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Abstract
A growing body of research has documented associations between adverse child-
hood environments and DNA methylation, highlighting epigenetic processes as po-
tential mechanisms through which early external contexts influence health across the 
life course. The present study tested a complementary hypothesis: indicators of chil-
dren’s early internal, biological, and behavioral responses to stressful challenges may 
also be linked to stable patterns of DNA methylation later in life. Children’s auto-
nomic nervous system reactivity, temperament, and mental health symptoms were 
prospectively assessed from infancy through early childhood, and principal compo-
nents analysis (PCA) was applied to derive composites of biological and behavioral 
reactivity. Buccal epithelial cells were collected from participants at 15 and 18 years 
of age. Findings revealed an association between early life biobehavioral inhibition/
disinhibition and DNA methylation across many genes. Notably, reactive, inhibited 
children were found to have decreased DNA methylation of the DLX5 and IGF2 genes 
at both time points, as compared to non-reactive, disinhibited children. Results of the 
present study are provisional but suggest that the gene’s profile of DNA methylation 
may constitute a biomarker of normative or potentially pathological differences in 
reactivity. Overall, findings provide a foundation for future research to explore rela-
tions among epigenetic processes and differences in both individual-level biobehav-
ioral risk and qualities of the early, external childhood environment.
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provided the original work is properly cited.
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1  | INTRODUC TION

From the earliest moments of life, children’s health and development 
are shaped by the qualities of their environmental contexts. Processes 
termed ‘biological embedding’ elucidate the possible mechanisms of 
such relations and describe how exposures to environmental adver-
sity get ‘under the skin’ to influence critical biological pathways af-
fecting health across the lifespan (Boyce & Kobor, 2014; Hertzman & 
Boyce, 2010). Epigenetic processes represent one model of biological 
embedding and have been increasingly recognized as a potential link 
between stressful childhood environments and later health outcomes 
(Boyce & Kobor, 2014; LaSalle, Powell, & Yasui, 2013). DNA methyla-
tion (DNAm) patterns associated with environment or experience are 
also influenced by other factors such as individual health behaviors, 
differences in temperament, and disease states (Ng et al., 2012).

DNAm is the most studied epigenetic modification in human 
populations and consists of a methyl group addition to the 5′ cy-
tosine of CpG dinucleotides (CpGs). Once believed to be a gene 
silencing epigenetic mark, DNAm is context- and location-specific 
and has been linked to increased, decreased, and unchanged gene 
activity (Edgar, Tan, Portales-Casamar, & Pavlidis, 2014; Gutierrez-
Arcelus et al., 2013; Jones, 2012). The complex mechanisms by 
which DNAm can alter gene activity include inhibiting or enhanc-
ing transcription factor binding to DNA, recruiting enzymes to 
alter histone modifications, and altering splice sites, among oth-
ers (Jones, 2012; Yin et al., 2017). DNAm is most dynamic during 
fetal development when epigenetic patterns play an integral part 
in the complex processes of embryogenesis (Guo et al., 2014; 
Khavari, Sen, & Rinn, 2010) and rates of change generally stabilize 
in adulthood (Alisch et al., 2012). However, adolescence is also un-
derstood to be a time of increased methylome alterations (Alisch 
et al., 2012; Lister et al., 2013), though studies of DNAm changes 
during this developmental period are more scarce compared to 
those conducted in early childhood and later adulthood (Jones, 
Goodman, & Kobor, 2015).

A growing body of research has revealed associations between 
exposures to early life environmental and psychosocial adversity 
and DNAm in accessible tissues such as buccal epithelial cells 
(BECs), saliva and peripheral blood (for an excellent review of the 
epigenetics patterns of traumatic stress, see Vinkers et al. (2015)). 
For example, children reared in institutional environments show 
increased DNAm among many genes in peripheral blood mononu-
clear cells (PBMCs) and whole blood, as compared with children 
reared by biological parents (Esposito et al., 2016; Naumova et al., 
2012). DNAm measured in tissues including PBMCs, saliva, BECs 
also appears to be associated with early life experiences of low 
socioeconomic status (Lam et al., 2012), childhood maltreatment 
or deprivation (Klengel et al., 2012; Kumsta et al., 2016; Non et al., 
2016; Weder et al., 2014) and maternal mental health problems 
during the perinatal period (Hompes et al., 2013; Monk, Spicer, 
& Champagne, 2012). In a prior study of this cohort conducted 
by our research team, exposure to maternal stress in infancy and 
childhood was associated with differential DNAm among offspring 

in mid-adolescence (Essex et al., 2011). Paternal stress in child-
hood was also associated with DNAm changes in mid-adolescence 
among female offspring only.

Beyond the influence of adverse early environmental experi-
ences, epigenetic patterns may also be shaped by intra-individual bi-
ology. Genetic variation, for example, is a strong predictor of DNAm 
patterns (Bell et al., 2011; Chen et al., 2016; Fraser, Lam, Neumann, 
& Kobor, 2012). Allelic variation may alter individual susceptibility to 
adverse social and environmental conditions leading differences in 
DNAm (Meaney, 2010). For example, an allelic variant of the FKBP5 
stress-response gene altered whether adults who experienced 
childhood abuse or trauma also exhibited loss of DNAm at this gene 
(Klengel et al., 2012). In addition to allelic variation, factors index-
ing an individual’s internal psychological and physiological state may 
also be associated with patterns of DNAm (Conradt et al., 2015; 
Ouellet-Morin et al., 2013).

Empirical studies examining the association between individual-
level phenotypic factors and epigenetic differences are scarce. In 
two papers, measures of physiological reactivity to stress during 
infancy and childhood were associated with DNAm of BECs and 
placental cells (Conradt et al., 2015; Ouellet-Morin et al., 2013), and 
physical aggression in early life has been shown to predict differen-
tial patterns of DNAm in T cells in adulthood (Guillemin et al., 2014; 
Provençal et al., 2014). Recent research in a group of young rhesus 
macaques also showed anxious temperament to be associated with 
differentially methylated loci in the central nucleus of the amygdala 
(Alisch et al., 2014).

A limited number of studies have thus examined associations 
among discrete biological and behavioral stress response param-
eters, psychological health, and epigenetic modifications. The 
inherent coupling involved in ‘mind-body relations’, however, sug-
gests that a more comprehensive understanding might be gleaned 
from synthesizing the interrelations among individuals’ internal, 
individual-level biological and behavioral qualities into an integrated 
factor that could be examined for associations with DNAm. To this 
end, the current study derived measures of children’s biobehavioral 

RESEARCH HIGHLIGHTS

•	 Measures of temperament, presyndromal mental health 
symptoms, and autonomic stress reactivity were input 
into principal component analysis (PCA) to create a com-
posite measure distinguishing inhibited children from 
disinhibited children.

•	 93 DNA methylation sites measured at age 15 were sig-
nificantly different between inhibited and disinhibited 
children, including nine sites located within the DLX5 
homeobox gene and two sites in IGF2, a growth factor.

•	 DLX5 and IGF2 DNA methylation at age 18 was also sig-
nificantly correlated with childhood inhibition/
disinhibition.
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response predispositions from the shared variation among temper-
amental traits, presyndromal behavioral symptoms, and autonomic 
reactivity to stressful laboratory challenges. Temperament has been 
defined as ‘constitutionally based individual differences in reactivity 
and self-regulation in the domains of affect, activity, and attention’ 
(Rothbart & Derryberry, 1981). Such differences have established 
biological underpinnings and are known to influence children’s 
physiological and behavioral responsivity to environmental condi-
tions (Goldsmith et al., 1987; Kagan, 2012; Rothbart, 1989). Both 
temperament and stress reactivity are related to the development 
of later forms of psychopathology and may act as antecedent, sub-
clinical precursors, or endophenotypes (Caspi, Moffitt, Newman, 
& Silva, 1996; Muris & Ollendick, 2005; Pine & Fox, 2015; Rutter, 
1984). When taken together, an integrative measure of tempera-
mental traits, presyndromal mental health symptoms, and biologi-
cal reactivity might plausibly provide a more powerful indicator of a 
child’s internal biobehavioral response predispositions than if those 
domains are explored independently. To our knowledge, no extant 
research has examined relations between biobehavioral responses 
and DNAm over time.

In light of previous research, the present study examined pro-
spective associations between early, internal differences in biobe-
havioral responses and later epigenetic modifications across two 
time points within a sample of 55 individuals from the Wisconsin 
Study of Families and Work (WSFW). This developmentally oriented, 
longitudinal research project established a birth cohort from which 
data on child temperament, autonomic reactivity, mental health, 
and DNA were collected at multiple time points from prenatal life 
to age 18. We anticipated significant relations between childhood 
biobehavioral response propensities (i.e., internal factors) and ado-
lescent patterns of DNAm, paralleling our prior work (and that of 
other investigators) documenting linkages between stressful life 
experiences (i.e., external, environmental factors) and DNAm. We 
examined the relations between early life biobehavioral measures 
and DNAm at two time points, 15 and 18 years. Utilizing these rich 
longitudinal data, we ran an additional analysis of the temporal sta-
bility of DNAm, examining whether such stability is required for the 
longitudinal persistence of biobehavioral associations.

2  | METHODS

2.1 | Study sample

Participants in the current study were drawn from a WSFW subsam-
ple (n = 120) of children, parents, and teachers (Hyde, Klein, Essex, 
& Clark, 1995). Children were selected for that subsample to provide 
a balanced representation of high and low reported mental health 
symptoms (Boyce et al., 2001). The present analyses are based on a 
subset of 55 children who had complete data on temperament, men-
tal health symptomatology, and ANS reactivity in the infancy, pre-
school, and kindergarten periods, and who provided DNA samples 
at ages 15 and 18 years (Table 1). Mann–Whitney U tests indicated 
no significant differences on any biological or behavioral measure 

between the 55 children in the present analysis and the larger WSFW 
subsample from which they were drawn (p > 0.05 at each variable). 
Of the 55 individuals, 19 were male and 36 were female. Mean family 
income measured at 12 months postpartum and preschool (4.5 years 
old) was $51,480 (median = 47,000) and $63,220 (median = 56,000), 
respectively. Six children were of non-Caucasian minority status. All 
children entered primary school in the same school year (in 1996). 
Ethics approval for the WSFW was obtained from the University of 
Wisconsin-Madison Institutional Review Board and informed con-
sent was obtained from all participants.

2.2 | Measures

A summary of all measures collected at each time point, organized by 
construct, can be found in Table 1.

2.2.1 | Autonomic nervous system reactivity

During in-home assessments completed during first grade, children 
participated in a 15-min standardized, developmentally appropri-
ate stress reactivity protocol (Alkon et al., 2002). Briefly, the proto-
col consisted of challenges across social (interview with the child), 
cognitive (digit recall task), sensory (a taste identification task), and 
emotional (a fear- and sadness-eliciting movie clip) domains (Alkon 
et al., 2002). Measurements of ANS activity, including heart rate 
(HR), pre-ejection period (PEP), respiratory sinus arrhythmia (RSA), 
and mean arterial pressure (MAP) were assessed via electrocardiog-
raphy and impedance cardiography throughout the protocol (Alkon 
et al., 2002; Boyce et al., 2001). Autonomic reactivity was indexed 
as increases in HR and MAP and decreases in PEP (reflecting sympa-
thetic activation) and RSA (reflecting parasympathetic withdrawal), 
relative to resting levels (Boyce et al., 2001). All specific reactivity 
measures were computed as the slope of the ANS measure reactiv-
ity regressed on time. Positive slopes on HR and MAP and negative 
slopes on RSA and PEP all indicated upregulation in general ANS 
arousal (Boyce et al., 2001).

2.2.2 | Temperament

Temperament was assessed via both maternal report and obser-
vational coding methods, capturing the specific domains of tem-
peramental negativity that have been theoretically and empirically 
related to children’s physiological reactivity (Gray, 1991). First, moth-
ers reported on the Infant Behavior Questionnaire (IBQ; Gartstein & 
Rothbart, 2003) at age 1 year and a modified version of the Child 
Behavior Questionnaire (CBQ; Rothbart, Ahadi, Hershey, & Fisher, 
2001) at ages 3.5 and 4.5 years. Both instruments have been widely 
validated for use in their respective target populations (Gartstein & 
Rothbart, 2003; Parade & Leerkes, 2008; Putnam & Rothbart, 2006; 
Rothbart et al., 2001).

Observational measures of children’s temperament were also 
collected using the Laboratory Temperament Assessment Battery 
(LabTAB) administered in a standardized fashion during home 
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assessments at 4.5 years and in grade one. The LabTAB is comprised 
of 12 emotion-eliciting behavioral episodes that simulate everyday 
situations (e.g., a social interaction with an unfamiliar adult, waiting 
for a signal before eating a snack, and using fine motor skills at a 
toy workbench). These situations were used to evoke affective re-
actions within three domains: negative affectivity, positive affectiv-
ity, and behavioral control-regulation. All LabTAB assessments were 
videotaped and rated by two independent reviewers who coded fa-
cial, vocal, motor, behavioral, and postural responses (Gagne, Van 
Hulle, Aksan, Essex, & Goldsmith, 2011). To remain consistent with 
the temperament domains assessed by maternal report on the IBQ 
and CBQ, only coded behavioral observations of approach negativ-
ity and withdrawal negativity, elicited during negative affectivity 
episodes, were included in the present analyses. Maternal report 

and laboratory-based observations of temperament and behavior 
that were not expected to relate to children’s physiological reac-
tivity were excluded. For additional details of LabTAB episodes, ad-
ministration, and coding (see Luby et al., 2002). Both LabTab-  and 
questionnaire-derived temperamental measures have been shown 
reliable and internally consistent in this sample (Gagne et al., 2011).

2.2.3 | Mental health symptoms

Children’s presyndromal, internalizing, and externalizing symptoms 
were assessed in kindergarten using maternal and teacher reports on 
subscales from the MacArthur Health and Behavior Questionnaire 
(HBQ) (Boyce et al., 2002; Essex et al., 2002). The HBQ internalizing 
and externalizing subscales are well-validated measures of emotion 

TABLE  1 Mental health, temperament and ANS traits collected over 7 years and included in the analysis. Variable names signify reporter 
first, time point second and measure last

Parameter Variable Reporter
Age/time 
point Instrument Measure Min.a Mediana Maxa

ANS response OG1-HR Observational Grade 1 ANS stress 
reactivity

Heart rate reactivity 
(slope)

−1.30 −0.23 2.85

OG1-PEP Pre-ejection period 
reactivity (slope)

−2.34 0.41 1.13

OG1-RSA Respiratory sinus 
arrhythmia reactivity 
(slope)

−2.31 0.29 1.20

OG1-MAP Mean arterial pressure 
reactivity (slope)

−1.42 −0.22 1.97

Temperament MI-AN Mother 12 months IBQ Approach negativity 
(activity level, 
distress to 
limitations)

−2.14 −0.02 1.99

MI-WN Withdrawal negativity 
(distress to novelty, 
startle)

−2.09 0.00 3.06

MP-WN Avg. 3.5 & 
4.5 years

CBQ Withdrawal negativity 
(fear, sadness, 
shyness)

−2.36 0.03 1.74

OP-WN Observational 4.5 years LabTAB −2.31 −0.10 1.85

OG1-WN Grade 1 −2.58 −0.08 2.01

MP-ANG Mother Avg. 3.5 & 
4.5 years

CBQ Approach negativity 
(anger)

−2.48 0.10 1.87

OP-ANG Observational 4.5 years LabTAB −1.67 0.14 2.34

OG1-ANG Grade 1 −1.99 −0.09 1.81

Mental health 
symptom

MK-INT Mother Kindergarten HBQ Internalizing 
(depression, 
separation anxiety, 
overanxious)

−1.34 −0.19 2.82

TK-INT Teacher −0.85 −0.43 3.61

MK-EXT Mother Externalizing 
(oppositional, 
conduct, overt 
aggression)

−1.67 −0.10 2.59

TK-EXT Teacher −0.57 −0.45 3.85

Note. M: mother-report; T: teacher-report; O: observed; I: infancy; P: preschool; K: kindergarten; G1: grade 1; AN: approach negativity; WN: withdrawal 
negativity; ANG: anger; INT: internalizing symptoms; EXT: externalizing symptoms; HR: heart rate; PEP: pre-ejection period; RSA: respiratory sinus 
arrhythmia; MAP: mean arterial pressure.
aReporting the standardized descriptives that were used for PCA. 
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regulation and reactivity difficulties relevant to the present analyses 
of children’s biobehavioral reactivity (e.g., sadness, withdrawal, ir-
ritability, anger)(Lemery-Chalfant et al., 2007; Luby et al., 2002). The 
validity and reliability of these measures have been previously es-
tablished in this sample (Luby et al., 2002).

2.2.4 | DNA methylation

Extraction and bisulfite conversion of DNA from buccal swabs
Buccal epithelial cells were collected from participants at ages 15 and 
18 years using MasterAmp Buccal Swabs (Epicentre Biotechnologies) 
and were stored at -80º C. Genomic DNA was extracted from buc-
cal swabs using Buccal DNA Isolation Kits (Isohelix Ltd), then puri-
fied and concentrated with DNA Clean & Concentrator kits (Zymo 
Research). DNA quality was assessed by a NanoDrop ND-1000 
(Thermo Scientific). 750 ng of genomic DNA underwent bisulfite 
conversion using the EZ DNA Methylation Kit (Zymo Research).

Microarray experiments
Bisulfite converted DNA was treated according to established proto-
cols (Illumina) in preparation for loading onto microarrays. DNA from 
buccal swabs collected at age 15 years was assayed using the Infinium 
HumanMethylation27 BeadChip (27K array); previous findings on 
these data can be found in Essex et al. (2011). DNA from samples col-
lected at age 18 was assayed using the next generation of this tech-
nology, the Infinium HumanMethylation450 BeadChip (450K array).

For samples collected at age 15, 160 ng of bisulfite-converted 
DNA was whole-genome amplified, fragmented, and hybridized 
onto the 27K array. The 27K array analyzes DNAm at 27,578 CpGs, 
primarily at DNA sequences that map onto gene promoter regions. 
Raw DNAm data from the scanned microarrays are available in the 
gene expression omnibus (GEO) database under the accession num-
ber GSE25892 at: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE25892 (Essex et al., 2011).

For samples collected at age 18, 160 ng of bisulfite-converted 
DNA was whole-genome amplified, fragmented, and hybridized onto 
the 450K array. The 450K array covers over 485,000 CpGs, repre-
senting 99% of all RefSeq genes, and includes ~90% of the CpGs 
that are on the 27K array. Following scanning of the microchips, data 
were input into Illumina’s Genome Studio software.

DNAm data processing
For the 27K array, DNAm data were background-adjusted and 
quantile-normalized, as previously described (Essex et al., 2011). 
Probes underwent rigorous quality control processes, and were 
assessed for detection p-value, number of underlying probes, and 
signal levels in each subject and replaced with ‘NA’ in the subject 
of interest if they failed at any metric (total of 4567 CpG meas-
urements). One sample was removed based on poor quality data 
(>10% probes with a detection p > 0.05), leaving 109 samples, 
and one probe was removed due to poor quality data (detection 
p > 0.05 in more than 10% of individuals). The remaining samples 
had between 0 and 194 ‘NA’ values (mean = 27.19, median = 13), 

which were replaced with imputed values using the ‘impute.knn’ 
function in the R package ‘impute’ (Troyanskaya et al., 2001). Probes 
on the X and Y chromosomes were removed as these CpGs differ by 
sex. Finally, probes were removed based on lack of inter-individual 
variability in accordance with existing data reduction methods. 
First, probes in which β values across all individuals were <0.05 or 
>0.95, were excluded (9,346) (Bourgon, Gentleman, & Huber, 2010). 
Second, analyses were restricted to individuals with complete 
biobehavioral measures only (n = 55) and any probes with a range 
<0.05 β, as calculated between individuals within the 10th and 90th 
percentile were removed (8,309). This left 9,922 probes for analysis 
(Lemire et al., 2015). This variability cut-off is stringent but reason-
able, as most probes measured on the 27K array are located within 
promoter CpG islands, which are the most invariable CpGs in the ge-
nome (Edgar et al., 2014). The 9,922 CpGs were annotated to 6,583 
unique genes; 2,212 genes contained two or more variable probes. 
Finally, the ‘detectOutlier’ function in the lumi package was applied 
and no outliers were identified (n = 55) (Du, Kibbe, & Lin, 2008).

DNA methylation data from the 450K array were background-
adjusted and color-corrected in Genome Studio (Illumina). Three out-
lier samples were detected using the ‘detectOutlier’ and removed, 
leaving 52 individuals. A total of 4,314 probes deemed low quality 
were removed. Additional probes that were removed included those 
that mapped onto sex chromosomes (1, 216), assayed single nucleo-
tide polymorphisms (SNPs; 64), or were found to cross-hybridize to 
sex or autosomal chromosomes (37, 909) or SNPs (19, 999), based on 
a previous annotation (Price et al., 2013). Data were then normalized 
across samples using quantile-normalization, followed by normaliza-
tion of probe-type differences using Subset-quantile Within Array 
Normalization (SWAN) (Maksimovic, Gordon, & Oshlack, 2012). An 
empirical Bayes method (ComBat) was applied to correct for effects 
associated with the separation of samples into batches during the 
microarray experiments, specifically into 96-well plates, into mi-
croarray chips holding 12 samples per chip, and into six rows present 
on each chip (W. E. Johnson, Li, & Rabinovic, 2006).

Of note, the DNAm data collected at ages 15 and 18 were run 
at different times and on different technologies (the 27k array and 
the 450k array, respectively), and these data were treated differ-
ently during preprocessing. Specifically, the 450k array contains 
two probe types (type I and type II), which have different dynamic 
ranges and therefore different β value distributions; this was cor-
rected for using SWAN. The 450k array was also corrected for 
batch effects using ComBat due to technical variability. The 27k 
array contains only type I probes and batch effects as measured 
by plate, chip and row were not significantly correlated with our 
variables of interest (all p > 0.05), nor were they correlated with 
the first principal component of the DNAm array data, which ac-
counted for over 90% of total variability. Therefore, neither SWAN 
nor ComBat were used on the 27k array data. For consistency, 
CpG sites assayed on both the 27k array and the 450k array were 
mapped to genes using the Price annotation, while the Illumina 
HumanMethylation27 Manifest File was used for CpG assayed only 
on the 27 array (Price et al., 2013).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25892
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25892
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At each CpG assayed on the microarray platforms, a β value rang-
ing from 0 (completely unmethylated) to 1 (100% methylated) was 
calculated for each sample using the signal intensity from the scan. 
β values of all samples from the 27K array and 450K array were log 
transformed into M-values prior to analysis to adjust for the hetero-
scedastic nature of β values (Du et al., 2010). All results are reported 
in β values to facilitate biological interpretation.

2.3 | Statistical analysis

2.3.1 | Principal component analysis

Principal component analysis (PCA) is a multivariate technique 
designed to reduce the dimensionality of a large set of non-
independent variables, while retaining important sources of varia-
tion in the dataset (Ringnér, 2008). In the present analysis, PCA was 
used to derive biological and behavioral response propensities that 
reflect the shared, underlying regulatory processes common across 
the measures of temperament, ANS reactivity, and internalizing/ex-
ternalizing symptoms (Figure S1). PCA provided an effective analytic 
alternative to conducting separate analyses of the relations between 
the biological/behavioral measures and DNAm, which would have 
been statistically and conceptually problematic due to the increased 
rate of Type I error and the interrelatedness of our reactivity meas-
ures. PCA was run on the 16 scaled variables derived from measures 
of temperament, ANS, and internalizing/externalizing symptoms 
(Table 1), producing 16 principal components (PCs) that represent 
mathematically unique but conceptually overlapping aspects of 
the child’s biological and behavioral response propensities. Each 
PC (hereafter referred to as a biobehavioral reactivity factor) repre-
sents an independent axis of variation among the data, driven by 
different combinations of weights from the original measures. The 
first three biobehavioral reactivity factors were chosen for DNAm 
analysis based on examination of the scree plot, which indicated a 
clear ‘break’ between the third and fourth component (Bro & Smilde, 
2014).

2.3.2 | Covariates

A number of covariates were evaluated for potential inclusion in 
the analyses. The sample was homogenous in age (all participants 
entered preschool within the same school year) and ethnicity (87% 
Caucasian), precluding the need to control for these variables. Family 
income, measured at 9 months postpartum and kindergarten, were 
also excluded as covariates, because they were not correlated with 
any of the three biobehavioral PCs (all p > 0.05). The effect of sex 
was examined post hoc.

The cell composition of buccal swabs can vary between individ-
uals, altering DNAm patterns, and was therefore also considered 
for inclusion as a covariate. The percentages of underlying BECs 
and leukocytes were calculated from the DNAm profiles measured 
at age 15 using a cell deconvolution algorithm trained on BECs and 
saliva samples (Smith et al., 2015). Using this tool, the proportions of 

BECs in our age 15 cohort was estimated to range from 81% to 96% 
(mean 87.7%). However, this proportion was not correlated with our 
measures of interest (p > 0.05) and was also excluded from further 
analysis.

2.3.3 | Associations between biobehavioral 
reactivity and DNAm

Age 15
Associations between the biobehavioral reactivity factors and 
DNAm at age 15 were examined from the 27K array. The sample 
of 9,922 variable CpGs was tested against the three biobehavioral 
reactivity factors using Spearman rank order correlations. p-values 
were corrected using the Benjamini-Hochberg method to estimate 
false discovery rates (FDRs), which limits the expected proportion 
of false positives and therefore reduce the number of Type I errors 
(Benjamini & Hochberg, 1995). The magnitude of change in DNAm 
across individuals, termed Δβ, was calculated using the slope of the 
regression line and reported for each differentially methylated CpG 
as a measure of effect size (Lam et al., 2012). CpGs that were signifi-
cantly associated at a FDR corrected p-value of 0.05 or smaller and 
had an absolute Δβ >0.05 were reported as high confidence differ-
entially methylated CpGs (Essex et al., 2011). CpGs with a FDR cor-
rected p-value between 0.05 and 0.2 and an absolute Δβ >0.05 were 
reported as medium confidence differentially methylated (Essex 
et al., 2011).

Persistence of associations between biobehavioral reactivity 
and DNAm at age 18
To test whether associations identified at age 15 persisted at age 18, 
we examined associations between the biobehavioral reactivity fac-
tors and DNAm measured at age 18 using the 450K array. Because 
age was perfectly confounded with both microarray platform and 
processing methods, we chose not to compare directly β values at 
ages 15 and 18 and rather repeated the correlations using DNAm 
assessed at age 18. This tested whether variation across individuals 
was also associated with biobehavioral reactivity at the later time 
point. As described in more detail below, we focused on genes with 
multiple high and medium confidence CpGs found at age 15. Again, 
p-values were corrected using the Benjamini-Hochberg methods to 
control for FDR. As an additional test of the strength of the asso-
ciations, correlation coefficients between the PCA-derived biobe-
havioral reactivity factors and differentially methylated CpGs were 
permuted 100 times, generating a null distribution, and compared to 
the true correlation coefficients.

2.3.4 | Longitudinal stability of DNAm

We also tested stability in DNAm from age 15 to age 18 using mixed 
effects models that evaluated the prediction of DNAm at age 18 
from DNAm at age 15. This analysis was performed on a subset of 
the CpGs significantly associated with biobehavioral reactivity at 
age 15. As such, biobehavioral reactivity was included as a covariate.
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2.3.5 | GO analysis

Gene ontology (GO) analysis was performed using the software 
ErmineJ (Gillis, Mistry, & Pavlidis, 2010; Lee, Braynen, Keshav, & 
Pavlidis, 2005). The 9,922 CpG sites used in the age 15 analysis were 

annotated to genes as previously described, in order to generate a 
complete gene list or ‘background’ from which to test for enrich-
ment (Price et al., 2016). Enrichment analysis was then performed 
using precision-recall and the following parameters: use the best 
scoring replicate, include only ‘Biological Process’ related GO terms, 

F IGURE  1 Results of principal component analysis revealed biobehavioral reactivity as biologically driven composite measure. (a) Plotting 
the percent variability of the principal components (PCs) showed a flatter distribution than what is typically expected when running PCA on 
psychological variables.(b) Loadings of original variables onto PC1, PC2 and PC3 (from left to right). (lc) p-value distributions of genome-wide 
correlations between DNA methylation and PC 1–3 (left to right) (n = 55)
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minimum gene set size of 5, maximum gene set size of 100, and test 
the effect of multifunctional genes.

2.3.6 | Pyrosequencing experiments

Pyrosequencing experiments were performed in order to validate 
significant associations between children’s biobehavioral reactivity 
factors and DNAm in the DLX5 gene found at both age 15 and age 
18. A pyrosequencing assay was designed to examine the DLX5 3′ 
CpG island; this assay spanned approximately 200 base pairs and 
included five CpGs, two of which are covered by the 450K array 
(cg12041387, cg08835113); cg12041387 is also covered by the 
27k array. Of the 55 child samples used in this analysis, only 42 had 
enough remaining genomic DNA from samples collected at age 18 
to conduct experiments. All reactions were run on a PyroMark Q96 
MD Pyrosequencer, following the manufacturer’s protocol. All CpG 
loci passed Pyro Q-CpG software quality control. Primer sequences 
used for DNA amplification and pyrosequencing are available upon 
request.

3  | RESULTS

3.1 | Principal components analyses of 
biobehavioral reactivity

Following PCA, the first three principal components were examined 
to derive and understand the primary factors that described chil-
dren’s biobehavioral reactivity. The first PC explained approximately 
18% of the total variation, while the second and third PCs explained 
13.5% and 11.5%, respectively (Figure 1a).

Maternal report of children’s temperament and behavior loaded 
strongly onto the first PC, while teacher report and observational 
measures of children’s biobehavioral reactivity did not (Figure 1b). 
Thus, the first PC distinguished mothers’ broad perspectives on 
children’s functioning from measures of children’s reactivity in more 
context- and stressor-specific settings. The third PC differentiated 
HR reactivity (an indicator of the activity of both the parasympa-
thetic and sympathetic branches of the ANS) from RSA (a measure 
of parasympathetic activity only; Figure 1b). Our review of the PCA 
results indicated that both the first and third principal components 
reflected variance attributable to method-  and/or reporter-based 
differences, and thus we hypothesized that these components 
would not associate with DNA methylation (DNAm).

3.2 | Associations between biobehavioral reactivity 
factors and DNAm at age 15

As expected, when correlated with DNAm at all 9,922 CpGs meas-
ured at age 15, PC1 and PC3 displayed uniform p-value distributions, 

suggestive of a null distribution, and neither PC was significantly 
correlated with any individual CpG after FDR correction (Figure 1c).

The second PC represented individual differences in children’s 
biobehavioral inhibition and disinhibition, ascertained across teacher-, 
maternal-, and laboratory-based observational measures (Figure 1b). 
Observed measures of withdrawal negativity and internalizing symp-
toms loaded positively onto PC2, whereas anger and externalizing 
symptoms loaded negatively. Measures of autonomic reactivity also 
showed moderate loadings on PC2: HR loaded positively, while PEP, 
MAP and RSA loaded negatively. Thus, PC2 integrated both behav-
ioral and biological response characteristics—across reporters, con-
texts, and stressors—distinguishing inhibited children (higher scores) 
from disinhibited children (lower scores) and is hereafter referred to 
as Biobehavioral Inhibition/Disinhibition (BID). Correlations between 
BID and DNAm showed a left-skewed p-value distribution that de-
viated from the distribution that would be expected by chance, sug-
gesting an association with age 15 DNAm (Figure 1c). Examining this 
association more closely, we found that BID was significantly asso-
ciated with 12 CpGs at an FDR cut-off of 0.05 and an absolute Δβ 
>0.05 or 5% (‘high confidence’ CpGs; Table S1) and an additional 81 
CpGs were associated with at an FDR between 0.05 and 0.2 and an 
absolute Δβ >0.05 (‘medium confidence’ CpGs). Therefore, this multi-
method, multi-reporter composite trait of early life biobehavioral 
reactivity showed an observable and statistically significant DNAm 
signature. To check the robustness of our findings, a linear regression 
was also run on all 9922 CpGs, using BID as the explanatory variable 
and including sex and minority status as covariates. The significant 
CpGs were largely stable across statistical tests (Figure S2). Given the 
lack of covariate effects and our interest in the basic bivariate associ-
ations, we focus on the results of the Spearman correlations

Next, genomic locations of the 93 high confidence and medium con-
fidence CpGs differentially methylated by BID were examined. These 
CpGs mapped to multiple genes, including the imprinted genes, GNAS 
complex locus (GNAS) and insulin-like growth factor 2 (IGF2), and genes 
related to neurotransmitter secretion, including vesicle-associated 
membrane protein 5 (VAMPS) and otoferlin (OTOF) (Table S1). However, 
after running gene ontology analysis on genes ranked by p-value of 
associated CpGs, we did not find that genes containing differentially 
methylated CpGs could be classified by shared biological processes.

All genes contained only a single differentially methylated, 
high or medium confidence CpG, with the exception of four: DLX5 
(distal-less homeobox 5), IGF2, MYO16 (myosin XVI), and PRUNE2 
(prune homolog 2) (Table S1). Nine CpGs mapped to the DLX5 
gene, located within the coding region of the gene between 1.5 
and 4 kb downstream of the transcription start site. Five were 
high confidence CpGs (FDR < 0.05) and four were medium con-
fidence (FDR 0.05–0.2) (Figure 2). The nine CpGs were contigu-
ous except for one interrupting CpG that fell just outside of the 
medium confidence threshold (cg02101486, FDR p < 0.209), and 

F IGURE  2 Schematic of DLX5, IGF2, MYO16 and PRUNE2 genes, which each contained more than two CpGs significantly associated 
with Biobehavioral Inhibition/Disinhibition. Green bars in gene schematic represent CpG Islands and gray lines or boxes represent genomic 
locations of CpGs plotted. Scatter plots of individual CpG DNA methylation are colored by sex (males = blue, females = pink) (n = 55)
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all were highly correlated (Figure 2b). These CpGs thus consti-
tute a differentially methylated region (DMR), a region in which 
multiple, adjacent CpGs exhibit associations with BID. All nine 
differentially methylated CpGs within DLX5 correlated negatively 
with BID scores, with Spearman’s rank order correlation coef-
ficients (rhos) ranging between −0.60 and −0.44. The nine high 
and medium confidence CpG sites possessed large DNAm differ-
ences observed across individuals with the highest and lowest 
BID scores; the Δβ ranged from 9% to 38% (Michels, Binder, & 
Dedeurwaerder, 2013).

IGF2, PRUNE2, and MYO16 each contained two probes signifi-
cantly associated with BID. IGF2 contained one high confidence CpG 
(cg11005826, FDR p < 0.04, rho = −0.52, Δβ = 15%) and one medium 
confidence CpG (cg21237591, FDR p < 0.13, rho = −0.45, Δβ = 9%), 
which were negatively associated with BID and were located 3,620 bp 
and 169 bp upstream of the transcript start site, respectively. PRUNE2 
contained two medium confidence CpG sites which were positively 
correlated with BID scores (cg11880010, FDR p < 0.09, rho = 0.47, 
Δβ = 18%; cg19282250, FDR p < 0.15, rho = 0.42, Δβ = 15%), located 
9,620 and 9,507 bp upstream of the transcript start site, respectively. 
Finally, MYO16 contained two medium confidence CpGs. One CpG, 
located 452 bp upstream of the transcription start site, was positively 
correlated with BID (cg14396117, FDR p < 0.08, rho = 0.48, Δβ = 10%) 
and one CpG, located 4 bp downstream of the transcription start site 
was negatively correlated (cg18946226, FDR p < 0.13, rho = −0.44, 
Δβ = 7%).

To ensure that effect sizes of the high and medium confidence 
sites were not being inflated by individuals with extreme DNAm 
values, correlations with BID were recalculated after a 90% win-
sorization (5% was modified from each tail) of all medium and 
high confidence CpGs. Results remained largely unchanged and 
the mean difference between p-values generated before and after 
winsorization was 6.66 × 10−6 (median = −6.84 × 10−7, 1st quar-
tile = −1.67 × 10−5, 3rd quartile = 1.63 × 10−5). Prior to winsoriza-
tion nominal p-values ranged from 1.06 × 10−6 to 1.97 × 10−3 and 
after winsorization nominal p-values ranged from 9.52 × 10−7 to 
2.1 × 10−3 (Table S2). Similarly, Δβ differences were minor; ef-
fect sizes changed by −4.05 × 10−3 on average after winsorization 
(median = −1.71 × 10−3).

To add an additional level of rigor to the analyses and to test 
that these correlations did not occur by chance, we permuted the 
BID scores 100 times and correlated the permuted scores with 
the 15 high and medium confidence CpGs mapping to DLX5, IGF2, 
PRUNE2, and MYO16 (Figure S3). With the exception of cg14396117, 
all of the true correlation coefficients were significantly greater 
than correlations expected by chance (p < 0.01). The correlation  
coefficient for cg14396117, located in MYO16, fell outside the 99th 
percentile of the null distribution (p < 0.02). Therefore, our findings 
were unlikely to be spurious, but rather reflected significant associa-
tions between DNAm of DLX5 and childhood reactivity, as measured 
by BID.

3.3 | Examination of sex differences in correlations 
between biobehavioral reactivity factors and DNAm 
at age 15

Given previously observed differences between sexes in DNAm, 
temperament, and mental health symptoms, correlations between 
the 93 BID-associated CpGs were reexamined separately within 
males (n = 19) and females (n = 36) (Singmann et al., 2015; Verhulst, 
van der Ende, Ferdinand, & Kasius, 1997). In general, the correlation 
coefficients (rhos) generated in females were similar to the coef-
ficients generated when including both sexes in correlations (mean 
absolute difference in rho = 0.07) (Figure 3 top panel); however, 
the correlation coefficients generated in the males differed more 
strongly (mean absolute difference in rho = 0.13). To test whether 
this sex difference was driven by sample size, females were subsam-
pled 100 times down to the sample size of males (n = 19) and cor-
relations were rerun. The correlations were predominantly stable 
(mean absolute difference in rho = 0.02) (Figure S4), suggesting that 
the difference in sexes was not entirely driven by sample size.

Additionally, we directly compared the DNAm values of males to 
females and assessed whether high and medium confidence CpGs 
differed by sex. A Mann–Whitney U test was run on all 9,922 CpGs 
sites to test for CpGs differentially methylated by sex, revealing 192 
such sites (FDR p < 0.05), including five CpGs significantly associated 
with BID (cg01796228, cg09340639, cg09565688, cg11005826, 
cg15731815). These mapped to the genes LIFR, FCRL1, CLEC12B, IGF2, 
and RNF207. In all five CpGs differentially methylated by sex, associ-
ations with BID remained significant in females (all p < 0.05) but were 
no longer significant in males (all p > 0.05) (Figure 3 bottom panel).

We then examined potential sex differences in biobehavioral 
reactivity-DNAm relations within the DLX5 gene only. All correla-
tions with CpGs (9 CpGs) remained significant in females, with 
correlation coefficients ranging from −0.38 to −0.63 (p < 0.05). In 
males, two CpGs, cg12041387 and cg11500797, remained signifi-
cant, with correlation coefficients of −0.52 and −0.49, respectively 
(p < 0.05). In sum, only five of the 93 CpGs reported (cg01796228, 
cg09340639, cg09565688, cg11005826, cg15731815) were differ-
entially methylated by sex, suggesting that DNAm patterns linked to 
BID are not likely driven by sex-specific differences.

3.4 | Persistence of associations between BID and 
DNAm at age 18

Given the strong associations between BID scores and multigenic 
DNAm at age 15 years, we hypothesized that those same associa-
tions would hold 3 years later, when participants were 18 years old. 
Using the 450K data at age 18, we examined all variable CpGs an-
notated to our four genes of interest to take advantage of the added 
coverage of the 450K array, as compared to the 27k array. We ex-
amined correlations between BID scores and 39 CpGs in DLX5, 35 
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in IGF2, nine in PRUNE2, and 37 in MYO16; this included all CpGs in 
those genes found to be significant at age 15.

A total of 15 probes at age 18 were found to be significant after 
FDR correction for the 120 tests (FDR p < 0.05 and Δβ > 0.05 or 
5%) (Figure 4, Table S3). As before, these differentially methylated 
CpGs were permuted 100 times to create null distributions, and all 
observed correlation coefficients either fell outside of the 97% per-
centile of the null distribution (Figure S4).

The significant probes included 13 DLX5 CpGs, including 
two of the nine probes found significant at age 15 (cg12041387 
[rho = −0.45], cg00503840 [rho = −0.39]). An additional four 
CpGs that were significant at age 15 had an uncorrected p < 0.05 
at age 18 but did not pass FDR correction (Spearman’s rho = −0.34 
to −0.31, Δβ = 10%–12%). There were an additional 11 significant 
CpGs at age 18 that were assayed only on the 450K array and 
thus not tested at age 15. These were located within the same 
region reported at age 15, as well as upstream of the transcription 
start site (600–1,700 bp). Again, effect sizes were notable and 
ranged from 10% to 21%.

The remaining two age 18 probes significantly associated with 
BID were IGF2 CpGs (cg02425416 and cg11701022) with correlation 
coefficients of −0.40 and −0.47. These were not measured at age 15. 
Two IGF2 CpGs measured at age 15 that were significantly associated 
with BID (cg11005826 and cg21237591) were no longer significant at 
age 18.

3.5 | Longitudinal stability in DNAm

Taking further advantage of the longitudinal DNAm data, we directly 
examined its stability between the age 15 and 18. First, we com-
pared the inter-individual ranges of 17039 CpG sites run on both 
platforms, after removing low quality CpGs and those at which β val-
ues across all individuals were <0.05 or >0.95. A few sites differed 
substantially, an expected finding given that samples were taken 
3 years apart. However, the average difference in inter-individual 
variation neared zero, suggesting no systematic difference across 
our study sample due to either age or microarray platform (me-
dian = −0.011, mean = −0.022) (data not shown).

We then examined the 15 CpGs found in DLX5, IGF2, PRUNE2, 
or MYO16, that were significantly associated with BID at age 15, to 
ask whether these sites would reflect the global trend in stability 
seen above. Using a linear mixed effects model, DNAm at age 15 was 
tested as the explanatory variable, predicting DNAm at age 18, and 
BID was included as a covariate. These regression models were sig-
nificant for 13 of the 15 CpGs (FDR corrected p < 0.05), with DNAm 
at age 15 explaining 8%–24% of the variation in DNAm at age 18 
(Table S4). Although DNAm patterns at ages 15 and 18 were signifi-
cantly associated, median DNAm in the 15 CpGs changed from −18% 
to +11%, with DNAm decreasing in 13 of the 15 CpGs 3 years later 
(Figure 5a). These findings suggested a lack of stability of DNAm from 
age 15 to 18.

F IGURE  3 Results of correlations between DNA methylation at age 15 and Biobehavoural Inhibition/Disinhibition when cohort is 
separated by sex. (a) Spearman’s correlation coefficients of 93 high and medium confidence CpGs, calculated in full cohort (gray circle, 
n = 55), females only (pink square, n = 36) and males only (blue triangle, n = 19). (b) Five CpGs which were associated with Biobehavioral 
Inhibition/Disinhibition and differentially methylated by sex. In all CpGs, correlations remained significant in females only but lost 
significance in males (n = 55)
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3.6 | Pyrosequencing verification of associations 
between BID and DLX5 DNAm

Finally, pyrosequencing experiments were conducted to verify the 
DNAm patterns in DLX5 detected on the microarray platforms. All 
five probes in the pyrosequencing assay were negatively correlated 

with BID (Figure 5b), with correlation coefficients ranging from −0.47 
to −0.52. However, DNAm levels assessed by pyrosequencing were 
consistently 5%–15% lower than in the 450K array in the two CpGs 
measured in both platforms (Figure 5c). Serial dilutions of artificially 
methylated and unmethylated samples run on pyrosequencing 
confirmed that the assay was not biased; this indicated that the array 

F IGURE  4 DLX5 and IGF2 DNA methylation remained significantly associated with Biobehavioral Inhibition/Disinhibition at age 18. (a) 
DNA methylation at age 18 in probes located upstream and within the DLX5 gene. (b) DNA methylation at age 18 in four probes located 
upstream of IGF2 gene. Panel titles represent distance from transcription start site, followed by CpG ID. Correlations found to be significant 
at age 18 are labeled with a red box; Correlations found to be significant at both age are labeled with a red/black box; all remaining CpGs 
were found to be significant at age 15 only. Males are plotted in blue; females are plotted in pink (n = 52)

(a)

(b)

3820 − cg00400832 3951 − cg08835113 3972 − cg12041387 4047 − cg09359114 5003 − cg10156846

2862 − cg13462129 3032 − cg20080624 3475 − cg20377305 3634 − cg00503840 3736 − cg15339231

1768 − cg24115040 2020 − cg11500797 2228 − cg18873386 2557 − cg27016494 2606 − cg15732768

−1746 − cg25076459 −788 − cg04737114 −689 − cg17083494 −639 − cg01448276 1679 − cg08878323

−4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

Biobehavioral Inhibition/Disinhibition (PC2)

D
N

A
 m

et
hy

la
tio

n

−3620 − cg11005826 −1467 − cg02425416 −169 − cg21237591 −137 − cg11701022

−4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2
0.15
0.20
0.25
0.30
0.35
0.40

Biobehavioral Inhibition/Disinhibition (PC2)

D
N

A
 m

et
hy

la
tio

n



     |  13 of 19GOODMAN et al.

F IGURE  5 CpG stability across 3 years and pyrosequencing verification of DLX5 gene. (a) Changes in DNA methylation in 15 CpGs 
measured across both ages. Red/black boxes indicate CpGs significantly associated with Biobehavioral Inhibition/Disinhibition at both 
ages; all remaining CpGs were associated at age 15 only (b) Five CpGs assayed by pyrosequencing DNA collected at age 18 were associated 
with Inhibition/Disinhibition scores. Two CpGs are identified by their 450K IDs, the remainder were not assayed by the 450K array. (c) 
Correlations of DNA methylation values at cg12041387 and cg08835113 generated by pyrosequencing and the 450K array (n = 42)
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probes at these loci may exhibit a preference for binding methylated 
DNA over unmethylated DNA.

4  | DISCUSSION

Current research on the epigenetic alterations that accompany 
early adversity exposures has led to a growing set of studies sup-
porting external, environmental influences on DNA methylation 
(DNAm). Much of this research has examined the relation between 
early childhood stressors on DNAm (Anacker, O’Donnell, & Meaney, 
2014; Boyce & Kobor, 2014). However, variations in physiological 
and psychological functioning have also been shown to correlate 
with DNAm (Alisch et al., 2014; Conradt et al., 2015; Guillemin et al., 
2014) and may reflect the linkage of a child’s internal reactivity to 
the environment through epigenetic signatures. Few empirical stud-
ies have tested this latter supposition, however, and those that have 
are mainly cross-sectional in nature. We sought to address these 
limitations by testing the hypothesis that children’s biological and 
behavioral response propensities would also be related to DNAm 
measured later in life. We also examined the persistence of relations 
between Biobehavioral Inhibition/Disinhibition (BID) and DNAm at 
age 15 and age 18 and the stability of DNAm at these CpGs.

Multiple-reporter and multi-method measures of early child-
hood temperament, behavior, and ANS reactivity were input into 
a PCA examining early life biobehavioral reactivity factors. Three 
components explained a significant percentage of the overall vari-
ance in temperament, mental health symptoms, and ANS reactiv-
ity and were further examined for their associations with DNAm at 
age 15. Two components, PC1 and PC3, were not associated with 
DNAm patterns at age 15, likely because they reflected method- 
and reporter-based variance rather than trait-like differences in 
children’s biobehavioral reactivity. The second principal component 
(PC2), however—BID—reflected the intersection of observed tem-
peramental withdrawal, anger, autonomic reactivity, and internal-
izing/externalizing symptoms and was found to have both a broad 
DNAm signature across many genes and a particularly strong associ-
ation with multiple sites within DLX5 and IGF2 genes.

Elevated levels of children’s biobehavioral disinhibition (ap-
proach negativity, anger, externalizing symptoms) were associated 
with significantly higher DNAm in DLX5 and IGF2 at age 15 and at 
age 18 years. Conversely, those with greater childhood inhibition 
(fear, withdrawal negativity, internalizing symptoms, and heart rate 
response) showed lower DLX5 and IGF2 methylation (Figure S6). 
While median DNAm within these CpGs changed over the course of 
3 years, the association between children’s early biobehavioral reac-
tivity and DLX5 and IGF2 methylation was maintained from adoles-
cence into young adulthood, a period marked by significant changes 
across various domains of psychological development (Arnett, 
2000). This illustrates the paradoxically fixed yet dynamic nature of 
DNAm. Despite changes across the lifespan, there may be enduring 
patterns of DNAm in certain genes over time, particularly those as-
sociated with early biological and behavioral reactivity.

Given the tissue of origin in the current study (BECs), we can only 
suggest that these DNAm patterns represent a biomarker of behav-
ioral reactivity. However, Gene-Tissue Expression (GTEx) RNA se-
quencing data (Lonsdale et al., 2013) indicate that DLX5 is expressed 
in skin tissue and some brain regions, and it is possible that the mag-
nitude of inter-individual DNAm differences in DLX5 reflects actual 
differences gene transcription levels, affecting downstream biolog-
ical processes (Michels et al., 2013). IGF2 is not expressed at signif-
icant levels in either skin tissue or brain regions, though this does 
not negate a potential for DNAms differences to be a biomarker of 
biobehavioral reactivity. Importantly, results of present research are 
preliminary, and validation of these findings in a larger sample, with 
more repeated measures of DNAm and reactivity, are needed to ad-
vance understanding of a possible causal relation.

DLX5 is homeobox gene involved in neuron, craniofacial, and 
bone development. Its protein regulates glutamic acid decar-
boxylases involved in the synthesis of gamma-aminobutyric acid 
(GABA), the chief inhibitory neurotransmitter in GABAergic neurons 
(Stühmer, Anderson, Ekker, & Rubenstein, 2002). If the differences 
in DNAm observed in our cohort correspond to regulatory epigen-
etic patterns in brain tissue, such differences could produce altered 
levels of GABA, corresponding to inhibited or disinhibited behavioral 
proclivities. Although GO analysis of our CpGs ranked by p-value did 
not find any significant enrichment of GABA-related genes, these 
results cannot fully rule out the involvement of GABA circuitry. 
Future research should explore the underlying pathways between 
reactivity-DNAm associations.

DLX5 is also highly expressed in osteoblasts during embryo-
genesis and plays an important role in craniofacial development. 
Commensurate with our finding of temperament and behavioral 
response-associated differences in DLX5 methylation, aspects 
of temperament have been previously linked to the bizygomatic 
width of facial structure, i.e., the ratio of the facial diameter across 
the cheekbones to the vertical height of the head. Specifically, 
4-month-old infants who showed propensities to biobehavioral re-
activity had smaller bizygomatic widths (i.e., narrower faces) at 14 
and 21 months than infants who were less reactive (Arcus & Kagan, 
1995). Although the various functions of the DLX5 gene suggest that 
the protein may act as a regulator of the early development of inhibi-
tion and reactivity, further research is needed to confirm the relation 
between inhibition and DLX5 DNAm.

IGF2 is expressed in many fetal tissues and encodes a growth 
factor that primarily acts to promote overall growth during gesta-
tion via cell differentiation and proliferation. Unlike the DLX5 gene, 
the function of DNAm patterns in this gene has been thoroughly 
studied. IGF2 is imprinted and expressed only from the paternal 
allele (Giannoukakis, Deal, Paquette, Goodyer, & Polychronakos, 
1993). Aberrations in imprinting of this gene and other nearby 
genes are associated with Beckwith-Wiedemann and Silver-Russell 
syndromes—two congenital, growth-affecting conditions—as well 
as a number of cancers (Choufani, Shuman, & Weksberg, 2013; 
Eggermann, 2009; Joyce et al., 1997; Tycko, 2000; Weksberg, Shen, 
Fei, Song, & Squire, 1993). While there are no published clinical 
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features of Beckwith-Wiedemann relating to temperament, parents 
of affected children often describe them as more tenacious than their 
siblings (R. Weksberg, personal communication, December 2017). 
Previous studies of IGF2 methylation have also found associations 
with ADHD symptoms and prenatal maternal anxiety (Rijlaarsdam 
et al., 2017; Vangeel et al., 2015). Given that our BID measure was 
comprised of measures of internalizing and externalizing symptoms, 
these previous associations between IGF2 methylation and men-
tal health are commensurate with the identified relation between 
DNAm at this gene and BID.

The focus of this study was on early life internal, individual dif-
ferences in biobehavioral reactivity in order to extend research that 
has largely focused on relations between DNAm and external, en-
vironmental adversities. However, the developmental influences 
of such internal and external factors do not operate in isolation of 
each other, as demonstrated by existing literature on environmental 
correlates of IGF2 methylation. In a previous study of this cohort,  
associations were observed between early parental stress and 
DNAm in adolescence (see Essex et al., 2011). BID was not associated 
with DNAm levels in CpGs found related to parental stress; however, 
early parental stress was significantly associated with CpGs in IGF2 
and DLX5, although not those identified here. In sum, results of the 
present study provide a strong foundation on which future research 
can further explore relations among external environmental influ-
ences, internal biobehavioral factors, and DNAm patterns.

4.1 | Limitations

Results of the present study must be weighed in light of sev-
eral limitations. First, the current study’s assessment of DNAm 
at ages 15 and 18 years suggests at least short-term persistence 
of associations with biobehavioral reactivity, but we are un-
able to infer when differences in DNAm may have arisen in de-
velopment. It is possible that the observed DNAm pattern was 
established during early embryogenesis in the ectodermal germ 
layer, in response to allelic differences and fetal exposures. If this 
were true, then both BECs and neurons, with their common ec-
todermal origins, might be expected to exhibit comparable pat-
terns of DNAm. While it is possible that DNAm in tissues other 
than BECs played a causal role in the development of differing 
levels of biobehavioral reactivity, DNAm and reactivity may be 
related in at least two other ways. DNAm patterns could result 
from temperamental response predispositions leaving a chemi-
cal mark on the epigenome, or a third factor, such as genetics, 
could have affected both reactivity and DNAm. Regarding the 
latter, we did not test our CpGs of interest for the influence of  
genetic variability although such CpGs, termed methylation 
quantitative trait loci, are common in the genome (Bell et al., 
2011; Teh et al., 2014). The relatively small and homogenous 
nature of our sample precluded extensive testing of the influence 
of race and sex on relations between BID and DNAm, though 
our results were retained across models that controlled for the 
effects of covariates. Future longitudinal studies with larger, 

more heterogeneous samples are needed to build on the present 
findings and address more complex questions of antecedence, 
causality, and modifying factors.

Due to ethical and other conspicuous prohibitions on acquiring 
samples of brain, we studied DNAm of BECs collected from oral 
swabs, rather than DNAm in neural tissues, where biobehavioral 
patterns of response originate. DNAm is tissue-specific in nature, 
and there are clearly many differences among the epigenetic marks 
measured in buccal epithelium and brain tissue. Current research 
in epigenetics is elucidating the level of DNAm concordance be-
tween brain and tissues/fluids commonly collected for DNA anal-
ysis, including saliva, BECs, and white blood cells (Edgar, Jones, 
Meaney, Turecki, & Kobor, 2017; Farré et al., 2015; Smith et al., 
2015). Although such research is ongoing, emergent literature sug-
gests that DNAm located in specific genomic regions, such as CpG 
islands within gene coding regions, may be more highly conserved 
across tissues and therefore potentially informative of brain DNAm  
patterns (Edgar et al., 2017; Walton et al., 2016).

Our results reveal age-related DNAm changes from age 15 to 
18 in DLX5, IGF2, PRUNE2, or MYO16, consistent with prior research 
identifying increased DNAm changes in brain tissue and blood from 
childhood to adolescence as compared to more minimal changes 
that occur across adulthood (Alisch et al., 2012; Lister et al., 2013). 
However, given the confounding of DNAm processing technology 
with age in this study, we cannot rule out changes in DNAm between 
age 15 and age 18 resulted from differences between the 27K array 
and 450K technologies and differences in data processing and nor-
malization. Additionally, differences in the cell composition of buccal 
samples between age 15 and age 18 may have also contributed. A 
different study design will be required to test broadly how age is 
reflected in DNAm changes. Finally, to test our hypotheses related 
to longitudinal stability, we conducted, by necessity, a more con-
strained analysis of DNAm at age 18, though future analyses will 
explore the full range of data collected at 18 in relation to both early 
environmental and biobehavioral reactivity factors.

These limitations notwithstanding, the present study’s inte-
gration of pertinent information from different biological are-
nas (e.g., epigenetics, autonomic physiology) with psychological 
constructs, is consistent with a new strategy in mental health 
research proposed by the National Institute of Mental Health 
(NIMH). The Research Domain Criteria (RDoC) framework guides 
mental health research to recognize the broader biological and 
psychological contexts of health and behavior and to under-
stand the phenotypic variability within clinical disorders (Morris 
& Cuthbert, 2012; Simmons & Quinn, 2013). As such, advancing 
investigations into the relations among epigenetic differences, 
childhood behavior problems, and patterns of stress responsivity 
could support earlier identification of inauspicious developmental 
and mental health outcomes.

In conclusion, this study revealed strong, prospective as-
sociations of observational measures of childhood inhibition/
disinhibition with patterns of DNAm in BECs harvested at both 
mid-adolescence and early adulthood. Though current analyses do 
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not allow for firm inferences of antecedence and causality, such 
associations focus attention upon possible linkages between in-
hibition/disinhibition dimensions of children’s temperament and 
behavior and the DLX5 and IGF2 genes that have diverse devel-
opmental and regulatory functions. Our findings offer provisional 
evidence for a developmental, epigenetic biomarker of internal 
biobehavioral response predilections. As with many other develop-
mental processes, epigenetic modifications integrate the complex 
interactions of environmental context and constitutional biology, 
providing insight into developmental trajectories and long-term 
health outcomes.
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