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Abstract

Signal Detection Theory is the standard method used in psychophysics to estimate person

ability in m-alternative forced choice tasks where stimuli are typically generated with known

physical properties (e.g., size, frequency, contrast, etc . . .) and lie at known locations on a

physical measurement axis. In contrast, variants of Item Response Theory are preferred in

fields such as medical research and educational testing where the axis locations of items on

questionnaires or multiple choice tests are not defined by any observable physical property

and are instead defined by a latent (or unobservable) variable. We provide an extension of

Signal Detection Theory to latent variables that employs the same strategy used in Item

Response Theory and demonstrate the practical utility of our method by applying it to a set

of clinically relevant face perception tasks with visually impaired individuals as subjects. A

key advantage of our approach is that Signal Detection Theory explicitly models the m-alter-

native forced choice task while Item Response Theory does not. We show that Item

Response Theory is inconsistent with key assumptions of the m-alternative forced choice

task and is not a valid model for this paradigm. However, the simplest Item Response The-

ory model–the dichotomous Rasch model–is found to be a special case of SDT and pro-

vides a good approximation as long as the number of response alternatives m is small and

remains fixed for all items.

Introduction

In typical psychophysics experiments, stimuli are generated with a known physical property

(e.g., size, frequency, contrast, etc . . .) that defines the locations of these stimuli on a physical

measurement axis. Psychometric functions fit to subject responses in tasks involving these sti-

muli allow researchers to estimate person abilities in corresponding physical stimulus units

(e.g., "thresholds" or their inverse: "sensitivities"). However, there are many tasks where it is

necessary to use stimuli whose locations on the measurement axis are defined by a latent (or

unobservable) variable–there is no known physical property of the stimuli that defines their

locations on the measurement axis. For example, it is of clinical importance to measure the

ability of visually impaired individuals to identify common objects or recognize other people,

and it is not a priori clear where on the measurement axis an image of an object or person
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should be placed. The aim of this paper is to extend psychophysics to cases where the locations

of "items" (stimuli or tasks) on the measurement axis must first be estimated from subject

response data before estimating person ability. Our proposed solution applies specifically to

the case where the experimental paradigm is m-alternative forced choice (m-AFC)–on each

trial there are m�2 possible response choices with precisely one choice defined as "correct"

and all others defined as "incorrect" by the experimenter.

In fields ranging from medical research to educational testing, a popular solution to the

problem of estimating "item measures" (locations of items on the measurement axis) from sub-

ject responses is to use some variant of Item Response Theory (IRT) [1–4]. The main problem

with using IRT to extend psychophysics to cases where item locations are defined by a latent

variable is that IRT models specify the probability of observing an outcome without represent-

ing the underlying task, which makes it difficult to determine which tasks each IRT model

applies to. For example, in medical research the most common application of IRT is the analysis

of responses to health status questionnaires where each person rates items on an ordinal rating

scale, while in educational testing IRT is often applied towards analyzing responses to multiple

choice tests where every item is a m-AFC task. These two types of tasks are fundamentally dif-

ferent because a person’s rating of an item is not scored correct or incorrect by the experimenter

or test giver, while the observed score in a m-AFC task is the result of comparing a person’s

response to an item to a defined truth state. Yet the same IRT model is applied to both tasks.

It is important to prove, or at least to derive from precise assumptions, that a given model

applies to a given task. For example, a specific variant of IRT has been shown to be the logically

implied model from generally agreed upon assumptions about how a person rates an item on a

given trial [5], which include the mathematical definition of a rating scale–a real line parti-

tioned by ordered thresholds (points on the real line) into ordered intervals called rating cate-

gories–as well as commonly held assumptions about trial to trial variability in person ability,

item difficulty and threshold locations. Yet no comparable derivation of an IRT model exists

from a model of m-AFC tasks, and it is unclear whether IRT models apply to tasks where a per-

son’s response is compared to an underlying truth state to generate a score of "correct" or

"incorrect". In psychophysics, there is a long history of using Signal Detection Theory (SDT) to

model m-AFC tasks [6], and we will show that SDT can be extended to cases where item loca-

tions on the measurement axis are defined by a latent variable–we will henceforth refer to this

as "extending SDT to latent variables"–using the same strategy employed in IRT models. Our

extension of SDT to latent variables is specifically tailored to the m-AFC paradigm where the

underlying truth state is known to the experimenter. Other extensions of SDT to latent vari-

ables apply to tasks where the underlying truth state is unknown and raters’ responses are used

to estimate the underlying truth state [7–9].

Our approach has several advantages over IRT. Many IRT models add an extra "guessing"

parameter to deal with chance performance [3,10] while our method naturally incorporates

chance performance without requiring ad hoc assumptions. Our method also estimates person

ability on a scale that does not depend on which item a person is compared to while many IRT

models have an "item discrimination" parameter that is specific to each item, acts as a scalar on

the unit of measurement, and effectively allows each item to estimate person ability on its own

scale. One consequence of this item discrimination parameter is that IRT models incorporat-

ing it do not satisfy a Guttman scale [4], which is a fundamental property of measurement that

says that all items must agree in their ordering of the persons and all persons must agree in

their ordering of the items. The simplest IRT model–the dichotomous Rasch model–does sat-

isfy a Guttman scale and we will show that the dichotomous Rasch model is a mathematically

special case of SDT. The practical utility of our method will be demonstrated by applying it to

a set of clinically relevant face perception tasks with visually impaired individuals as subjects.

Extending signal detection theory to latent variables
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Methods

Extending SDT to latent variables

SDT models the m-AFC task by postulating the existence of separate internal responses (e.g.,

an internal cognitive decision variable in response to the stimuli) for each of the m possible

response choices presented by the item–precisely one of these m possible response choices is

defined to be "correct" by the experimenter. While each of these m internal responses is in

principle a separate internal decision variable, SDT concerns itself only with the magnitudes of

these internal responses and places them on the same axis, which we will call the x-axis.

Whichever response choice generates the largest (not necessarily correct) internal response is

assumed to be the response chosen by the person on that trial. Probability correct equals the

probability that the defined correct choice generates an internal response greater than all m−1

internal responses to the incorrect choices. The general solution to this problem is

pðCÞ ¼
Z1

� 1

fCðxÞ
Ym� 1

k¼1

FI;kðxÞdx ð1Þ

where p(C) represents probability correct, fC(x) represents the probability density function of the

magnitude of the internal response to the correct choice, and FI,k(x) represents the cumulative dis-

tribution function of fI,k(x) which is the analog to fC(x) for the kth incorrect choice, for k2{1,. . .,m
−1}. The main problem with Eq 1 is that neither fC(x) nor fI,k(x), for any k, are in general known

and SDT makes the simplifying assumption that fI,k(x)~N(μ1,σ) for all k and fC(x)~N(μ2,σ), allow-

ing us to use d0 ¼ m2 � m1

s
, or "d prime", as a practical unit of measurement between fC(x) and fI,k(x)

for any k. Because d0 is in standard deviation units and the axis origin is arbitrary, we can set μ1 =

0 and σ = 1 without loss of generality and turn Eq 1 into the more conventional

pðCÞ ¼
Z1

� 1

φðx � d0Þ½FðxÞ�m� 1dx ð2Þ

where φ(x) is the standard normal distribution andF(x) is its cumulative distribution function [6,11].

To extend SDT to latent variables we adopt a strategy similar to the one employed by IRT

models. To illustrate, consider the dichotomous Rasch model (a 1-parameter IRT model),

which is the simplest IRT model and permits only two possible responses that we will represent

as 0 and 1 [12]. If we represent the response of person i to item h as Rih2{0,1}, then the dichot-

omous Rasch model assumes that the probability of observing Rih = 1 is related to person

measure θi and item measure bh (estimates of person ability and item difficulty, respectively,

using conventional IRT notation) through the logistic function: pðRihjyi; bhÞ ¼ eðyi � bhÞRih=

ð1þ eðyi � bhÞÞ. To estimate all item and person measures at desired levels of precision, responses

from a sufficiently large number of persons to the same set of items are obtained through a

maximum likelihood estimation (MLE). Unlike typical psychophysics experiments, IRT mod-

els are generally applied to the responses of a large number of persons (hundreds or even thou-

sands of subjects is common) with each person responding at most once to each item.

If computational constraints were not an issue, we could extend SDT to latent variables

with a MLE using the following likelihood function based on Eq 2:

Lmðyi � bhÞ ¼

Z1

� 1

φðx � ðyi � bhÞÞ½FðxÞ�
m� 1dx ð3Þ

where we set d0 = θi−bh and make the likelihood Lm(θi−bh) of the response by person i to item

Extending signal detection theory to latent variables
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h dependent on the number of response alternatives m. A MLE using Eq 3 would find the set

of person and item measures that maxmizes the likelihood ∏i,hLm(θi−bh) of observing the set

of responses from all persons i to all items h.

Conceptually, IRT models estimate item measures relative to the sample of persons, sug-

gesting that a more computationally tractable estimation method (than a MLE) begin with esti-

mating all item measures by treating all responses as repeated measures from a single "average"

person. Specifically, let ph(C) represent probability correct for item h relative to the sample of

persons and define the person measure of the "average" person to be θ = 0. Setting θ = 0, we

can estimate a b̂h item measure for item h independently of all other items by solving

phðCÞ ¼
Z1

� 1

φðxþ bhÞ½FðxÞ�
m� 1dx ð4Þ

Confidence intervals on item measures can be calculated by mapping binomial confidence

intervals (the endpoints of which are in "probability correct" units) into d0 units through Eq 4 –

we used the Wilson method for calculating binomial confidence intervals [13].

Once all item measures are estimated, each person measure can be independently estimated

through a MLE, which is computationally tractable because there is only one parameter being

estimated at any time. Let Ai,m represent the set of item measures corresponding to every cor-

rect response person i made to a m-AFC item, and let Bi,m represent the set of item measures

corresponding to every incorrect response made by person i to a m-AFC item. Then estimated

person measure ŷ i is the solution to

ŷ i ¼ argmax
y

X

m

X

b2Ai;m

log
�
Lm

�
y � b

��
þ
X

b2Bi;m

log
�
1 � Lm

�
y � b

��� �� �
ð5Þ

Because a MLE was used, person measure standard errors are the reciprocal of the square root

of the Hessian.

An Expectation Maximization (EM) approach that estimates a "local" MLE is also possible

by iteratively estimating item and person measures after an initial set of item and person mea-

sures is estimated using Eqs 4 and 5. In this iterative process, item measures are estimated

given the most recently estimated person measures and person measures are estimated given

the most recently estimated item measures, until the difference between estimated parameters

from successive iterations falls below a desired threshold. Eq 5 can be used to estimate person

measures in this iterative process. However, a new equation is needed for estimating item mea-

sures:

b̂h ¼ argmax
b

X

y2Ah

log
�
Lm

�
y � b

��
þ
X

y2Bh

log
�
1 � Lm

�
y � b

��� �
ð6Þ

where b̂h is the estimated item measure for a m-AFC item, Ah is the set of person measures

associated with every correct response to item h, and Bh is the set of person measures associ-

ated with every incorrect response to item h. Code in R is provided for both approximation

methods [14]. Estimated parameters from both methods were compared to each other using

data from our facial expression discrimination experiment.

Application to facial expression discrimination

To demonstrate how our extension of SDT to latent variables works in practice, we applied

our method to three face perception tasks: 1) identifying a person’s gender from three images

Extending signal detection theory to latent variables
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of that person’s face, 2) determining which of those three images shows a facial expression dif-

ferent from the other two (an "odd one out" task), and 3) identifying the emotional expression

of the image the subject chose as the "odd one out". All subjects in our experiment were visu-

ally impaired individuals, and all three face perception tasks were of clinical relevance as many

visually impaired individuals consider these tasks to be both important and difficult. We also

tested subjects in two different magnification conditions, "with magnification" and "without

magnification", which allowed us to develop a clinical outcome measure for low vision

enhancement.

A total of 50 visually impaired subjects (27 female, 23 male) were recruited from the Johns

Hopkins low vision clinic with the inclusion criteria being that the subjects’ best corrected

visual acuity in the better seeing eye was between 20/60 and 20/800. Most subjects had either

age-related macular degeneration or Stargardt’s disease (a.k.a. juvenile macular degeneration),

the median best corrected visual acuity in the better seeing eye was 20/200 and the median age

was 51 (16–91). On each trial, subjects were presented with three different views of the same

person’s face (Fig 1A) in virtual reality and at a fixed virtual distance using an Oculus DK2

head mounted display (HMD). Subjects could use head movements to center their gaze on any

of the three images. Two of the images showed the same emotional expression while the third

showed a different emotional expression (the "odd one out" image). Only three emotional

expressions were presented in our experiment, "angry", "sad" and "neutral", with all images

taken from and labeled in the Karolinska Directed Emotional Faces (KDEF) database [15,16].

Fig 1. Example of stimuli presented in the head mounted display. A triplet of images (left, center, right) from the

Karolinska Directed Emotional Faces database was presented on each trial in virtual reality at a fixed virtual distance

using the Oculus DK2. Subjects could use head movements to center their gaze on any of the three images. Fig 1A

shows an example of images presented in the "without magnification" condition and Fig 1B shows an example of

images presented in the "with magnification" condition where a virtual bioptic telescope whose size, shape and region

of magnification was customized to the patient (shown with gaze centered on the middle image).

https://doi.org/10.1371/journal.pone.0225581.g001

Extending signal detection theory to latent variables
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There were a total of 64 trials, and on each trial subjects answered three questions with no time

limit: 1) what is the gender of the individual, 2) which of the three faces shows a different emo-

tional expression from the other two, and 3) what is the emotional expression of the image you

(the subject) chose as the odd one out. For purposes of analysis, each triplet of images was

treated as a different item in each of the three face perception tasks. Thus, in total there were

64 triplets × 3 tasks = 192 items.

For each subject, precisely half the trials were in the "with magnification" condition where

faces were viewed through a virtual bioptic telescope whose size, shape and level of magnifica-

tion were customized to the subject (Fig 1B). The telescopic magnification remained centered

in the image, thus magnifying whichever face the subject was centering [17]. To determine

which trials were in the with magnification condition, we partitioned the 64 trials into 8 blocks

of 8 trials each and randomly chose for each person either all odd numbered blocks or all even

numbered blocks to be viewed with magnification. For purposes of analysis we assumed that

there were 50 subjects × 2 magnification conditions = 100 "persons" with each subject being

counted twice, once for each magnification condition. This allowed us to measure the effect of

a simulated low vision enhancement intervention on each subject. Our experiment followed

the tenets of the Declaration of Helsinki, informed consent was obtained from all subjects after

explaining the nature and possible consequences of the study, and our research was approved

by Johns Hopkins IRB. Original data from our experiment as well as R code for data analysis

have been made available [14].

For many tasks, there are multiple possible SDT models–each represents a different set of

assumptions about how humans represent the task and make decisions–and the SDT model

chosen can change the calculation of d0 for the same data [18]. In general, it is not known

which SDT model is accurate (if any) though for specific tasks (e.g., the same–different task) it

has been shown that certain decision rules are qualitatively inconsistent with observed

response probabilities [19]. For our three face perception tasks we made the plausible assump-

tion that subjects have separate internal "detectors" for each of the m possible stimulus classifi-

cations (response choices) with each detector producing its own internal response. Thus, in

the gender identification task we assumed that each subject had separate internal detectors for

"male" and "female", and in the emotional expression identification task we assumed that each

subject had separate internal detectors for "angry", "sad" and "neutral". The subject’s response

on any trial was determined by whichever internal response was largest.

Our assumptions are plausible but differ from those made in typical applications of SDT in

psychophysics where only one "detector" is assumed to exist for a known signal in the presence

of background noise. However, our tasks were not yes–no tasks where subjects are asked ques-

tions like "Is this person a male?" and the nature of the question suggests that only one "male"

detector is needed. Our tasks required the subject to report the stimulus classification them-

selves and there is no a priori reason why a subject should only have a "male" detector and no

"female" detector. If however the subject only used a single detector, then it is important to

note that a criterion dependent SDT model must be applied, while our equations imply a crite-

rion independent form of SDT. The question of whether a criterion dependent or criterion

independent SDT model should be used is arguably less of an issue with our two other face

perception tasks. It is possible to represent three different emotions on a single axis with two

criteria partitioning the axis into the three emotions, but it is arguably more plausible to repre-

sent emotions in a multi-dimensional space. And with the odd one out task where we assumed

the detectors were of the form "the image at location x is the odd one out", it may be impossible

to model the task with a criterion dependent SDT model. We note that it is not necessary to

specify how our hypothesized detectors work to calculate d0, but a plausible mechanism is

through cross correlations, either between the stimulus and a template or in the case of the

Extending signal detection theory to latent variables
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odd one out task between the two incorrect choices. Given these assumptions, our three face

perception tasks reduce to m-AFC tasks, and we can estimate item and person measures either

through Eqs 4 and 5 or through EM. We estimated both item and person measures for each

task separately as well as for all three face perception tasks combined.

Statistical analysis of data

To determine how good of an approximation Eqs 4 and 5 are to EM (a "local" MLE), we looked

at r2 between item and person measures of both methods; mean absolute differences in d0 units

were also calculated. For our face perception experiment, we looked at correlations between all

pairs of estimated item measures to determine if the same items in different face perception

tasks were measuring the same type of face perception ability. Correlations among estimated

person measures were used to determine whether subjects who were good at one face percep-

tion task were also good at the others. The effect of magnification on face perception ability

was determined through a paired t-test on estimated person measures.

Results

We compared estimated item and person measures using Eqs 4 and 5 to parameters estimated

through EM to see how well Eqs 4 and 5 approximate a local MLE. Parameters estimated from

both methods on the combined data from all three face perception tasks were highly similar to

each other with the mean absolute difference being 0.0278 d0 between the two sets of person

measures and 0.1064 d0 between the two sets of item measures; r2>0.9996 for the persons and

r2>0.9958 for the items. The larger discrepacy in both cases for the item measures was

expected given that item measures were estimated before person measures. Because Eqs 4 and

5 provide a good approximation to a local MLE, all further analysis was done using this

approximation method treating the sample of persons as a single "average" person.

Fig 2 plots the estimated b̂ item measures of our face perception tasks together with their

95% CI (left) and the estimated ŷ person measures for each subject together with their stan-

dard errors (right), all in d0 units. Item measures were directly estimated using Eq 4 with

Fig 2. Confidence intervals for estimated item and person measures. Estimated item measures are plotted with their 95% CI (left),

and estimated person measures are plotted with their standard errors (right), in d0 units. The data are color coded by 2-AFC (green)

and 3-AFC (purple) and show that confidence intervals depend on the number of response alternatives.

https://doi.org/10.1371/journal.pone.0225581.g002

Extending signal detection theory to latent variables

PLOS ONE | https://doi.org/10.1371/journal.pone.0225581 November 22, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0225581.g002
https://doi.org/10.1371/journal.pone.0225581


negative b representing easier items and b = 0 representing chance performance for the "aver-

age" person, for every m. Person measures were estimated from Eq 5 with θ representing the

number of d0 units the sigmoid function defined by Eq 4 has to shift (on the d0 axis) to best fit

that person’s responses to the items. Since item measures were estimated from the average per-

son, θ = 0 on the person measure plot represents the average person; more capable persons

have more positive θ and less capable persons have more negative θ. Correlations among the

item measures for the three face perception tasks were low: r = −0.08 between the gender iden-

tification task and the odd one out task, r = −0.21 between the gender identification task and

emotional expression identification task, and r = 0.20 between the odd one out task and emo-

tional expression identification task; this shows that the three face perception tasks measure

different types of face perception ability. There were two items in the emotional expression

identification task whose 95% CI were strictly above b = 0, meaning that for these two items in

this task there was a statistically significant disagreement between the sample of persons and

the labeling of emotional expressions in the KDEF database.

Fig 2 shows that both the 95% CI for the items and the standard errors for the persons

depend on the number of response alternatives m. These results follow directly from Eqs 4 and

5 which both depend on m. The general arc-like patterns occur because precision decreases

the farther away one moves from where most items are located (when estimating person mea-

sures) and where most persons are located (when estimating item measures). The 95% CI for

the item measures exhibit "clumping" behavior because different numbers of persons (any-

where from 46 to 51) responded to different items, and binomial confidence intervals depend

not only on the number of correct responses but also on the total number of responses. To

give an example, the 4 item measures in the gender identification task (green dots) in the inter-

val b = [−2.461,−2.421] have 4 different ratios of correct responses to total number of responses

(trials): 47 correct out of 49, 46 out of 48, 45 out of 47, 44 out of 46. There is no smooth transi-

tion from this group to the neighboring group of 4 item measures in the interval b = [−2.213,−-

2.139] with ratios: 48 correct out of 51, 46 out of 49, 45 out of 48, and 43 out of 46.

Fig 3 shows examples of just the center images (of the triplet) of easier to more difficult

items for visually impaired individuals, with more negative b item measures representing eas-

ier items. The listed b item measures apply to both gender and emotional expression tasks and

are within 0.05 d0 units of the actual b except for the right-most column where the deviation is

at most 0.2 d0 units from listed. Several volunteers with normal vision who performed all three

face perception tasks found the tasks fairly easy and rarely responded incorrectly. Thus, it is

important to remember that these b item measures are specific to the sample of visually

impaired individuals we tested.

Fig 4 shows the cumulative distribution functions of person measures in the two magnifica-

tion conditions, for all three face perception tasks combined (far left) and for each of the three

face perception tasks separately. Magnification improved person measures by on average Δθ =

0.552 (p<10−7 using a paired t-test) across all three face perception tasks, by Δθ = 0.226

(p<0.035) for the gender identification task, by Δθ = 0.727 (p<10−7) for the odd one out task,

and by Δθ = 0.452 (p<10−4) for the emotional expression identification task. We note that

since d0 = θ−b, a change in d0 could be attributed to the person, to the item, or to both. Since

our experiment tested the effect of magnification on face perception tasks for visually impaired

individuals, our analysis assumed that the triplet of faces (the items) was invariant and that the

magnification was applied to the visually impaired subject and thus changed the person mea-

sure. We also note that d0 comparisons across tasks depend on the accuracy of the SDT models

used to estimate d0. If for example a criterion dependent SDT model is more accurate for the

gender identification task while a criterion independent SDT model is more accurate for the

odd one out task, then d0 for gender identification will depend on the distribution of criteria

Extending signal detection theory to latent variables
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Fig 3. Examples of item difficulty for visually impaired individuals. Examples of item difficulty are shown for 4 items (taken from the Karolinska Directed Emotional

Faces database) in the gender identification task (top row) and 4 items in the emotional expression identification task (bottom row). Only the center images of the triplet

are shown in every case. Listed b item measures apply to both rows and are within 0.05 d0 units of the actual b except for the right-most column where the actual b was

within 0.2 d0 units of listed. Negative b item measures represent easier items.

https://doi.org/10.1371/journal.pone.0225581.g003

Fig 4. Cumulative distribution functions of person measures. Cumulative distribution functions of estimated person measures are shown for the "without

magnification" condition (red) and for the "with magnification" condition (blue). Magnification improved performance in all tasks, with the average increase in

person measure being Δθ = 0.552 (p<10−7 using a paired t-test) across all tasks, Δθ = 0.226 (p<0.035) for the gender identification task, Δθ = 0.727 (p<10−7) for

the odd one out task, and Δθ = 0.452 (p<10−4) for the emotional expression identification task.

https://doi.org/10.1371/journal.pone.0225581.g004

Extending signal detection theory to latent variables

PLOS ONE | https://doi.org/10.1371/journal.pone.0225581 November 22, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0225581.g003
https://doi.org/10.1371/journal.pone.0225581.g004
https://doi.org/10.1371/journal.pone.0225581


used across subjects while d0 for odd one out will not, and d0 will not be the same unit of mea-

surement in the two tasks.

Person measures between the odd one out and emotional expression identification tasks

were most highly correlated at r = 0.77, while the correlations between the other two pairs

were lower: r = 0.31 between the gender identification and odd one out tasks, and r = 0.09

between the gender identification and the emotional expression identification tasks. These cor-

relations were similar to the correlations observed when only looking at person measures in a

given magnification condition: r = 0.78 (no magnification) and r = 0.77 (with magnification)

between the odd one out and emotional expression identification tasks, r = 0.34 (no magnifica-

tion) and r = 0.27 (with magnification) between the gender identification and odd one out

tasks, and r = 0.07 (no magnification) and r = 0.20 (with magnification) between the gender

identification and emotional expression identification tasks.

Fig 5 compares item measures estimated from our extension of SDT to those of the dichoto-

mous Rasch model. Item measures were estimated from the combined data for all three face

perception tasks. Data are plotted separately for "odd" block items (blocks 1, 3, 5 and 7) and

"even" block items (blocks 2, 4, 6 and 8) because different persons responded to the two sets of

items–this was a consequence of randomizing magnification conditions for each subject while

treating the same subject as two different persons for the two magnification conditions. SDT

item measures are plotted in d0 units with b = 0 representing chance performance for the aver-

age person for all m. Rasch item measures are plotted in logits on an axis whose origin (by con-

vention) is at the mean item measure. For both "odd" and "even" block items, the same relation

is observed: Rasch and SDT item measures are linearly related for any given value of m, but the

intercepts of the best-fitting lines are different for different m. A closer look shows that the

slopes of the best-fitting lines are essentially the same for the 2-AFC items (1.4782 for the

"odd" block items and 1.4737 for the "even" block items) but differ more for the 3-AFC items

(1.6064 for "odd" and 1.5204 for "even").

Fig 5. SDT vs. Rasch. Estimated item measures are shown for SDT in d prime units and for the dichotomous Rasch model in logits

with "odd" block items (blocks 1, 3, 5 and 7) and "even" block items (blocks 2, 4, 6 and 8) plotted separately because different groups of

persons responded to the two sets of items. For both groups the same relation holds: item measures are linearly related for any given

m, but the intercepts of the best-fitting lines differ for different m. The slopes of the best-fitting lines for the 2-AFC task were nearly

identical: 1.4782 for the "odd" items and 1.4737 for the "even" items; while the slopes differed for the 3-AFC tasks: 1.6064 for the "odd"

and 1.5204 for the "even" items.

https://doi.org/10.1371/journal.pone.0225581.g005
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These results are explained by the dependency of Eq 4 (SDT) on m. When m = 2, Eq 4 pro-

duces a symmetric sigmoid function that is similar in shape to the logistic function of the

dichotomous Rasch model, which leads to both the observed linear relation and the same pre-

dicted slope for the best-fitting lines. When m>2, Eq 4 produces an asymmetric sigmoid func-

tion, and the slopes of the best-fitting lines will depend on the set of estimated item measures.

The intercepts differ primarily because the sigmoid functions defined in Eq 4 are shifted along

the d0 axis so that chance performance (which is different for different m) is always mapped to

d0 = 0, while the dichotomous Rasch model uses the same sigmoid function for all m.

Discussion

We have presented an extension of SDT that estimates both item and person measures from

m-AFC responses when item locations are defined by a latent variable. Unlike IRT models that

specify the probability of observing an outcome without modeling the underlying task, our

extension of SDT explicitly models both the cognitive processes underlying the m-AFC task as

well as how the decision variable maps onto probability correct. There is currently no known

way to directly test the accuracy of key assumptions of SDT such as its assumption that sepa-

rate internal responses exist for each of the m choices, but there is support for such assump-

tions in current models of decision making such as the linear ballistic accumulator (LBA) [20].

The LBA predicts reaction time in a variety of m-AFC tasks, and it does so by assuming the

existence of independent "accumulators" that repeatedly sample from what are essentially the

hypothesized internal response distributions in SDT. Thus, LBA is a generalization of the

model presented here, and it applies to stimuli defined by a latent variable. Our innovation

with respect to models like LBA is that our extension of SDT applies to cases where both item

and person measures are defined by a latent variable, while LBA measures person ability on

the physical measurement axis of reaction time.

One advantage of our extension of SDT when compared to IRT is that it naturally incorpo-

rates chance performance. Many IRT models incorporate chance performance by adding an

extra "guessing" parameter which provides a lower asymptote on performance [3,10]. Adding

such a parameter may be justifiable when it is a priori clear that a person cannot asymptotically

perform below chance (e.g., this occurs in typical psychophysics experiments where stimuli

with known physical properties are presented and it is physically impossible for any observer

to distinguish between the "correct" choice and all "incorrect" choices), but it is difficult to jus-

tify when dealing with latent variables and when there is evidence that people can systemati-

cally perform below chance [2]; for example a student who learns the test material incorrectly

can systematically perform below chance. Importantly, IRT does not derive its "guessing

parameter" from a model of the m-AFC task, and SDT suggests there is no need for such a

guessing parameter to account for chance performance.

Another difference in how the two approaches model chance performance can be seen with

our comparison of SDT to the dichotomous Rasch model. The dichotomous Rasch model pro-

vides a good approximation to SDT as long as m = 2 and is fixed for all items, and to a lesser

degree when m>2 and is fixed for all items, but not when m varies for different items. This is

because chance performance for an IRT model shifts to a different point on the axis when m is

changed (e.g., if an extra "incorrect" choice is added to an item) while chance performance

always lies at d0 = 0 in SDT. Intuitively, SDT makes more sense because the difficulty of all m-

AFC items where a given subject can do no better or worse than pure guessing should be the

same for that subject.

Mathematically, Eq 3 shows that the dichotomous Rasch model is a special case of SDT

when F(x) is the logistic function, m = 2 and φ(x) is the Dirac delta function, which is
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represented as δ(x) and defined as a function that has mass 1 and equals zero at all points

except at x = 0 where it tends towards +1. The sifting property for δ(x) says that if any function

f(x) is continuous at x = c, then
R þ1
� 1

f ðxÞdðx � cÞ ¼ f ðcÞ. Applying the sifting property to Eq 3

with φ(x) = δ(x) and F(x) = f(x) gives us the dichotomous Rasch model with a "criterion" or

"threshold" at c = θi−bh.

This mathematical link between SDT and the dichotomous Rasch model shows that the

2-AFC task is fundamentally different from the task of rating an item 1 or 0. If the task is

2-AFC, then φ(x) = δ(x) suggests that the internal response to the correct choice has zero vari-

ance which is implausible. If however the task is not 2-AFC and the subject rates the item 1 or

0, then the Dirac delta function has the plausible interpretation of a "criterion" or "threshold"

on a rating scale. In general, IRT is inconsistent with the existence of at least two distributions

(one for "correct" and at least one for "incorrect") that result from comparing a person’s

response to an underlying truth state. For this reason, IRT models with their ad hoc adjust-

ments to simulate chance performance should at least in principle not be used to estimate mea-

sures from m-AFC responses.

We note that our criticism of IRT is restricted to cases where the goal is to measure person

ability or item difficulty, and this is indeed the case for many applications of IRT in both medi-

cal research and educational testing. If however the goal is to model the items on a test or how

the persons interact with the items, then item discrimination parameters and guessing parame-

ters can have meaning. Nevertheless, the failure of IRT to actually model the m-AFC task sug-

gests that it needs further modification before it should be considered preferable to SDT.

Previous studies have extended SDT to latent variables [7,8]. However, these "latent class

SDT models" apply to situations where the underlying truth state is unknown and raters are

used to estimate the underlying truth state (i.e., the underlying truth state is a latent variable),

and the same is true of previous attempts to merge SDT and IRT [9]. Our extension of SDT to

latent variables applies to the traditional m-AFC task where the experimenter defines the truth

state and subject responses are scored with no uncertainty as either "correct" or "incorrect";

however, the item difficulties are unknown and must be estimated from the data. Previous

studies have also used SDT to estimate person measures in d0 units from forced choice experi-

ments where stimuli were defined by a latent variable, and some of these studies tested the abil-

ity of visually impaired individuals to identify emotional expressions or categorize people from

images of a person’s face [21–23]. The general approach used in these studies was to map a

subject’s hit and false alarm rates for a set of items to a person measure in d0 units for each sub-

ject. The problem with this approach is that the estimated person measures are specific to the

set of items used, and future studies must use the same set of items if estimated person mea-

sures are to be compared to each other. Our innovation is that we estimate both item and per-

son measures on the same scale, which not only allows for direct comparison between persons

and items, but also allows researchers to use any subset of items to estimate comparable person

measures. For example, our method can be used to create an "item bank" with calibrated item

measures for a targeted population from which subsets of items can be chosen to measure

changes in patient ability or student ability.
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