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Background Prompt diagnosis of early gastric cancer (EGC) is crucial for improving patient survival. However, most
previous computer-aided-diagnosis (CAD) systems did not concretize or explain diagnostic theories. We aimed to
develop a logical anthropomorphic artificial intelligence (AI) diagnostic system named ENDOANGEL-LA (logical
anthropomorphic) for EGCs under magnifying image enhanced endoscopy (M-IEE).

Methods We retrospectively collected data for 692 patients and 1897 images from Renmin Hospital of Wuhan Uni-
versity, Wuhan, China between Nov 15, 2016 and May 7, 2019. The images were randomly assigned to the training
set and test set by patient with a ratio of about 4:1. ENDOANGEL-LA was developed based on feature extraction com-
bining quantitative analysis, deep learning (DL), and machine learning (ML). 11 diagnostic feature indexes were inte-
grated into seven ML models, and an optimal model was selected. The performance of ENDOANGEL-LA was
evaluated and compared with endoscopists and sole DL models. The satisfaction of endoscopists on ENDOANGEL-
LA and sole DL model was also compared.

Findings Random forest showed the best performance, and demarcation line and microstructures density were the
most important feature indexes. The accuracy of ENDOANGEL-LA in images (88.76%) was significantly higher
than that of sole DL model (82.77%, p = 0.034) and the novices (71.63%, p<0.001), and comparable to that of the
experts (88.95%). The accuracy of ENDOANGEL-LA in videos (87.00%) was significantly higher than that of the
sole DL model (68.00%, p<0.001), and comparable to that of the endoscopists (89.00%). The accuracy (87.45%,
p<0.001) of novices with the assistance of ENDOANGEL-LA was significantly improved. The satisfaction of endo-
scopists on ENDOANGEL-LA was significantly higher than that of sole DL model.

Interpretation We established a logical anthropomorphic system (ENDOANGEL-LA) that can diagnose EGC under
M-IEE with diagnostic theory concretization, high accuracy, and good explainability. It has the potential to increase
interactivity between endoscopists and CADs, and improve trust and acceptability of endoscopists for CADs.
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Research in context

Evidence before this study

We searched PubMed for papers published from Jan 1,
1999 to Dec 31, 2021, with the keywords “artificial intel-
ligence” OR “deep learning” OR “machine learning” AND
“early gastric cancer” AND “endoscopy”. In recent years,
great efforts have been made by researchers with the
help of artificial intelligence (AI) in assisting early gastric
cancer (EGC) diagnosis under magnifying image
enhanced endoscopy (M-IEE). However, most AI models
only output an answer “cancer” or “non-cancer” without
details about how the diagnosis process was made, and
cannot show the abstract diagnostic theories to endo-
scopists in a concrete and intuitive way.

Added value of this study

In this study, we developed and validated a logical
anthropomorphic (LA) AI diagnostic system named
ENDOANGEL-LA for EGCs under M-IEE, which is based
on feature extraction combining quantitative analysis,
deep learning (DL), and machine learning (ML). The per-
formance of ENDOANGEL-LA with diagnostic theories
concretization and good explainability was better than
sole DL models and comparable to that of experts. To
our knowledge, this is the first study developing a logi-
cal anthropomorphic AI system based on feature
extracting to diagnose EGC with both good accuracy
and explainability, and to concretize abstract diagnostic
theories.

Implications of all the available evidence

AI systems such as ENDOANGEL-LA have great potential
in assisting the diagnosis of EGC. Our system was able
to diagnose EGC under M-IEE with diagnostic theories
concretization, high accuracy, and good explainability.
The system has the potential to increase interactivity
between endoscopists and AI systems based on the fea-
tures extracted, and improve the trust and acceptability
of endoscopists on AI systems.
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Introduction
Gastric cancer (GC) is the third leading cause of cancer-
related death globally, with estimates of more than
750,000 deaths worldwide during 2020.1−4 Patients
diagnosed with early gastric cancer (EGC) have a 5-year
survival rate of more than 90%, which decreases to less
than 25% when evolving into the advanced stage.5 Early
detection of EGC by endoscopy is the prerequisite for
timely endoscopic treatment and patients’ welfare.6−8

However, as EGCs usually show subtle changes of the
mucosa, accurate diagnosis of EGC under white light
endoscopy is difficult. As a result, the miss diagnosis
rate of EGC is as high as 20−40%.9

Therefore, the magnifying image enhanced endos-
copy (M-IEE), which can clearly show the
microstructures (MS) and microvessels (MV) of the gas-
tric mucosa, has been developed and widely applied to
improve EGC diagnosis.10 In real clinics, however, the
performance among endoscopists varies greatly because
the diagnosis under M-IEE requires extensive experi-
ence and thorough knowledge.11,12 This is because the
current diagnostic theories of EGC under M-IEE are
mainly an abstract generalization of MS and MV, which
has intuitiveness, uncertainty, and fuzziness. A study
involving 395 endoscopists in 77 medical institutions
showed that based on the diagnostic theories, the accu-
racy of different endoscopists in diagnosing EGC under
M-IEE fluctuated between 40% and 85%,13 which seri-
ously affected the detection of early gastric cancer.

To assist in EGC diagnosis under M-IEE in real time,
great efforts have been made by researchers with the
help of artificial intelligence (AI). Hu, et al. collected
1777 M-IEE images for constructing a computer-aided-
diagnosis (CAD) model and earned a sensitivity of
0.792.12 Yusuke Horiuchi et al. established a CAD sys-
tem using 2570 images with an accuracy of 85.1% in vid-
eos.14 Although previous studies have confirmed that AI
has great potential in assisting the diagnosis of EGC,
most AI models only output an answer “cancer” or
“non-cancer” without details about how the diagnosis
process was made,15 and cannot show the abstract diag-
nostic theories to endoscopists in a concrete and intui-
tive way. As a result, it is difficult for endoscopists to
learn from the models and find out the cause of the
errors and ways to avoid them,15 which will greatly limit
the clinical applications of AI systems.

In the present study, we developed a feature extrac-
tion-based logical anthropomorphic diagnostic system
named ENDOANGEL-LA (logical anthropomorphic) for
EGC under M-IEE combined with prior knowledge,
quantitative analysis, deep learning (DL), and machine
learning (ML). The performance of ENDOANGEL-LA
for diagnosing EGC under M-IEE was tested using still
images, prospective videos and further compared with
endoscopists of different levels. A comparison between
the ENDOANGEL-LA and the sole DL models of differ-
ent training sets on their performance and the satisfac-
tion of endoscopists was also conducted. To the best of
our knowledge, this is the first study to concretize
abstract diagnostic theories with feature extraction and
achieve diagnostic logic transparency of AI systems in
the field of EGC diagnosis under M-IEE.
Methods

Datasets
This case-control study was done in Renmin Hospital of
Wuhan University (RHWU), Wuhan, China. According
to pathological results, the images were divided into
the EGC group (case group) and the non-cancer group
(control group). We estimated the accuracy of
www.thelancet.com Vol 46 Month April, 2022
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ENDOANGEL-LA was 89% when diagnosing EGC in
M-IEE images and the accuracy of sole DL model was
80% based on a previous pilot study. The estimated
sample size of image test set was 250 with a type Ⅰ error
rate of 0.05 and power of 0.80. Therefore, we retrospec-
tively collected 4667 images (EGC, 1950; noncancerous,
2717) from 1811 patients (EGC, 1042; noncancerous
lesions, 769) between Nov 15, 2016 and May 7, 2019,
which were derived from a database of our previous
study.16 To develop ENDOANGEL-LA, the images
viewed at full magnification under M-IEE were
included, and the images where the MS and MV were
difficult to observe due to blurry, reflection, out of focus,
etc. were excluded. Finally, 1897 images (EGC, 679;
noncancerous, 1218) from 692 patients (EGC, 363; non-
cancerous lesions, 329) were enrolled. Enrolled images
were randomly assigned to a training set (1630 images
from 567 patients) and test set (267 images from 125
patients) by patient with a ratio of about 4:1. The work-
flow of this study is illustrated in Figure S1. The
patient and lesion characteristics in test set are shown
in Table S2.

The M-IEE was performed by a standard magnifying
endoscopy [(EG-L590ZW; Fujifilm, Tokyo, Japan),
(GIF-H260Z, GIF-H290Z; Olympus Medical Systems,
Tokyo, Japan)] and video systems [(ELUXEO 7000,
LASEREO7000 and VP-4450HD; Fujifilm, Tokyo,
Japan), (EVIS LUCERA CV-260/CLV-260 and EVIS
LUCERA ELITE CV-290/CLV-290SL; Olympus Medi-
cal Systems, Tokyo, Japan)]. The resolution of all the
images is 512£512 pixels.
Establishment of feature index base for EGC
endoscopic diagnosis with prior knowledge
To provide ENDOANGEL-LA with sufficient prior
knowledge to determine the feature indexes related to
EGC diagnosis under M-IEE, the eligible studies pub-
lished from January 1, 1999 to December 31, 2021 were
searched by the keywords "Early gastric cancer", "Mag-
nifying endoscopy" and "Diagnosis" in PubMed data-
bases. A total of 203 pieces of published literatures were
searched and assessed. Among them, one piece of
duplicate literature was removed, and 38 pieces of litera-
tures were excluded after screening of title and abstract
because they are unrelated to EGC or magnifying endos-
copy (n = 21) and are case reports (n = 17). Then, 124
pieces of literatures were excluded because the full texts
were unavailable (n = 3) and unrelated to EGC diagnos-
tic features (n = 121). Finally, 40 pieces of literatures
were obtained. Based on the selected literature, two
expert endoscopists and two algorithmic engineers
jointly determined feature indexes related to EGC diag-
nosis. Then according to the performance of each fea-
ture index and the similarity between feature indexes,
eleven feature indexes were finally determined for inclu-
sion. (Figure S2)
www.thelancet.com Vol 46 Month April, 2022
Development of the ENDOANGEL-LA
Eleven feature indexes including seven quantitative fea-
ture indexes and four deep learning feature indexes
were used to develop the ENDOANGEL-LA. The quanti-
tative feature indexes included: (1) density of MS, (2)
eccentricity of MS equivalent centroid, (3) diameter ratio
of MV, (4) tortuosity of MV, (5) cyclization of MV, (6)
spectral principal component information of gastric
mucosal background color, (7) image entropy of S-chan-
nel in Hue-Saturation-Intensity (HSI) color space. The
deep learning feature indexes included: (1) the arrange-
ment of the M-IEE images, (2) the demarcation line of
lesions, (3) the distribution of MV in the MV segmenta-
tion images, (4) the morphology of the lesions (includ-
ing elevated, flat, and depressed). All the feature indexes
are shown in Figure 1. The performance of all the fea-
ture indexes is described in Table S3 and Figures S3−6.

Five quantitative feature indexes were analyzed
based on clear areas of the images, which is to eliminate
the influence of bleeding, blurring, bubbles, etc. on the
accuracy of MS and MV analysis. Details of the segmen-
tation of clear areas, MS, and MV are described in the
Supplementary Material and Figure 2. The definitions
of each feature index are as follows (The diagnosis theo-
ries of EGC and the definition of corresponding quanti-
tative indexes are described in detail in Table S4 and
Figure 1):
(1) Density of MS: The ratio of the number of MS pix-
els in the MS segmentation image to the total
number of pixels in the clear area. It was used to
describe the distribution of MS.17 The lower den-
sity of MS, the greater possibility of EGC.

(2) Eccentricity of MS equivalent centroid: The con-
nected component analysis was used to extract the
centroid of each MS in the MS segmentation
image and the centroid of the clear area. The
equivalent centroid of the MS segmentation image
was obtained based on the centroid of each MS.
The eccentricity of the MS equivalent centroid is
the offset distance between the equivalent centroid
of the MS segmentation image and the centroid of
the clear area. It was used to describe the distribu-
tion of MS.17 The further eccentricity of MS equiv-
alent centroid, the greater possibility of EGC.

(3) Diameter ratio of MV: The connected component
analysis was used to extract a single MV in the MV
segmentation image, and the centerline of the MV
was extracted based on the single MV. Calculate
the diameter of every point on the MV. The repre-
sentative value of diameter ratio of MV is the sim-
ple geometric mean of the ratio of the maximum
diameter to the minimum diameter of all MV. It
was used to describe the morphology of MV.17 The
further eccentricity of MS equivalent centroid, the
greater possibility of EGC.
3



Figure 1. The schematic diagram of all feature indexes and the framework of developing ENDOANGEL-LA.
(A) Eleven feature indexes. (1) density of MS. (2) eccentricity of MS equivalent centroid: yellow dots represent the equivalent cen-

troid of MS segmentation image, and red dots represent the centroid of the clear area. (3) diameter ratio of MV. (4) tortuosity of MV.
(5) cyclization of MV. (6) ten main color features. (7) HSI color space. (8) the arrangement of the M-IEE images: the left image shows
regular arrangement and the right image shows irregular arrangement. (9) the demarcation line of lesions: there is a demarcation
line in the image (yellow arrows). (10) the distribution of MV in the MV segmentation images: the left image shows regular distribu-
tion and the right image shows irregular distribution. (11) the morphology of the lesions: the left image shows an elevated lesion,
the middle image shows a flat lesion, and the right image shows a depressed lesion. (B) The framework of developing ENDOANGEL-
LA. MS: microsurfaces, MV: microvessels, HSI: Hue-Saturation-Intensity, EGC: early gastric cancer, M-IEE: magnifying image-enhanced
endoscopy, LA: logical anthropomorphic.
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Figure 2. The segmentation of clear areas, MS and MV. (A) EGC images. (B) non-cancerous images.
The images from left to right are M-IEE image, M-IEE image with clear area segmentation, MS segmentation image, and the MV

segmentation image. MS: microsurfaces, MV: microvessels, EGC: early gastric cancer, M-IEE: magnifying image-enhanced endoscopy.
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(4) Tortuosity of MV: The minimum bounding cube
was constructed with the minimum bounding
rectangle and the maximum diameter of MV. The
surface density was calculated according to the
total number of pixels on the MV and the bottom
area or side area of the minimum bounding cube,
and the tortuosity coefficient of MV was obtained
by weighting the surface density. The representa-
tive value of tortuosity of MV is the median of tor-
tuosity coefficients of all MV. It was used to
describe the morphology of MV.17 The larger tortu-
osity coefficient of MV, the greater probability of
EGC.

(5) Cyclization of MV: The two diagonals’ area
moment of inertia was calculated based on the
minimum bounding rectangle and all the pixels
on the MV. The cyclization coefficient of MV was
obtained by weighting the area moment of inertia.
The representative value of cyclization of MV is
the mean of the ratio of the cyclization coefficients
of all MV. It was used to describe the morphology
of MV.17 The smaller cyclization coefficient of MV,
the higher cyclization of MV, and the greater prob-
ability of EGC.

(6) Spectral principal component information of gas-
tric mucosal background color: Transform the
image from Red-Green-Blue (RGB) color space to
P color space, and extract ten main color features
of the images in P color space. Then the average
pixels of each color feature in the three channels
were calculated, and the median of all average pix-
els is the representative value of spectral principal
component information. It was used to describe
the color of the gastric mucosa.17 The smaller the
www.thelancet.com Vol 46 Month April, 2022
representative value, the greater probability of
EGC.

(7) Image entropy of S-channel in HSI color space:
Transform the image from RGB color space to
HSI color space, and calculate the image entropy
in the S-channel.17,18 It was used to describe the
color of the gastric mucosa. The larger the image
entropy, the greater probability of EGC.

Four models of the deep learning feature indexes
were constructed with ResNet-50 using 1630 images
and tested using 267 images. And the images were eval-
uated by 2 expert endoscopists for the arrangement of
the M-IEE images, the demarcation line of lesions, the
distribution of MV in the MV segmentation images,
and the morphology of the lesions. If there was dis-
agreement between the two endoscopists, a reassess-
ment was carried out to reach a consensus.

All feature indexes were arranged and combined and
input into the machine learning (ML) models, including
random forest (RF), Gaussian Naive Bayes (GNB), k-
Nearest Neighbor (KNN), logistic regression (LR), deci-
sion tree (DT), support vector machine (SVM), and gra-
dient boosting decision tree (GBDT). Finally, an
optimization model with the best sensitivity and speci-
ficity was selected for ENDOANGEL-LA and identifying
independent factors associated with EGC. The frame-
work of this study is illustrated in Figure 1. ENDOAN-
GEL-LA was trained using Python 3.5 and the Keras
library (v2.1.5) with Tensorflow 1.12.0 backend.

Prospective video test
ENDOANGEL-LA was tested with prospective videos to
evaluate the performance of identifying EGC in clinical
5
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practice. We estimated the accuracy of ENDOANGEL-
LA was 88.00% when diagnosing EGC in M-IEE videos
and the accuracy of sole deep convolutional neural net-
work (DCNN) was 72.00% based on a previous pilot
study. The estimated sample size was 94 with a type Ⅰ
error rate of 0.05 and power of 0.80. All the videos of
M-IEE were prospectively and consecutively collected
from RHWU between Aug 18, 2020 and July 26, 2021.

The inclusion criteria were as follows: (1) age
≥18 years, (2) known gastric lesions needed to be fur-
ther clarified under M-IEE, 3) signed informed consent.
The exclusion criteria were as follows: (1) after gastrec-
tomy; (2) lesions difficult to observe under M-IEE due to
active bleeding, thick white coats, blurs, and mucus; (3)
without pathological results; (4) pathologically con-
firmed advanced GC or lymphoma; (5) have participated
in clinical trials of drugs and have been in the elution
period of experimental drugs or control drugs; (6) previ-
ous history of allergy to anesthetic or spasmolytic.

According to pathological results, the unprocessed
videos were edited into clips containing target lesions.
When the frame was frozen by endoscopists during
the examination, ENDOANGEL-LA were activated,
extracted images features, analyzed the quantitative and
deep learning feature indexes, and made the diagnosis
of the frames. The results of every feature index and the
final diagnosis were present on the screen for reference.
(Figure S7 and Videos 1 and 2)
Comparing the performance of ENDOANGEL-LA and
endoscopists
The randomly shuffled test set was used to compare the
performance between ENDOANGEL-LA and the endo-
scopists, which include two experts (with more than ten
years of experience of endoscopy), two seniors (with
more than five years of experience of endoscopy), and
four novices (with more than one year of experience of
endoscopy). All the endoscopists were not enrolled in
the annotation of the images and were blinded to
patient information, endoscopy reports, pathological
results, and diagnosis of ENDOANGEL-LA or other
endoscopists. To explore the ENDOANGEL-LA assis-
tance ability, after at least two weeks six endoscopists
(one expert, one senior, and four novices) were asked to
make a diagnostic decision again on the same test set
with the assistance of ENAOANGEL-LA, and compared
it with that of their independent performance.
Comparing the performance of ENDOANGEL-LA and
sole DL models
To compare the performance between ENDOANGEL-
LA and sole DL model in diagnosing EGC, ResNet-50
was used for constructing a sole DCNN model
using the same training set. In addition, another sole
DL model named ENDOANGEL-ME (magnifying
endoscopy) was also used for the comparison, which
was constructed from our previous studies using
4667 M-IEE images.16
Comparing the satisfaction level of ENDOANGEL-LA
and sole DL models
Among the two sole DL models, the model with compa-
rable diagnostic performance to ENDOANGEL-LA was
selected for satisfaction evaluation. We estimated the
satisfaction scores of ENDOANGEL-LA was 4.6 in M-
IEE videos and the satisfaction scores of sole DCNN
was 3.6 based on a previous pilot study. The estimated
sample size of videos was 8 with a type Ⅰ error rate of
0.05 and power of 0.80. Therefore, we used 100 pro-
spective videos for satisfaction evaluation to fully meet
the statistical requirement. Seventeen endoscopists as
we could find, who did not participate in the criteria
defining and the man-machine contest, were invited to
review the 100 prospective videos mentioned above.
Each case had an original video and two processed vid-
eos generated from ENDOANGEL-LA and the selected
sole DL model based on the original one. Endoscopists
were requested to finish an online questionnaire (Figure
S8) after reviewing the videos. The Five-Point Likert
Scale was used for assessing the extent of endoscopists’
satisfaction for ENDOANGEL-LA and the selected sole
DL model. Endoscopists also chosen which kind of AI
systems they prefer to use (or not use any AI systems)
in clinical practice.
Ethics
This study was approved by the Ethics Committee of
RHWU and registered with trial number
ChiCTR2000035116 in the WHO Registry Network’s
Primary Registries. For retrospective image data,
informed consent was exempted by the institutional
review boards.
Statistical analysis
The performance of ENDOANGEL-LA, sole DL models,
and endoscopists was evaluated by metrics including
accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and area under
the curve (AUC). The optimal threshold of the receiver
operating characteristic (ROC) curve was determined by
Youden Index. The McNemar test was used to compare
the accuracy, sensitivity, and specificity, and the Chi-
square test was used to compare the PPV and NPV
between ENDOANGEL-LA, sole DL models, and endo-
scopists. A Wilcoxon signed rank test was used to carry
out the comparative analysis between ENDOANGEL-LA
and sole DL models in satisfaction level of endoscopists.
P-values < 0.05 were considered statistically significant.
Interobserver agreement of endoscopists was evaluated
www.thelancet.com Vol 46 Month April, 2022
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using Cohen’s kappa coefficient. All analyses were per-
formed with SPSS (ver. 26.0; IBM, USA).
Role of the funding source
The funder had no role in study design, data collection,
data analysis, data interpretation, writing of the report,
or decision to submit the paper for publication. All
authors had access to the raw datasets and accept
responsibility for the decision to submit for publication.
Results

The analysis of feature indexes and performance of
ENDOANGEL-LA in images
Among the seven ML models, RF showed the best per-
formance in diagnosing EGC and was selected for the
constriction of ENDOANGEL-LA. (The performance of
seven ML models is shown in Figure 3 and Table S5)
The feature indexes determined by RF are as follows: (1)
density of MS, (2) eccentricity of MS equivalent cen-
troid, (3) cyclization of MV, (4) spectral principal compo-
nent information of gastric mucosal background color,
Figure 3. The corresponding weights of each feature index, the R
ENDOANGEL-ME, and the performance of endoscopists. (A) The R
each feature index. (C) The ROC curves of ENDOANGEL-LA, sole DCN

MS: microsurfaces, MV: microvessels, ROC: receiver operating ch
anthropomorphic, GNB: Gaussian Naive Bayes, KNN: k-Nearest Neigh
tor machine, GBDT: gradient boosting decision tree, DCNN: deep co

*He X, Wu L, Dong Z, Gong D, Jiang X, Zhang H, Ai Y, Tong Q, Lv
ligence for diagnosing early gastric cancer by magnifying image-enh
Gastrointest Endosc. 2022;95(4):671-678.e4.
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(5) the arrangement of the M-IEE images, (6) the
demarcation line of lesions, (7) the distribution of MV
in the MV segmentation images, (8) the morphology of
the lesions. And the corresponding weights of each fea-
ture index were 0.26, 0.07, 0.02, 0.04, 0.23, 0.28,
0.08, 0.02. (Figure 3) The AUC of ENDOANGEL-LA
was 92.83% (95% confidence interval [CI]:
[88.42%�96.24%]). In the test set, the ENDOANGEL-
LA achieved a diagnostic accuracy of 88.76% (95%CI:
[84.41%�92.01%]), a sensitivity of 86.39% (95%CI:
[79.91%�91.01%]), a specificity of 91.67% (95%CI:
[85.34%�95.41%]), a PPV of 92.70% (95%CI:
[87.08%�95.99%]), a NPV of 84.62% (95%CI:
[77.43%�89.8%]) The most false positives were intesti-
nal metaplasia (IM) and chronic inflammation. The
classification of errors is shown in Table S6, and the
representative images of misdiagnosis are shown in
Figure S9.
The performance of ENDOANGEL-LA in videos
A total of 123 patients undergoing M-IEE in RHWU
were consecutively collected. 46 patients who met the
OC curves of all ML models, ENDOANGEL-LA, sole DCNN, and
OC curves of all ML models. (B) The corresponding weights of
N, and ENDOANGEL-ME, and the performance of endoscopists.
aracteristic, ML: machine learning, RF: random forest, LA: logical
bor, LR: logistic regression, DT: decision tree, SVM: support vec-
nvolutional neural network, ME: magnifying endoscopy.
P, Lu B, Wu Q, Yuan J, Xu M, Yu H. Real-time use of artificial intel-
anced endoscopy: a multicenter, diagnostic study (with videos).
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exclusion criteria were excluded. Eventually, 77 patients
including 25 EGC and 75 non-cancerous videos were
included. The patient and lesion characteristics are
shown in Table S7. ENDOANGEL-LA achieved an accu-
racy of 87.00% (95%CI: [79.02%�92.24%]), a sensitiv-
ity of 84.00% (95%CI: [65.35%�93.60%]), a specificity
of 88.00% (95%CI: [78.74%�93.56%]), a PPV of
70.00% (95%CI: [52.12%�83.35%]), and a NPV of
94.29% (95%CI: [86.21%�97.76%]).
Comparison between ENDOANGEL-LA and
endoscopists
Compared with novices in images, ENDOANGEL-LA
had a better performance in accuracy (88.76% vs
71.63%, p < 0.001), sensitivity (86.39% vs 79.76%,
p = 0.002), specificity (91.67% vs 61.67%, p < 0.001),
PPV (92.70% vs 71.82%, p < 0.001), and NPV (84.62%
vs 71.33%, p < 0.001) significantly. The specificity
(81.25%, p = 0.001) and PPV (85.58%, p = 0.006) of
seniors were significantly lower than those of
ENDOANGEL-LA. In addition, the performance of
ENDOANGEL-LA was comparable to that of the experts
in images and that of endoscopists in videos. The com-
parison results are summarized in Figure 3 and Table 1.
The details of the diagnosis performance of endoscop-
ists are shown in Table S8. The inter-observer agree-
ment between endoscopists is shown in Table S9. The
most false positives of endoscopists were IM, chronic
inflammation, and atrophy. (Table S6 and Figure S9)
As shown in Table 1, the accuracy, sensitivity, specific-
ity, PPV, and NPV of the novices with the assistance of
ENAOANGEL-LA were significantly improved to
87.45% (p < 0.001), 85.03% (p = 0.012), 90.42% (p <
0.001), 91.58% (p < 0.001), and 83.14% (p < 0.001)
respectively. (The details of the diagnosis performance
of endoscopists with the assistance of ENAOANGEL-LA
are shown in Table S8).
Comparison between ENDOANGEL-LA and sole DL
models
In image test set, the AUC of ENDOANGEL-LA
(92.83%, 95%CI: [89.42%�96.24%]) was better than
that of sole DCNN (88.95%, 95%CI:
[84.67%�93.22%]) and ENDOANGEL-ME (91.59%,
95%CI: [88.17%�95.01%]). The accuracy of ENDOAN-
GEL-LA in diagnosing EGC was significantly higher
than that of the sole DCNN (88.76% vs 82.77%,
p = 0.034). The performance was comparable between
ENDOANGEL-LA and ENDOANGEL-ME. In video test
set, the accuracy (87.00% vs 68.00%, p < 0.001), speci-
ficity (88.00% vs 69.33%, p = 0.001) and PPV (70.00%
vs 41.03%, p = 0.007) of ENDOANGEL-LA were signifi-
cantly higher than those of sole DCNN. The accuracy
(78.00%, p < 0.001) and PPV (53.85%, p = 0.007) of
ENDOANGEL-ME were significantly lower than those
of ENDOANGEL-LA. (Figure 3 and Table 1) The most
false positives of sole DL models were IM, chronic
inflammation, and atrophy. (Table S6 and Figure S9)
Comparison of satisfaction level between
ENDOANGEL-LA and sole DL model
To evaluate and compare the satisfaction level of
ENDOANGEL-LA and sole DL model, ENDOANGEL-
ME, the diagnostic performance of which was compara-
ble to that of ENDOANGEL-LA, was chosen in this test.
The average satisfaction scores of endoscopists towards
ENDOANGEL-LA were 4.76§0.42, which was signifi-
cantly higher than that towards the ENDOANGEL-ME
(3.76§0.64, p = 0.001). ENDOANGEL-LA (3.76§0.81)
would affect endoscopists’ judgment more than
ENDOANGEL-ME (3.29§0.75, p = 0.033). More endo-
scopists prefer using ENDOANGEL-LA in clinical prac-
tice (Table 2) .
Discussion
In the study, we innovatively developed a feature extrac-
tion-based logical anthropomorphic diagnostic system
named ENDOANGEL-LA for diagnosing EGC under M-
IEE. ENDOANGEL-LA performed better than sole DL
models and was comparable with experts, and gained
better satisfaction from endoscopists. To our best
knowledge, this is the first study developing a logical
anthropomorphic AI system based on feature extracting
to diagnose EGC with both good accuracy and explain-
ability, and concretize abstract diagnostic theories.

At present, EGC is diagnosed under endoscopy rely-
ing on the experience summary of experts, which is in
the form of descriptive and abstract theories.12 However,
each endoscopist has a different understanding of those
abstract theories.19 As a result, the consistency of EGC
diagnosis between endoscopists is poor when the exist-
ing theories of EGC diagnosis are applied to clinical
practice. AI has been widely applied in medical image-
based disease determination and classification, and the
development of AI systems for assisting the diagnosis
of EGC has been an attractive research topic during the
past decade.20,21 However, existing AI models have
always been questioned for their black-box nature.22

Comments from experts and societies stated that AI sys-
tems without providing diagnostic logic may reduce the
physicians’ confidence and put patients at risk.23−25 The
existing AI models did not concretize abstract diagnos-
tic theories to endoscopists and explain how the predic-
tions were made, which remain fatal limitations for
practical use.23,26

In this study, ENDOANGEL-LA achieved the con-
cretization and explainability of diagnostic logic by sim-
ply and intuitively displaying the extracted feature
indexes and diagnosis results on the screen as a diag-
nostic reference. We innovatively evaluate the features
www.thelancet.com Vol 46 Month April, 2022



Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Image test

ENDOANGEL-LA 88.76% (84.41%�92.01%) 86.39% (79.91%�91.01%) 91.67% (85.34%�95.41%) 92.70% (87.08%�95.99%) 84.62% (77.43%�89.82%)

Sole DCNN 82.77% (77.78%�86.83%)* 82.31% (75.34%�87.63%) 83.33% (75.65%�88.94%) 85.82% (79.11%�90.63%) 79.37% (71.49%�85.52%)

ENDOANGEL-ME# 85.05% (80.24%�88.80%) 85.71% (79.15%�90.46%) 84.17% (76.59%�89.63%) 86.90% (80.44%�91.45%) 82.79% (75.12%�88.46%)

Without ENDOANGEL-LA Experts (n = 2) 88.95% (86.01%�91.34%) 88.44% (84.28%�91.61%) 89.58% (85.07%�92.84%) 91.23% (87.37%�93.99%) 86.35% (81.53%�90.07%)

Seniors (n = 2) 86.52% (83.36%�89.16%) 90.82% (86.97%�93.61%) 81.25% (75.83%�85.68%)* 85.58% (81.25%�89.05%)* 87.84% (82.89%�91.51%)

Novices (n = 4) 71.63% (68.85%�74.25%)* 79.76% (76.32%�82.81%)* 61.67% (57.24%�65.91%)* 71.82% (68.25%�75.14%)* 71.33% (66.80%�75.47%)*

With ENDOANGEL-LA Expert (n = 1) 89.89% (85.69%�92.96%) 87.76% (81.48%�92.12%) 92.50%(86.36%�96.00%) 93.48% (88.07%�96.53%) 86.05% (79.02%�90.99%)

Senior (n = 1) 88.01% (83.56%�91.38%) 95.24% (90.50%�97.68%) 79.17% (71.06%�85.47%) 84.85% (78.56%�89.52%) 93.14% (86.51%�96.64%)

Novices (n = 4) 87.45% (85.33%�89.30%)y 85.03% (81.92%�87.69%)y 90.42% (87.46%�92.74%)y 91.58% (88.95%�93.63%)y 83.14% (79.69%−86.11%)y

Video test

ENDOANGEL-LA 87.00% (79.02%�92.24%) 84.00% (65.35%�93.60%) 88.00% (78.74%�93.56%) 70.00% (52.12%�83.35%) 94.29% (86.21%�97.76%)

Sole DCNN 68.00% (58.34%�76.33%)* 64.00% (44.52%�79.75%) 69.33% (58.17%�78.61%)* 41.03% (27.08%�56.59%)* 85.25% (74.28%�92.04%)

ENDOANGEL-ME# 78.00% (68.93%�85.00%)* 84.00% (65.35%�93.60%) 76.00% (65.22%�84.25%) 53.85% (38.57%�68.44%)* 93.44% (84.31%�97.42%)

Endoscopists 89.00% (81.37%�93.75%) 80.00% (60.87%�91.14%) 92.00% (83.63%�96.28%) 76.92% (57.95%�88.96%) 93.24% (85.13%�97.08%)

Table 1: The performance of ENDOANGEL-LA, sole DL models, and endoscopists.
LA: logical anthropomorphic, DL: deep learning, CI: confidence interval, DCNN: deep convolutional neural network, ME: magnifying endoscopy, PPV: positive predictive value, NPV: negative predictive value.

* Significant difference between the target group and ENDOANGEL-LA (p < 0.05).
y Significant difference between the results of without ENDOANGEL-LA and with ENDOANGEL-LA (p < 0.05).
# He X, Wu L, Dong Z, Gong D, Jiang X, Zhang H, Ai Y, Tong Q, Lv P, Lu B, Wu Q, Yuan J, Xu M, Yu H. Real-time use of artificial intelligence for diagnosing early gastric cancer by magnifying image-enhanced endoscopy: a mul-

ticenter, diagnostic study (with videos). Gastrointest Endosc. 2022;95(4):671-678.e4.
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ENDOANGEL-LA ENDOANGEL-ME# P-value

Satisfaction scores 4.76§0.42 3.76§0.64 0.001*

The extent to which systems affect the judgment of endoscopists 3.76§0.81 3.29§0.75 0.033*

The number of endoscopists that tend to use one of the systems 16 1 −

Table 2: Comparison between ENDOANGEL-LA and ENDOANGEL-ME in satisfaction assessment of endoscopists.
LA: logical anthropomorphic, ME: magnifying endoscopy.

* Significant difference between ENDOANGEL-LA and ENDOANGEL-ME (p < 0.05).
# He X, Wu L, Dong Z, Gong D, Jiang X, Zhang H, Ai Y, Tong Q, Lv P, Lu B, Wu Q, Yuan J, Xu M, Yu H. Real-time use of artificial intelligence for diagnos-

ing early gastric cancer by magnifying image-enhanced endoscopy: a multicenter, diagnostic study (with videos). Gastrointest Endosc. 2022;95(4):671-678.e4.
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of EGC from abstract theories using quantitative algo-
rithms and computer science and train the ML model to
automatically screen-out independent features for the
model.10,17,27 Based on the independent features, the
ML model assigned weights to the features automati-
cally, from which the diagnostic value of different fea-
tures can be explored for EGC. By deconstructing the
decision-making process of ENDOANGEL-LA and
exploring the relationship between different features in
the future, it may be possible to learn some diagnostic
rules of EGC that are difficult to be mastered by experi-
ence and provide a new basis for existing diagnostic the-
ories, which may improve the accuracy and consistency
of endoscopists.

According to the strong and detailed diagnostic refer-
ence given by ENDOANGEL-LA, the endoscopists can
learn from the successful cases of model prediction,
and improve the model by analyzing the reasons for the
failure cases of the model prediction. Compared with
ENDOANGEL-ME without explainability, endoscopists
were more satisfied with ENDOANGEL-LA with
explainability and had higher acceptance. They were
more willing to use ENDOANGEL-LA in clinical prac-
tice. It can be seen that ENDOANGEL-LA with explain-
ability was expected to improve human-machine
collaboration and ensure the safety of the clinical appli-
cation of AI.

Moreover, we evaluated the performance of the endo-
scopists with the assistance of ENAOANGEL-LA, and
compared it with that of their independent perfor-
mance. The comparison results showed that ENAOAN-
GEL-LA could effectively improve the diagnostic
performance of novices, which demonstrate the addi-
tional value of the ENAOANGEL-LA in the auxiliary
diagnosis of EGC. In the error analysis, ENDOANGEL-
LA did not misdiagnose any atrophy, but both endo-
scopists and ole DL models diagnosed atrophy as EGC.
Therefore, with the assistance of ENDOANGEL-LA,
inexperienced endoscopists may continuously improve
the accuracy in diagnosing EGC.

In clinical practice, the endoscopic images are usu-
ally complex and diverse, and some features of the
images may escape the naked eye.28 Even among expert
endoscopists, diagnosis often varies widely.17 With the
segmentation of MS and MV in the M-IEE images,
ENDOANGEL-LA eliminated the influence of interfer-
ence information on the endoscopists' observation and
simplified the complex endoscopic image.28 By extract-
ing the vital diagnostic information and marking the
most characteristic MV for reference, endoscopists can
notice meaningful features of the images, which can
enhance the endoscopists’ confidence in diagnosis and
may improve the accuracy of diagnosis.

Another advantage of this study is that the training
sample size can be reduced. The DL algorithms always
require large training samples (ranging from hundreds
to millions) to learn and construct an appropriate
model.29,30 However, it is not easy to collect large data
sets in clinical practice. In this study, the performance
of ENDOANGEL-LA was better than sole DCNN using
the same training set and comparable with ENDOAN-
GEL-ME using 4667 M-IEE images.16 The feature
indexes related to EGC were determined in advance by
experts, which may also present in non-cancerous
lesions. Based on the given diagnosis logic, the model
did not require a large number of EGC images to learn
and summarize the difference between EGC and non-
cancer.31,32

This study has several limitations. First, this study
used clinical data collected from only one institution.
We will further enhance the robustness of ENDOAN-
GEL-LA by using multi-center data in the future. Sec-
ond, this study only included M-IEE images with high
definition. A clear view of MS and MV patterns is the
prerequisite for quantifying the analysis. Nevertheless,
high requirements for M-IEE images apparently indi-
cate the qualified standard for M-IEE operation, which
is conducive to the quality control of M-IEE and the
detection of early cancer. Third, we did not conduct a
clinical trial. However, the ENDOANGEL-LA was tested
using consecutive and prospective M-IEE videos and
performed well.

In conclusion, this study proposed a logical anthro-
pomorphic AI system named ENDOANGEL-LA aimed
at diagnosing EGC under M-IEE. ENDOANGEL-LA,
which concretized abstract diagnostic theories and had
good explainability, had a better performance than sole
DL models. The performance of ENDOANGEL-LA was
comparable to that of experts, and it had a promising
role in future endoscopic scenarios.
www.thelancet.com Vol 46 Month April, 2022
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