and H2O2 in 10 mM phosphate-buffered saline (PBS; pH 7.4). Briefly, Dex-

TA polymer solution (final concentration: 2% w/v) was combined with 0.8 units/mL HRP
solution (final concentration: 0.8 units/mL) containing 1 µg bFGF (IFH-Dex-TA/bFGF) or PBS
(IFH-Dex-TA/PBS) and H2O2 solution (final concentration: 4 mM).

Mouse fracture model
The femur fracture model was produced in C57BL/6J mice aged nine weeks [24]. The mice were
maintained at Nippon Charles River Laboratories (Kanagawa, Japan) in a semi-barrier system
with controlled temperature (23 ±2 °C), humidity (55 ±10%) and lighting (12-h light/dark cycle),
and received standard rodent chow (CRF-1; Oriental Yeast, Tokyo, Japan). The fracture model
was generated by producing a 10-mm incision on the lateral side of the left thigh under sterile
conditions. The left patella was medially dislocated by producing a 4-mm lateral parapatellar
incision. Following the drilling of a 0.5-mm hole in the intercondylar notch, a stainless steel
needle (0.5-mm diameter) was retrogradely inserted into the intramedullary canal. The
osteotomy was conducted using a wire saw of 0.22-mm diameter via a small lateral approach,
and insertion of a stainless steel needle into the intramedullary canal was used for stabilization.
Immediately following the fracture, the animals either received no treatment (control) or
received an injection of IFH-Dex-TA/PBS or IFH-Dex-TA/bFGF in the fracture site (n=8, each
treatment). All animal experiments were conducted in accordance with the guidelines of the
Animal Ethics Committee, Kitasato University (approval number: 2019-127).

Determination of new bone volume and bone mineral content
All mice were sacrificed four weeks after treatment. Femurs along with the surrounding muscle
were removed and fixed in 4% paraformaldehyde for 48 hours at 4 °C. The femurs were moved
into PBS and imaged on a micro-focus X-ray CT system (inspeXio SMX-90CT; Shimadzu, Tokyo,
Japan) using a 90 kV acceleration voltage, 110 mA current, 20 lm/pixel voxel size, and 1,024 ×
1,024 matrix size. Using the micro-CT images of the whole femur, newly developed bone
volume and bone mineral content were quantified in a 10-mm region of interest centered on
the fracture site (500 slices) chosen at the shaft of the femur for each animal using a 3-
dimensional (3D) image analysis software application (Tri-3D-Bon; Ratoc System Engineering,
Tokyo, Japan), as reported previously. Regions of new bone were determined with a threshold

density of 300 mg/cm3 [18,24].

Histology
The bone formation mechanism induced by IFH-Dex-TA/bFGF was assessed by excising femurs
from the control and treated animals four weeks after the production of fractures. They were
dematerialized in a solution of 20% ethylenediaminetetraacetic acid (EDTA) for four weeks.
Residual tissue was embedded in paraffin, and 3-µm coronal sections were cut along the long
axis of each femur. These sections were processed by hematoxylin and eosin (HE) staining for
morphological evaluation.

Sustained in vitro release of bFGF
To assess the sustained release of bFGF from IFH-Dex-TA, H 2O2 solution containing Dex-TA
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and HRP solution containing 1 µg bFGF were added to a 0.5-mL plastic microcentrifuge tube.
After curing IFH-Dex, 200 μl of PBS was added to the tube. To determine the release of bFGF
from IFH-Dex-TA, bFGF-loaded microtubes were incubated in 200 μl of PBS for one, four,
eight, 24, 48, and 72 hours. The supernatant was collected and kept at -30 °C until assay. The
concentration of bFGF was estimated using a commercial ELISA kit (R&D Systems,
Minneapolis, MN).

Results
Dex gel containing bFGF induced callus formation in vivo
We evaluated callus formation in the fractured femurs following treatment with IFH-Dex
containing bFGF using micro-CT image analysis at four weeks post-treatment (Figure 1).

FIGURE 1: Representative 3D micro-CT image of femurs
following injection of in situ-formed hydrogel made of dextran
(IFH-Dex-TA) loaded with bFGF
3D micro-CT images of fractured femurs from (A) control, (B) IFH-Dex-TA/PBS-, and (C) IFH-Dex-
TA/bFGF-treated groups after four weeks of recovery. Red: new bone formation; gray: existing bone

CT: computed tomography; IFH: in situ-formed hydrogels; Dex: dextran; TA: tyramine;
PBS: phosphate-buffered saline; bFGF: basic fibroblast growth factor

Compared to sites that received no treatment (control) or were treated with IFH-Dex alone,
fracture sites injected with IFH-Dex-TA/bFGF showed significantly greater bone volume and
bone mineral content (Figure 2) (p<0.05). In contrast, these variables were comparable between
the IFH-Dex-TA and control groups.
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FIGURE 2: Quantification of callus area and bone mineral
content at the fracture site four weeks following the creation of
the fracture

Analysis of (A) bone volume (mm3) and (B) bone mineral content (mg) in calluses from control
(white bars), IFH-Dex-TA/PBS- (black bars), and IFH-Dex-TA/bFGF-treated (gray bars) groups. Data
are shown as the mean ± standard error (SE) (n=8)

*p: <0.05 versus the control group

IFH: in situ-formed hydrogels; Dex: dextran; TA: tyramine; PBS: phosphate-buffered
saline; bFGF: basic fibroblast growth factor

Histomorphometric findings
To evaluate bone union, we conducted a histological examination of the fracture site four weeks
post-fracture. The IFH-Dex-TA/bFGF-treated group exhibited large calluses at the fracture site,
and the fracture site was bridged by newly formed bone (Figure 3). In contrast, in the IFH-Dex
and control groups, small calluses were observed at the fracture site (Figure 3).
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FIGURE 3: Hematoxylin and eosin (HE) staining of the femur
and surrounding muscle
(A–B) control, (C–D) IFH-Dex-TA/PBS, and (E–F) IFH-Dex-TA/bFGF. Scale bars indicate 2 mm (A,
C, E) or 0.5 mm (B, D, F)

IFH: in situ-formed hydrogels; Dex: dextran; TA: tyramine; PBS: phosphate-buffered
saline; bFGF: basic fibroblast growth factor

Sustained release of bFGF from IFH-Dex-TA in vitro
The in vitro profile of bFGF release from IFH-Dex-TA is shown in Figure 4. bFGF release from
Dex-TA gel occurred with an initial burst in the first four hours followed by a gentler release
pattern after eight hours. Thereafter, the sustained release rate was moderate, with 37% of the
administered dose of bFGF gradually released across 72 hours.
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FIGURE 4: Sustained release of bFGF from IFH-Dex-TA gel in
vitro
bFGF concentration in PBS at different time points. Results are presented as mean ± standard
error (SE) (n=5)

IFH: in situ-formed hydrogels; Dex: dextran; TA: tyramine; PBS: phosphate-buffered
saline; bFGF: basic fibroblast growth factor

Discussion
Previous studies have reported that bFGF combined with carriers having various forms,
including powders, sheets, sponges, gels, has an effect on the bone to promote bone
formation [2,10-12,16,18,25]. Dextran protects bFGF from acid and heat inactivation and
proteolysis, and its protective effect is stronger than that of heparin, a known bFGF
stabilizer [26]. Dextran gel is gradually released from bFGF and promotes angiogenesis [27]. In
our present study, 1 μg bFGF with in situ-formed hydrogels composed of Dex-TA induced
accelerated bone formation at the fracture site in mice. We previously showed that 1 μg bFGF
combined with artificial collagen gel failed to accelerate bone formation in a mice fracture
model [18]. In addition, even when 10 μg bFGF combined with collagen powder was
administered to the fracture site, bone formation was not accelerated [25]. Accordingly, this
IFH-Dex-TA gel may be useful as a carrier for bFGF to accelerate bone formation.

When using various substances as carriers for growth factors, it is important that the growth
factors be released slowly. bFGF is reported to have a growth-promoting effect on
undifferentiated mesenchymal cells at an early stage in the process of fracture healing [11].
When administered directly into the body, it diffuses rapidly. However, because it is considered
to produce its activity by affecting the initial stage of the bone union process [11,13], it is
important that the release occurs locally in order to minimize or prevent diffusion. The IFH-
Dex-TA gel containing bFGF provided a large and sustained release of bFGF in the first four
hours after injection. The amount released thereafter decreased, but the bFGF concentration in
the PBS solution after 72 hours was 38.7 ng/mL. In this regard, bFGF was reported to show
proliferative activity on periosteal cells at a concentration of 1 ng/mL in vitro [28]. The
proliferation of periosteal cells occurred from day one to three after the creation of a fracture in
a fracture model in mice [29,30]. Accordingly, we speculate that bFGF-containing IFH-Dex-TA
gel could release a sufficient amount of bFGF to exert a cell-growth-promoting effect during
fracture healing.

There were two main limitations to this study. The release kinetics of bFGF in vivo remain
unclear. The usage of fluorescently-labeled bFGF was needed to reveal the release kinetics.
Moreover. extrapolating the results obtained from small animal models directly to man may not
be clinically relevant. We recommend further investigation using large animals.

Conclusions
We examined the osteogenesis-promoting ability of Dex gel containing bFGF in a fracture
model in mice. Fracture sites injected with Dex/bFGF showed significantly greater bone volume
and bone mineral content than sites receiving no treatment or treated with Dex gel alone. The
use of this Dex gel as a drug delivery system may be effective for optimizing bFGF therapy.

Additional Information
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