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Abstract
Multimedia IoT (M-IoT) is an emerging type of Internet of things (IoT) relaying multimedia data (images, videos, audio

and speech, etc.). The rapid growth of M-IoT devices enables the creation of a massive volume of multimedia data with

different characteristics and requirements. With the development of artificial intelligence (AI), AI-based multimedia IoT

systems have been recently designed and deployed for various video-based services for contemporary daily life, like video

surveillance with high definition (HD) and ultra-high definition (UHD) and mobile multimedia streaming. These new

services need higher video quality in order to meet the quality of experience (QoE) required by the users. Versatile video

coding (VVC) is the new video coding standard that achieves significant coding efficiency over its predecessor high-

efficiency video coding (HEVC). Moreover, VVC can achieve up to 30% BD rate savings compared to HEVC. Inspired by

the rapid advancements in deep learning, we propose in this paper a wide-activated squeeze-and-excitation deep convo-

lutional neural network (WSE-DCNN) technique-based video quality enhancement for VVC. Therefore, we replace the

conventional in-loop filtering in VVC by the proposed WSE-DCNN model that eliminates the compression artifacts in

order to improve visual quality and hence increase the end user QoE. The obtained results prove that the proposed in-loop

filtering technique achieves �2:85%, �8:89%, and �10:05% BD rate reduction for luma and both chroma components

under random access configuration. Compared to the traditional CNN-based filtering approaches, the proposed WSE-

DCNN-based in-loop filtering framework achieves efficient performance in terms of RD cost.

Keywords Video coding � Artificial intelligence � Multimedia IoT � VVC

1 Introduction

The growing multimedia portfolio, including big data

processing, cloud computing, and the Internet of things

(IoT) [1], has a direct impact on our lifestyle. Multimedia

IoT (M-IoT) is considered as a major network technology

enabling the interconnection and interaction between

humans, health centers, industries, and objects like cam-

eras, transport, and sensors [1, 2]. In addition, M-IoT

systems combine the networking technologies for computer

vision, image processing, and connectivity. Yet, they can

be used in driving assistance, surveillance such as crime

and fire detection, and remote sensing such as high-speed

object tracking [3]. Real-world multimedia applications,

& Soulef Bouaafia

soulef.bouaafia@fsm.rnu.tn

Randa Khemiri

randa.khemiri@gmail.com

Seifeddine Messaoud

seifeddine.messaoud@fsm.rnu.tn

Olfa Ben Ahmed

olfa.ben.ahmed@univ-poitiers.fr

Fatma Ezahra Sayadi

sayadi_fatma@yahoo.fr

1 Laboratory of Electronics and Microelectronics, Faculty of

Sciences of Monastir, University of Monastir, Monastir,

Tunisia

2 Higher Institute of Computer Science and Multimedia of

Gabes, University of Gabes, Gabes, Tunisia

3 XLIM-CNRS, Bât SP2MI, University of Poitiers, 11 Bd

Marie et Pierre Curie, 86962 Chasseneuil Cedex, France

4 Laboratory of Networked Objects Control and

Communication Systems, National Engineering School of

Sousse, University of Sousse, Sousse, Tunisia

123

Neural Computing and Applications (2022) 34:14135–14149
https://doi.org/10.1007/s00521-021-06491-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0657-6900
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06491-9&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06491-9


including smart industry 4.0 and agriculture 4.0, smart

traffic monitoring, smart cities, smart homes, smart health,

and smart environment with intelligent surveillance sys-

tems [3], are illustrated in Fig. 1. However, several issues

such as interoperability, security, data size, reliability,

storage, and computational capacity need to be well

resolved to process multimedia data [4].

Compared to traditional IoT, M-IoT has powerful

functionality such as fast and reliable data delivery.

Therefore, it imposes high quality of service (QoS)

requirements and demands efficient network architecture.

In this context, quality of experience (QoE) represents the

perspective of the end user’s QoS. QoE can be depicted as

objective or subjective. The users’ objective QoE is diffi-

cult to measure and varies considerably according to the

requirements of M-IoT devices (bigger memory, higher

computational power, more power-hungry with higher

bandwidth, etc.). However, service providers concern with

the subjective QoE to evaluate the network mean opinion

score (MOS) [5]. Multimedia data (audio, image, video,

etc.) pose several challenges for transmitting, storing, and

sharing data, especially their processing [6]. Furthermore,

M-IoT processing requires efficient feature extraction,

event processing, encoding/decoding, energy-efficient

computing, QoS, and QoE [7].

As emerging technologies have rapidly evolved, multi-

media services and video applications have grown

tremendously. Higher image resolution (4K, 8K), espe-

cially for video games and monitoring tasks, is needed to

satisfy the QoS specifications of end users. In traditional

multimedia encoding methods, data are compressed only

one time and decoded in every playing time. M-IoT

devices are more concerned with uploading the data in

uplink transmission. The latter poses challenges on com-

putationally powered constrained M-IoT devices. There-

fore, versatile video coding (VVC) which is a powerful

multimedia encoding/decoding technique has been widely

adopted. VVC [8] is the new generation video coding

developed in July 2020, by the joint video experts team

(JVET), as a successor of the high-efficiency video coding

(HEVC) [9]. As the next standard for sophisticated video

coding technology, VVC allows up to 30% for BD rate

savings while maintaining the same quality as HEVC.

Although VVC aims to maintain high-quality compressed

video with additional encoding features, these are still

compression artifacts that can lead to lower QoE. Hence,

the QoE of VVC compressed video needs to be improved.

On the other hand, VVC adopts the block coding and the

quantization structure; many different forms of distortion

still exist, such as blocking artifacts, blurring, and ringing

artifacts. The blocking artifacts affect the visual quality.

While these distortions are permanent and cannot be

removed entirely, special filters can be used to reduce

them. For example, loop filters play an important role in

reducing artifacts problems and in improving video and

image qualities.

Unlike HEVC, in-loop filtering techniques [i.e., de-

blocking filter (DBF), sample adaptive offset (SAO), and

adaptive loop filter (ALF)] are applied in the VVC stan-

dard. These filters remove the video compression artifacts

and enhance the visual quality of the reconstructed video.

Indeed, the DBF purpose is designed with the use of dis-

continuity-based smoothing filters to minimize artifacts

along block boundaries [10, 11]. In order to reduce ringing

artifacts through compensation, SAO is used as a filter

added after DBF, which applies shifts to samples based on

the encoder lookup table and analyzes signal amplitudes

using a histogram [12]. ALF is the latest loop filtering

considered as a new feature in VVC. ALF reduces distor-

tions between reconstructed and original images [13].

Although these conventional in-loop filtering can relieve

specific artifacts, it is difficult to overcome the complex

distortion introduced by video compression. To meet this

challenge, powerful deep learning approaches have been

used. Among these techniques, convolutional neural net-

work (CNN) is the most robust and efficient processing

method for recognizing and analyzing images and videos

[14–16].

Several CNN-based filtering approaches for HEVC and

VVC standards have been proposed for video quality

enhancement [17, 18]. These approaches using CNN-based

in-loop filtering and post-processing are proposed to reduce

visual artifacts and to achieve high performance. Indeed,

regarding the challenges of 5G and M-IoT technologies,

such as low latency cost, high speed rate, and high video
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and image resolution quality, the VVC original loop fil-

tering became insufficient to meet resolution requirement

of M-IoT-based applications. To address these critical

issues, QoE must be considered and improved in order to

ensure QoS for end users [3].

In this context, we propose a deep CNN-based in-loop

filtering approach, denoted as the wide-activated squeeze-

and-excitation deep convolutional neural network (WSE-

DCNN). The proposed approach provides new powerful in-

loop filtering without exploiting traditional ones (DBF,

SAO, ALF) for the VVC standard. Indeed, the main goal is

to effectively remove compression artifacts and enhance

the compressed video quality. The proposed method

improves the QoE of end users. The contribution of this

paper is summarized as follows:

• We propose a WSE-DCNN framework-based aware

quality system for the M-IoT context.

• We implement the proposed scheme into VVC stan-

dard, which achieves coding gains accordingly for

random access configuration.

• We adapt the M-IoT scenario-based smart city context

in which QoE of video quality is improved.

The remainder of this paper is organized as follows: Sect. 2

presents the related work, and Sect. 3 introduces the pro-

posed M-IoT scenario. Then, the proposed deep CNN-

based in-loop filtering in VVC standard is defined in

Sect. 4. Next, we evaluate the proposed method in Sect. 5.

Finally, Sect. 6 concludes the paper and opens the same

perspectives.

2 Related work

In this section, we start by briefly describing several

existing works related to multimedia data computing in IoT

for video coding. Then, we will present deep CNN-based

in-loop filtering methods.

2.1 Video coding for M-IoT

M-IoT poses several challenges to identify data transmis-

sion methods that may have reduced latencies for real-time

processing, while ensuring QoS, QoE, and flexible data

sizes to meet bandwidth limitations and to reduce power

consumption. To effectively reduce data transmission and

improve video quality, video compression is the most

interesting module to deal with in this field.

Video compression is therefore necessary for an effi-

cient transmission of video data via band-limited Internet.

This need was the most felt during the COVID-19 pan-

demic where data traffic is used for e-learning, video

conferencing, and real-time surveillance. Lee et al. [19]

proposed an encoding algorithm using HEVC for com-

pressing high video quality with 4K and 8K resolutions.

The fast proposed algorithm achieves better performances

in terms of computational complexity and bit rate. In [20],

an IoVT platform is developed which combines HEVC and

H.264/advanced video coding (AVC) for reliable video

streaming in real time. Meanwhile, in the mHealth context,

video compression is considered as the key technology and

therefore has been widely used for real-time medical video

communications in a mHealth environment. With regards

to healthcare application, Panayides et al. [21] studied

VVC and AV1 (AOMedia Video 1) video encoding in

mHealth video communication scenarios. In [22], a com-

parative study between HEVC and VVC was presented in

the context of video telehealth systems. The obtained

results prove that VVC requires a BD rate of up to 40%,

with respect to a high quality in full high definition (FHD)

video. On the other hand, Alarifi et al. [23] proposed a

novel hybrid cryptosystem for secure streaming of HEVC

in IoT multimedia applications.

However, these aforementioned methods are still limited

in terms of QoE and QoS to be adapted to the new gen-

eration of wireless networks. The latter could usher in new

immersive experiences, such as virtual reality (VR) and

augmented reality (AR).

2.2 Deep learning-based video coding

Recently, deep learning (a branch of artificial intelligence)

has seen great success in computer vision tasks [24, 25],

especially for video encoding [26–28]. Indeed, deep neural

networks have been adopted to improve coding tools,

including intra- and inter-prediction, transformation,

quantization, and loop filtering for HEVC and VVC stan-

dards. Regarding the HEVC, Bouaafia et al. [28] proposed

a machine learning-based HEVC complexity reduction in

the inter-prediction process. The proposed algorithm

achieves good RD complexity performances. Additionally,

for intra-coding context, a fast algorithm based on CNN to

improve HEVC intra-coding performance is introduced in

[29]. With regards to in-loop filtering in HEVC, Pan et al.

[30] proposed an in-loop filtering using an enhanced con-

volutional neural network (ED-CNN) to replace DBF and

SAO, in order to eliminate artifacts. The suggested

scheme achieved 6.45% BD rate reduction and 0.238 dB

PSNR gains. Variable-filter-size residue learning convolu-

tional neural network (VRCNN) was proposed in [31] as a

new technique for both DBF and SAO in intra-coding

HEVC. The simulation results show that the proposed

technique achieves a BD rate savings of 4.6%.

For VVC standard, Ma et al. [32] developed a new CNN

model, MFRNet, as a way to improve loop-through filter-

ing and post-processing. The proposed technique was
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integrated into VVC test model to remove visual artifacts

and enhance video quality. Furthermore, an in-loop filter-

ing-based dense residual convolutional neural network

(DRN) for VVC was proposed applied after DBF, and

before SAO and ALF [18]. To reduce CU partition com-

plexity, the fast intra-CU coding technique of H.266/VVC

is implemented based on the enhanced DAG-SVM classi-

fier model [33]. Experimental results show that the pro-

posed model reaches 54.74% of encoding time. Therefore,

Park et al. suggested a lightweight neural network (LNN)

based on a fast decision algorithm to eliminate redundant

VVC block partitioning [34]. The proposed model achieves

a trade-off between encoding complexity and compression

performance. However, these approaches do not take into

account a QoE in VVC standard in an M-IoT context.

In this context, we propose an in-loop filtering based on

wide-activated squeeze-and-excitation deep CNN (WSE-

DCNN) approach to enhance VVC video quality and

achieve coding gains.

3 Proposed M-IoT scenario-based
architecture for multimedia data

Without loss of generality, we propose an M-IoT scenario

in the context of smart city, as illustrated in Fig. 2. It

consists of a set of M-IoT devices, like cameras and mul-

timedia devices, that are capable to acquire multimedia

contents from the real and physical word. After that, the

sensed multimedia data are sent to the centralized cloud

computing for processing, via the network layer, using

different transmission technologies such as LP-WAN [35].

M-IoT devices are more concerned with uploading data in

uplink transmission, which poses challenges for con-

strained computational M-IoT devices. Several metrics can

be considered, in this step, like the delay, jitter, and packet

loss rate. Our interest is shifting to central computing, such

as M-IoT data compression and encoding/decoding.

After M-IoT data acquisition step, data are compressed

once and decoded whenever played. Traditionally, video

encoding/compression is achieved by utilizing spatial and

temporal redundancies. In this context, video quality is

considered as the potential challenge in the VVC standard,

that must be improved in this phase, especially when the

huge collected multimedia data are structured/unstructured,

with high velocity, and with different resolutions. There-

fore, the QoE, depending on the video quality perfor-

mances, is denoted as the metric that should be maximized.

Based on the modeling, given in [36], the QoE is modeled

considering the bit rate (BR) as formulated in (1).

QoEBR ¼ a� logðBRÞ þ b ð1Þ

where a and b denote coefficients determined during the

experiment. However, this parameter, just like the PSNR

metric, will also be used for the proposed WSE-DCNN-

based in-loop filtering to evaluate video quality.

4 WSE-DCNN-based in-loop filtering
for VVC-based M-IoT

The proposed WSE-DCNN framework is integrated into

VVC standard, which replaces the original VVC in-loop

filter module, as shown in Fig. 3. The main purpose of this

proposed approach is to enhance the visual quality of the

reconstructed frame while maintaining coding gains. The

rate distortion optimization (RDO) technique is applied in

order to confirm whether or not the proposed loop filter

based on WSE-DCNN is used at each coding unit (CU).

The RDO metric is given then by Eq. (2).

J ¼ Dþ kR; ð2Þ

where D represents the distortion between the original and

the reconstructed frame, R indicates the coding bits needed,

and k is the Lagrange multiplier controlling the trade-off

between D and R. To avoid a reduction in RDO efficiency,

the coding tree unit (CTU) level on/off control is applied.

The frame level filtering would be shut off to prevent over-

signal, if the enhancement quality is not worth to cost the

signaled bits. For each CTU, the CTU control flag shall be

enabled when RDO performance reaches a better quality of

the filtered CTU, otherwise the flag will be disabled.

The concept of the proposed architecture is illustrated in

Fig. 4. The proposed architecture is shared by luma (Y) and

two chroma (U and V), so the three components will be

filtered simultaneously. The proposed WSE-DCNN model

consists of six inputs, three denoting the YUV reconstructed

and the three others include the quantization parameter QP

and the coding unit (CU) for luminance and chrominance.

Meanwhile, these inputs are first normalized to provide

better convergence in the learning phase and then fed to a

WSE-DCNN-based in-loop filtering. Hence, the three (Y/U/

V) reconstructions are normalized to [0, 1] based on the

highest bit depth value. This implies that the normalized

values (P0ðx; yÞ) are achieved by Formula (3).

P00ðx; yÞ ¼ P0ðx; yÞ
1\\B� 1

; x ¼ 1; . . .;W ; y ¼ 1; . . .;H

ð3Þ

where the bit depth is denoted by B, P00ðx; yÞ is the nor-

malized value in normalized Y/U/V at (x, y), and W and

H are the width and the height of the reconstructed frame,

respectively.
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Various quantization parameters (QPs) contribute to a

variety of reconstructed video quality. This makes it easier

to use a single set of parameters to fit reconstructions with

different qualities. QP should be normalized to QPmap

following Formula (4).

QPmapðx; yÞ ¼ QP

63
; x ¼ 1; . . .;W ; y ¼ 1; . . .;H ð4Þ

Regarding the other inputs, there are CU partition of the

luma (Y) and chroma (UV) components. Since the blocking

artifacts are mainly caused by CU block partition. The CU

block partition is converted into coding unit maps

(CUmaps) and normalized, and then it is considered as an

input to the network. For example, for each CU in each

frame, the boundary position is filled with two and the

other positions are filled with one. However, two CUmaps

can be obtained, one as Y � CUmap for luma and the other

denoted by UV � CUmap for chroma.

As shown in Fig. 4, the processing of WSE-DCNN-

based in-loop filtering has three levels. At the first level, the

three components of YUV are processed through WSE

blocks, and each one of them is fused with its corre-

sponding CUmap. In addition, CUmap would be multiplied

by its own corresponding channel before being concate-

nated with feature maps. In the second level, the feature

maps of different channels are connected together and then

processed by several WSE blocks. At this level, the QPmap
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is also concatenated. Finally, in the last level, the three

channels are processed separately again to generate the

final residual image. Then, the original input will be

implemented as a residual CNN. The WSE module is

considered to be the basic unit of the WSE-DCNN-based

in-loop filtering proposed in the VVC standard and shown

in Fig. 4. Additionally, this basic unit is composed of the

wide-activated convolution [37] and the squeeze-and-ex-

citation (SE) [38] operation. The wide-activated convolu-

tion performs very well in super-resolution and noise

reduction tasks. It consists of a wide 3� 3 convolution

followed by ReLU (rectified linear unit) [39, 40] activation

function and a narrow 1� 1 convolution. Next comes the

SE operation which is the most technical operation used to

weight each convolutional layer. It can use the complex

relationship between different channels and generates a

weighting factor for each channel.

The WSE unit consists of the following phases as

depicted in Algorithm 1, given a feature map X with shape

H �W � C, where C means channel amounts:

GlobalAvgPool

FC

FC

ReLU

Sigmoid

SE
 U

ni
t 

ReLU

Wide Conv
3x3

Conv 1x1

X
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• A wide 3� 3 convolution followed by ReLU and a

convolution layer with kernel size is 1� 1. Given Y1 is

the channel defined in Algorithm 1 line 4 and Y2 is the

output of the second convolution layer given in line 5.

• Each channel obtains a value according to the squeeze

operation using global average pooling (GAP) Y3ðkÞ as
shown in Algorithm 1 line 10.

• The excitation operation is described by two fully

connected layers followed by ReLU and sigmoid (r)
activation functions, respectively. As shown in Algo-

rithm 1 line 13, Y4 is the first fully connected layer

followed by ReLU, which is refined by a certain ratio r.

Then, the second fully connected layer is followed by

the sigmoid activation function which is denoted by Y5
in line 14, and it gives each channel a smoothing gating

ratio in the range of [0,1].

• According to WSE function, each Y2 channel is

multiplied by the gating ratio r, as defined in line 19.

• Finally, when the number of input is equals to the

output channels C, a skip connection will be added

directly from input to output to learn the residue.

Otherwise, there is no skipped connection.

5 Experimental Results

In this section, we evaluated the performances, in terms of

RD performance, and QoE of the proposed WSE-DCNN-

based in-loop filtering scheme in VVC standard. Then, a

comparison to the state of the art is made.
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5.1 Dataset collection

In this work, we exploited the public large video dataset

BVI-DVC [41], especially developed for training the deep

video compression methods. According to the work cited in

[41], all selected sequences are progressive-scanned at a

spatial resolution of 3840� 2160, with frame rates ranging

from 24 fps to 120 fps, a bit depth of 10 bit, and in YCbCr

4:2:0 format. All of them are truncated to 64 frames

without scene cuts, using the segmentation method

described in [42]. To further increase data diversity and

provide data augmentation, the 200 video clips were spa-

tially down-sampled to 1920� 1080, 960� 540, and

480� 270 using a Lanczos third-order filter. The BVI-

DVC dataset includes 800 video sequences with different

contents at four different resolutions. Table 1 summarizes

the key features of BVI-DVC video training dataset used in

this study.

In this context, we selected 80% video sequences for the

training model and 20% for validation from the BVI-DVC

video training dataset. These sequences are compressed by

VVC reference software (VTM-4.0) [43] with QP values

(22, 27, 32, 37) under random access configuration. For

each QP, the reconstruction video images, including luma

and chroma components, and its corresponding ground

truth are divided into 64� 64 patches, which were selected

in a random order.

5.2 Deep model training, testing, and evaluation

The proposed deep learning model is trained offline in a

supervised learning manner. During training phase, the

TensorFlow GPU [44] is used as a deep learning frame-

work to train the proposed model. The training parameters

used in our experiments are summarized as follows: The

batch size is set to 128, the training epochs to 200, the

learning rate to 0.001, and weight decay of 0.1 for every 50

epochs. The Adam [45] optimizer is used to train our deep

model. The training platform uses windows 10 OS with

Intel�core TM i7-3770 @3.4 GHz CPU and 16 GB RAM

and an NVIDIA GeForce RTX 2070 GPU.

The mean square error (MSE) is applied as a loss

function between the ground truth image and the recon-

structed image [35]. Equation (5) defines the MSE loss

function.

LðhÞ ¼ 1

N

XN

i¼1

jjFðYi; hÞ � Xijj22 ð5Þ

Let Xi be the ground truth of the proposed model, where

i 2 f1; . . .;Ng. The output of the WSE-DCNN model is

denoted by Fð�Þ, where Yi represents the compressed

images, i 2 f1; . . .;Ng, and h is the parameter set of the

proposed framework. The loss function has indeed con-

verged on a minimum value; it means that our model is

well trained. To prove the efficiency of the proposed WSE-

DCNN network, Fig. 5 shows the MSE loss and the vali-

dation peak signal-to-noise ratio (PSNR) during training

process. The PSNR is defined by Eq. (6) [46]. As we can

see, the MSE loss function performs well in terms of the

convergence’s performance.

PSNR ¼ 10� log
ð2B � 1Þ2

MSE
ð6Þ

where B is the number of bits per sample of the video

sequence and the MSE is defined in Eq. (5).

In the testing phase, our proposed WSE-DCNN model is

integrated into VVC standard to replace the traditional in-

loop filtering method. All simulations are tested under the

VVC JVET common test conditions (CTC) [47] using

random access configuration at QP values (22, 27, 32, 37).

The (VTM-4.0) with traditional filters enabled is used in

our experiments. From VVC CTC, 17 test sequences were

used for performance evaluation, including class A1

(3840� 2160), class A2 (3840� 2160), class B

(1920� 1080), class C (832� 480), and class D

(416� 240). To evaluate the coding performance of the

proposed model, Bjontegaard delta bit rate (BD rate) [48]

is applied as an assessment metric.

5.3 WSE-DCNN evaluation

The RD performance results of the proposed model com-

pared to the original VVC standard are shown in Table 1.

Columns Y, U, and V in the table show the BD rate of Y, U,

and V components, respectively. Ratios of the encoding

and decoding time are denoted by Tenc and Tdec of the

proposed model compared to the original one. The

encoding time is defined by Eq. (7), where the coding

complexity of the proposed method is defined by TPro and

the coding complexity of the original VVC is denoted by

TOrig.

Table 1 Key features of BVI-DVC video training database [41]

Features BVI-DVC [41]

Image or videos Video

Sequences number 800

Images number in each video 64

Max resolution 2160 p

Min resolution 270 p

Bit depth 10

Various textures Yes
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T ¼ TPro
TOrig

� 100% ð7Þ

As shown in Table 2, the proposed scheme achieves better

mean coding gains when integrated into VVC with 2.85%

BD rate savings for luma Y component under random

access configuration, while achieving 8.89% and 10.05%

BD rate reduction for both chroma U and V components.

The proposed scheme offers significant RD compression

performance mainly in U and V chrominance for all test

sequences. It is also clear that the coding performance

differs for several sequences. This means that the proposed

model is impacted by video sequence information. More-

over, the proposed model performs well in terms of coding

gains for high motion or rich texture video sequences, as

well as Tango2, DaylightRoad2, Kimono2, RaceHorses,

etc. In summary, the proposed technique outperforms bet-

ter than the VVC with traditional in-loop filtering algo-

rithm in terms of RD performance.

Regarding complexity reduction, the time differences

between the proposed VVC algorithm and the original

VVC standard for encoding and decoding are summarized

in Table 2. NVIDIA GeForce RTX 2070 GPU is used to

measure the encoding and decoding time of the proposed

Table 2 Performance

evaluation of the proposed

model under random access

configuration

Class Sequences Y (%) U (%) V (%) Tenc (%) Tdec (%)

Class A1 Tango2 - 2.89 - 10.02 - 11.35 147 939

4K Campfire - 1.22 - 2.75 - 10.28 119 1537

Class A2 CatRobot1 - 1.89 - 10.76 - 8.03 151 975

4K DaylightRoad2 - 1.47 - 12.36 - 2.55 149 875

Class B Kimono2 - 0.51 - 8.13 - 20.63 82 1524

1080p ParkScene - 4.18 - 9.25 - 12.94 125 1947

Cactus - 2.36 - 12.27 - 9.70 117 1154

BasketballDrive - 2.53 - 4.83 - 7.82 107 1981

BQTerrace 0.11 - 2.88 0.63 116 1619

Class C BasketballDrill - 3.84 - 7.01 - 9.97 137 1312

WVGA BQMall - 3.89 - 11.48 - 10.92 118 1137

PartyScene - 4.65 - 9.69 - 9.63 115 1112

RaceHorses - 1.35 - 10.70 - 13.66 94 1079

Class D BasketballPass - 3.40 - 8.21 - 7.79 125 4628

WQVGA BQSquare - 5.27 - 4.39 - 11.44 137 2001

BlowingBubbles - 4.15 - 8.52 - 5.19 115 2045

RaceHorses - 5.08 - 18.04 - 19.74 114 2164

Overall 2 2.85 2 8.89 2 10.05 122 1648.76

Bold values indicate the mean of all performance values for all classes

Fig. 5 Training MSE loss and validation PSNR
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filtering technique. From the table, we can observe that on

average the encoding time overhead is 122% (for all test

sequences: class A1 to class D), while the decoding time

overhead is 1648.76% compared to the original VVC

algorithm under random access configuration. The pro-

posed scheme greatly influences the decoding time because

of the forward operation in network and CPU-GPU mem-

ory copy operation. Therefore, we note that the proposed

model achieves a little increase in encoding time compared

to the original VVC algorithm.

To demonstrate the effectiveness of our proposed fil-

tering model integrated into the VVC standard, PSNR is

also used as a quality measure, which is calculated by the

following equation [46]:

PSNRYUV ¼ 6� PSNRY þ PSNRU þ PSNRV

8
ð8Þ

The BQSquare video sequence encoded with QP equal

to 37 under random access configuration is deployed in

order to show the subjective visual quality and to further

verify the effectiveness of the proposed model. Figure 6

shows the comparison of video subjective quality. It is

clear that frame details are blurry when being compressed

by the original VVC standard, but become clearer after

being filtered by the proposed model. In fact, the proposed

model effectively eliminates blocking artifacts as well as

ringing artifacts and blurring, which improves visual

quality, compared to the VVC standard with/without tra-

ditional in-loop filtering. Therefore, we compare the QoE

variation with respect to bit rate of the proposed technique

with the original VVC for class A1 to class D using random

access configuration at four QPs, as shown in Fig. 7. It is

remarkable that the suggested technique meets the QoE

requirements of the end users, especially in high-resolution

video sequences, as well as in class A1, class A2, and class

B.

We also compared the proposed approach with other

filtering models based on CNN network. Table 3 shows the

comparison of encoding performance with other approa-

ches [18, 49–51] in terms of reducing RD complexity under

random access using VVC CTC. In [18], the authors pro-

posed an in-loop filter algorithm-based dense residual

convolutional neural network (DRN) to improve the

reconstructed video quality. This network is integrated

after DF, and before SAO, and ALF into VVC VTM-4.0

test model. This model is trained using the DIV2K dataset

[52]. Moreover, a CNN-based in-loop filter algorithm is

proposed for both intra- and inter-pictures placed before

ALF with DBF and SAO are disabled [49]. This method is

implemented into VVC VTM-3.0 standard [49]. Yet, in

[50], the authors proposed a CNN-based loop filter placed

in all traditional filters in VVC which is trained based on

the DIV2K [52] dataset and implemented in VTM-5.0. In

addition, Huang et al. [51] proposed a novel multi-gradient

convolutional neural network-based in-loop filter for VVC

to replace the original DBF and SAO filters. This network

is trained based on the DIV2K dataset [52] and imple-

mented in VTM-3.0.

As shown in Table 3, the proposed WSE-DCNN

framework integrated into VVC standard achieves best RD

performance for both luminance and two chrominance for

Fig. 6 Ablation study.

Subjective visual quality

comparison (the 12th frame of

BQSquare with QP ¼ 37: a
original; b VVC without in-loop

filtering (PSNR ¼ 31:17 dB); c
VVC (PSNR ¼ 31:37 dB); d
VVC-based proposed model

(PSNR ¼ 31:68 dB)
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Fig. 7 Comparison of QoE variation with respect to bit rate
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all test sequences from class A1 to class D, as compared to

previous proposed approaches. These results imply that the

proposed model performs well in terms of both objective

and subjective visual qualities. Regarding the computa-

tional complexity, the proposed method outperforms other

approaches in terms of encoding time for class A2. Com-

pared with related works in [18, 49, 50], the methods

proposed exceed our proposed scheme in terms of com-

plexity reduction. In conclusion, the suggested method

leads to efficient performance in almost all test sequences

in terms of RD performance, demonstrating the efficiency

and universality of the WSE-DCNN solution compared to

other methods, whereas the computational complexity of

VVC standard is still limited.

For further evaluation, we have provided RD perfor-

mance curves of the suggested model-based in-loop filter-

ing versus the other three methods under random access

configuration with four QPs for class A1 to class D. Fig-

ure 8 shows the comparison in terms of RD performance

(PSNR based on bit rate). By comparing the associated

approaches, we can conclude that the proposed filtering

model considerably improves the RD performance of the

VVC standard. Our proposed in-loop filtering model works

well especially in high-resolution video sequences, as well

as in class A1, class A2, and class B.

6 Conclusion

In this paper, we proposed a deep learning algorithm-based

VVC standard to enhance visual video quality while

improving the user’s QoE. The proposed WSE-DCNN

framework is implemented into VVC standard to replace

in-loop filtering in order to alleviate the coding artifacts,

such as ringing, blocking, and blurring. The proposed VVC

filtering technique is used in the M-IoT scenario-based

smart city context to contribute to the centralized cloud that

attempts to meet the required user’s video quality. Com-

pared to the traditional VVC-based filters, simulation

results prove that the proposed framework achieves the

best compression performance in terms of objective and

subjective quality, with a BD rate savings about �2:85%,

�8:89%, and �10:05% for Y, U, and V components,

respectively. Therefore, this has proven the effectiveness of

the proposed technique for video quality enhancement.

Future works include the improvement in the VVC

Table 3 Coding performance

comparison with other

approaches

Class Schemes Y (%) U (%) V (%) Tenc (%) Tdec (%)

Class A1 [18] - 1.27 - 3.38 - 5.10 106 6967

4K [49] 0.87 0.12 0.22 149 81,711

[50] 0.18 0.63 - 2.95 138 123,657

[51] - 1.10 - 0.30 0.31 – –

Proposed model 2 2.05 2 6.38 2 10.81 133 1238

Class A2 [18] - 2.21 - 5.74 - 2.88 106 6435

4K [49] - 1.12 - 0.52 - 2.11 142 81,263

[50] - 0.98 7.16 - 3.34 138 121,571

[51] - 1.94 0.89 - 2.24 – –

Proposed model 2 1.68 2 11.56 2 5.29 150 925

Class B [18] - 1.13 - 4.73 - 4.55 106 7011

1080p [49] - 0.83 - 0.47 - 1.20 143 69,595

[50] 0.64 - 4.16 - 3.67 149 154,962

[51] - 2.51 - 1.28 - 0.89 – –

Proposed model 2 1.89 2 7.47 2 10.09 109 1645

Class C [18] - 1.39 - 3.63 - 4.36 106 8110

WVGA [49] - 1.76 - 3.64 - 6.80 122 46,645

[50] - 1.17 - 4.38 - 1.61 129 122,434

[51] - 4.03 - 4.17 - 5.62 – –

Proposed model 2 3.43 2 9.72 2 11.05 116 1160

Class D [18] - 1.39 - 1.96 - 3.08 105 4217

WQVGA [49] - 2.95 - 3.27 - 7.35 123 32,155

[50] - 3.13 - 6.26 - 5.15 122 104,265

[51] - 5.33 - 4.11 - 5.83 – –

Proposed model 2 4.47 2 9.79 2 11.04 122 2709
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Fig. 8 RD performance curves of the proposed model compared to the other three approaches
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computational complexity (time encoding and time

decoding) [23].
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