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Abstract: Antioxidants can be used as radioprotectants to reduce DNA damage due to exposure to
radiation that could result in malignancies, including lung cancer. Mortality rates are consistently
higher in lung cancer, which is usually diagnosed at later stages of cancer development and progres-
sion. In this preliminary study, we examined the potential of an antioxidant formulation (AOX2)
to reduce DNA damage using a cell model of human normal bronchial epithelial cells (BEAS-2B).
Cells were exposed to γ-irradiation or smoke-related hydrocarbon 4[(acetoxymethyl)nitrosamino]-1
(3-pyridyl) 1-butanone (NNKOAc) to induce DNA damage. We monitored intracellular reactive
oxygen species (ROS) levels and evidence of genotoxic damage including DNA fragmentation ELISA,
γ-H2AX immunofluorescence, and comet assays. Pre-incubation of the cells with AOX2 before
exposure to γ-irradiation and NNKOAc significantly reduced DNA damage. The dietary antioxidant
preparation AOX2 significantly reduced the induction of the tumor suppressor protein p53 and DNA
damage-associated γ-H2AX phosphorylation by radiation and the NNKOAc treatment. Thus, AOX2
has the potential to act as a chemoprotectant by lowering ROS levels and DNA damage caused by
exposure to radiation or chemical carcinogens.

Keywords: cancer; chemoprevention; γ-irradiation; carcinogen; DNA damage; flavonoids

1. Introduction

Lung cancer is the most diagnosed and leading cause of cancer-related death for both
men and women [1,2]. Some environmental and lifestyle factors, such as mutagenic chemi-
cals, ionizing radiation (IR), endogenous reactive oxygen species (ROS), and unresolved
intermediates of physiologic topoisomerase and nuclease reactions, are linked to the initia-
tion of lung cancer [3]. In addition, cigarette smoking contributes to 85% to 90% of lung
cancer cases [4]. Low-dose ionization irradiation can also lead to significant lung and skin
damage through the activation of transforming growth factor-beta (TGF-β) [5]. Radiation
and carcinogens can induce single-strand breaks (SSBs), double-strand breaks (DSBs), as
well as DNA adducts and base lesions [6]. Of these forms of DNA damage, DNA DSBs are
the most dangerous, triggering cancer-causing chromosomal breaks, translocations, and
other chromosome abnormalities [3]. If sufficient in number, DNA DSBs can result in cell
death or the production of inflammatory cytokines that injure tissues and contribute to
organ pathologies [7,8]. Among lung cancer treatments, ionizing radiation is often the most
effective in suppressing the growth of non-small cell lung cancer [9,10].

Cigarette smoke contains a pro-carcinogenic hydrocarbon 4-[(methyl)nitrosamino]-1-
(3-pyridyl)-1-butanone (NNK), which is converted into reactive metabolites by cytochrome
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P-450 enzymes. These metabolites can covalently bind to DNA, creating DNA adducts that
cause DSBs [11]. Since NNK requires α-hydroxylation for metabolic activation, a derivative
of NNK, 4-[(acetoxymethyl) nitrosamino]-1-(3-pyridyl)-1-butanone (NNKOAc), is com-
monly used in cell culture to simulate in vivo xenobiotic metabolism [12,13]. The detection
of DSB by ataxia telangiectasia mutated (ATM) is the initial step in the DNA damage
response (DDR). Activation of ATM results in the phosphorylation of the histone variant
H2AX on Ser-139 (referred to as γ-H2AX) within the chromatin adjacent to the DNA DSB,
which promotes the DDR through the DNA damage sensor Mre11/Rad50/Nbs1 (MRN)
complex, as well as the accumulation of p53-binding protein-1 (53BP1) [14]. As well, the
DDR involves the activation of checkpoint kinases and the tumor suppressor transcription
factor p53 to facilitate cell-cycle arrest, which allows time for DNA repair, after which the
cell cycle returns to normal if the DNA damage is not too extensive [15].

Radiation and many other carcinogens also damage DNA by generating reactive oxy-
gen species (ROS) that induce DNA–DNA and protein–DNA adducts, intra/inter-strand
crosslinks, ssDNA breaks, and base damage [16]. Dietary antioxidants have the potential
to lower the risk of oxidative damage-mediated cancer development [17–20]. Plant-food
flavonoids alone or in combinations with antioxidative vitamins have been shown to protect
normal human bronchial epithelial cells (BEAS-2B) from NNKOAc-induced carcinogene-
sis [13,21]. For example, curcumin (Cur) and vitamin E quench ROS produced by exposure
to acute benzo[a]pyrene (BaP) in lung epithelial cells [22]. Administration of specific plant
natural substances inhibits carcinogenesis in healthy and high-risk individuals; thus, cer-
tain cancers are preventable through dietary supplements of antioxidants [23]. Dietary
supplementation of flavonoids helped genoprotection when male Swiss mice were exposed
to X-rays [24]. Flavonoids regulate all phases of the intricate process of carcinogenesis,
which is linked to inflammation. Thus, flavonoids and other phytochemicals have been
proposed to be used in the overall cancer management framework of predictive, preventive,
and personalized medicine [25]. We investigated whether an antioxidant formulation
called AOX2 that contains vitamin C (ascorbic acid; AA), vitamin B9 (folate), vitamin
B12 (cyanocobalamin), vitamin E (α-tocopherol), α-lipoic acid, coenzyme Q10 (CoQ10),
astaxanthin, zeaxanthin, quercetin (Q), and sodium selenite could help develop chemopro-
tective interventions for ROS-induced DNA damage caused by diagnostic scans employing
ionizing radiation and smoke-related carcinogens by examining if it could protect against
DNA damage caused by low-dose γ-radiation and the chemical carcinogen NNKOAc in
BEAS-2B cells.

2. Materials and Methods
2.1. Chemicals, Kits, Antibodies, and AOX2 Formulation

LHC-9 growth medium for BEAS-2B cells was purchased from Thermo Fisher Scien-
tific (Chelmsford, MA, USA). A COMET SCGE assay kit for comet assay was purchased
from ENZO (New York, NY, USA). For γ-H2AX immunofluorescence studies, primary
antibody anti-H2AX (S139) (#05-636) was obtained from Millipore (Etobicoke, ON, Canada)
and secondary antibody Alexa Flour 594 donkey anti-mouse (#A-21203) was purchased
from Life Tech (Carlsbad, CA, USA). p-p53 (#9286), γ-H2AX (#9718), and β-actin (#12620)
were purchased from Cell Signaling Technology (Boston, MA, USA). 4-[(Acetoxymethyl)
nitrosamino]-1-(3-pyridyl)-1-butanone (NNKOAc) was purchased from Toronto Research
Chemicals (Toronto, ON, Canada). Ascorbic acid, folate, cyanocobalamin, α-tocopherol,
α-lipoic acid, CoQ10, astaxanthin, zeaxanthin, quercetin, sodium selenite, curcumin,
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy methyl phenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS), phenazine methosulfate (PMS), and dichlorofluorescin diacetate dye (DCFH-DA)
were purchased from Sigma-Aldrich (Oakville, ON, Canada). A cellular DNA fragmen-
tation enzyme-linked immunosorbent assay (ELISA) kit for DNA fragmentation analysis
was received from Roche Diagnostics (Berlin, Germany). The dietary antioxidant formula-
tion (AOX2) consists of ascorbic acid, folate, cyanocobalamin, α-tocopherol, α-lipoic acid,
CoQ10, astaxanthin, zeaxanthin, quercetin, and sodium selenite (2.5 µM each). Except for
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α-tocopherol, CoQ10, and sodium selenite, all of the compounds were dissolved in DMSO
to make a 100 mM stock solution. The stock solutions of cyanocobalamin, astaxanthin,
and zeaxanthin were 10 mM. Warm DMSO was used to dissolve α-tocopherol and CoQ10,
while sodium selenite was dissolved in LHC-9 medium (100 mM).

2.2. Cell Culture

BEAS-2B cells were purchased from the American Tissue Type Culture Collection
(ATCC; CRL-9609; Manassas, VA, USA) and grown in LHC-9 medium at 37 ◦C in a
humidified incubator with 5% CO2. Fibronectin (0.01 mg/mL), bovine collagen type I
(0.03 mg/mL), and bovine serum albumin (0.01 mg/mL) dissolved in LHC-9 media were
pre-coated on culture flasks (polystyrene T75) overnight. The passages (<10) were utilized
for all experimental settings after the cells were grown to around 70% confluence.

2.3. Irradiation by Gammacell Irradiator

Low dose γ-irradiation was performed at room temperature for a defined time
(1 Gy/15 s, 2 Gy/30 s, 4 Gy/60 s, 6 Gy/90 s, 8 Gy/120 s, and 10 Gy/150 s) using a
Gammacell® 3000 Elan (Best Theratronics Ltd., Kanata, ON, Canada). After irradiation of
cells, incubation was continued at 37 ◦C for a further 24 h before harvesting by trypsiniza-
tion and re-seeding the cells for all treatment.

2.4. Cell Viability by MTS Assay

The viability of BEAS-2B cells was determined as the metabolic activity using MTS
assay [21] under various treatment conditions. Preliminary experiments with various low
doses of γ-radiation (1 to 10 Gy) were performed to identify the non-cytotoxic dose for the
evaluation of antioxidants. MTS reagent was applied to each well and incubated in the dark
for 3 h. A microplate reader (Infinite® 200 PRO, TECAN, Mannedorf, Switzerland) was
used to measure absorbance at 490 nm. For each experiment, cells with DMSO medium
served as the vehicle control and MTS reagent-containing medium without cells served as
the blank.

2.5. Clonogenic Cell Survival Assay

The clonogenic cell survival assay was carried out as previously described [26]. Briefly,
BEAS-2B cells (1.0 × 105 cells/mL) were treated with 1 to 10 Gy of low dose γ-radiation for
24 h before being trypsinized and counted. They were re-seeded in a 60 mm dish, cultivated
for 21 days, and colonies were recognized as survivors and counted after staining with
0.5% crystal violet. The survival rate was estimated after normalizing the results against
equivalent non-irradiated cells.

2.6. Measurement of Intracellular ROS

BEAS-2B cell cultures were added with DCFH-DA dye, which was taken up by cells
and hydrolyzed to DCFH, which may be oxidized by ROS to yield the fluorescent product
dichlorofluorescein (DCF) [27]. After 3 h of pre-exposure to tested antioxidants, the cells
were subjected to γ-irradiation or NNKOAc for 3 h. The vehicle control consisted of cells
that only had DMSO medium (the same treatment conditions were used for all experiments).
After the treatments, the cells were mixed with a final concentration of 5 µM DCFH-DA and
incubated in the dark for 40 min. A plate reader (Infinite® 200 PRO, TECAN, Mannedorf,
Switzerland) was used to measure the fluorescence at an excitation wavelength of 485 nm
and an emission wavelength of 535 nm.

2.7. DNA Fragmentation Analysis

In BEAS-2B cells, DNA fragmentation was assessed using a cellular DNA fragmenta-
tion ELISA kit. Bromodeoxyuridine (BrdU, 10 µM) was used to label cells (1 × 105 cells/mL),
and 100 µL of BrdU-labeled cells were treated as described previously (Section 2.6). After
centrifugation at 250× g for 10 min, the cells were lysed with lysis buffer, and apoptotic
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DNA fragments in supernatants were collected for each sample. The samples (100 µL)
were then transferred to 96-well flat-bottom microplates pre-coated with anti-DNA and
incubated at 25 ◦C for 90 min. Microwave irradiation (500 W for 5 min) was used to dena-
ture the DNA, followed by the addition of 100 µL of anti-BrdU-POD conjugate solution
for an additional 90 min of incubation. This was followed by three washes with wash
buffer (1×) and the addition of 100 µL of substrate 3,3′,5,5′-tetramethylbenzidine (TMB)
solution for color development. After 5 min, the stop solution (25 µL) was added, and
the plates were read at 450 nm using a microplate reader (Infinite® 200 PRO, TECAN,
Mannedorf, Switzerland).

2.8. γ-H2AX Immunofluorescence Assay

By measuring γ-H2AX foci in BEAS-2B cells, the immunofluorescence assay was
utilized to evaluate DNA damage at the histone protein level [28]. In a 6-well plate,
1 × 105 cells were seeded on a coated coverslip and incubated for 24 h. After the treat-
ments, the cells were rinsed completely in phosphate buffered saline (PBS) and fixed with
3.7% formaldehyde before being incubated in the dark for 20 min. The cells were then
permeabilized for 15 min at room temperature with 0.5% Triton X-100 in PBS, followed
by blocking with 4% BSA for 20 min. The cells were treated for 1 h at room temperature
with the primary antibody (1:250), rinsed three times with PBS, and then incubated for
45 min with the secondary antibody (1:500). The cells were rinsed three times in PBS before
being gently put onto the slides, mounted using wet-mounting media containing DAPI
and sealed with nail polish. A fluorescence microscope was used to capture the fluorescent
images (EVOSTM FLoid Imaging System, Bothell, WA, USA).

2.9. Comet Assay

The comet assay, also known as single-cell gel electrophoresis, was used to assess DNA
damage [29]. Briefly, treated cells were mixed 1:10 (v/v) with molten low melting agarose,
and 75 µL of each sample was pipetted onto the slide and incubated for 20 min at 4 ◦C in
the dark. After 45 min in cold lysis buffer at 4 ◦C, the slides were submerged in alkaline
solution for another 30 min in the dark. After, the slides were washed in 1× TBE buffer
for 5 min and subjected to electrophoresis (1 V/cm for 10 min). The slides were soaked in
70% ethanol for 5 min, air-dried, then dyed with CYGREEN® dye (1:1000) before being
studied under fluorescence microscopy (EVOSTM FLoid Imaging System; Bothell, WA,
USA). Comet assay software (http://casplab.com/download, accessed on 15 May 2022)
was used to score the comets, and a minimum of 30 cells were quantified by measuring the
% DNA tail moment.

2.10. Western Blotting

After the treatments, BEAS-2B cells were harvested and lysed in 1 × sodium dodecyl
sulfate (SDS) lysis buffer (1 mM Tris–HCl (pH 6.8), 2% w/v SDS, 10% glycerol) on ice under
reduced conditions. The Bradford test was used to determine the total protein concentration
in each sample. On a 12% SDS-PAGE gel, 20 µg of protein samples were loaded and electro-
transferred to a polyvinylidene difluoride (PVDF) membrane (Thermo Fisher, Mississauga,
ON, Canada). The membrane was then blocked with a 5% non-fat milk solution for 1 h
at room temperature, then probed with specific primary antibodies (p-p53 and γ-H2AX
at 1:1000) for overnight incubation, washed, and probed again with respective secondary
antibodies (1:2000) for 1 h, and then developed using enhanced chemiluminescence (ECL)
based on Clarity™ and Clarity Max™ (Bio-Rad, ChemiDocTM MP, Hercules, CA, USA).
Each band’s protein expression was normalized to its respective actin protein level, and
relative protein expression was quantified for each experiment in comparison to untreated
control bands.

http://casplab.com/download
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2.11. Statistical Analysis

All the experiments were performed in triplicate (n = 3) three independent times and
analyzed by one-way analysis of variance (ANOVA) by using Tukey’s post hoc test and
two-tailed Student’s t-test by using GraphPad Prism 5 software (GraphPad software Inc.,
San Diego, CA, USA). Data were presented as mean± standard deviation (SD) and p ≤ 0.05
was significant between experimental groups.

3. Results
3.1. Assessing the Sensitivity of Normal Bronchial Epithelial Cells to γ-Irradiation

To determine the optimal γ-irradiation dose for the cell model of DNA damage, first
the MTS assay was employed to investigate the dose-dependent effects on cell viability
(Figure 1A). The doses ranging from 1 to 6 Gy of γ-irradiation did not affect the cell viability
as measured by MTS, while the doses of 8 and 10 Gy were significantly different when
compared to other doses of γ-irradiation. However, clonogenic survival, which integrates
both the ability of cells to divide post-irradiation and their survival, was significantly lower
in BEAS-2B cells treated with high doses of γ-irradiation from 6 to 10 Gy (Figure 1B). Based
on these observations, we chose 4 Gy γ-irradiation for the subsequent experiments in line
with previous studies [26].

Antioxidants 2022, 11, x FOR PEER REVIEW 5 of 16 
 

Hercules, CA, USA). Each band’s protein expression was normalized to its respective actin 
protein level, and relative protein expression was quantified for each experiment in com-
parison to untreated control bands. 

2.11. Statistical Analysis 
All the experiments were performed in triplicate (n = 3) three independent times and 

analyzed by one-way analysis of variance (ANOVA) by using Tukey’s post hoc test and 
two-tailed Student’s t-test by using GraphPad Prism 5 software (GraphPad software Inc., 
San Diego, CA, USA). Data were presented as mean ± standard deviation (SD) and p ≤ 0.05 
was significant between experimental groups. 

3. Results 
3.1. Assessing the Sensitivity of Normal Bronchial Epithelial Cells to γ-Irradiation 

To determine the optimal γ-irradiation dose for the cell model of DNA damage, first 
the MTS assay was employed to investigate the dose-dependent effects on cell viability 
(Figure 1A). The doses ranging from 1 to 6 Gy of γ-irradiation did not affect the cell via-
bility as measured by MTS, while the doses of 8 and 10 Gy were significantly different 
when compared to other doses of γ-irradiation. However, clonogenic survival, which in-
tegrates both the ability of cells to divide post-irradiation and their survival, was signifi-
cantly lower in BEAS-2B cells treated with high doses of γ-irradiation from 6 to 10 Gy 
(Figure 1B). Based on these observations, we chose 4 Gy γ-irradiation for the subsequent 
experiments in line with previous studies [26].  

 
Figure 1. The viability (A) and survival fraction (B) of BEAS-2B cells after exposure to γ-irradiation. 
The cell viability was measured using the MTS assay. The survival fraction was determined using 
the clonogenic cell survival assay, where BEAS-2B cells were incubated for 24 h after irradiation. 
Then, the cells were re-seeded into 60 mm dishes and cultured for 21 days. Colonies were stained 
with crystal violet. Experimental values presented are mean ± SD of three independent experiments 
in triplicate. One-way analysis of variance was performed with Tukey’s pairwise comparison. 
Means that share the same letter are not significantly different at p ≤ 0.05. 

3.2. AOX2 Is Not Cytotoxic at Lower Concentrations 
AOX2 had no cytotoxic effect on BEAS-2B cells up to 100 µM, but at high concentra-

tions of 250 µM and above, the cell viability reduced significantly (p ≤ 0.05) (Figure 2A). 
Curcumin caused over 20% loss of cell viability at and above 50 µM concentration (Figure 
2B). In a prior work, we found that ascorbic acid had no cytotoxic impact, but higher con-
centrations of quercetin (1 mM) were cytotoxic to BEAS-2B cells (Merlin et al., 2021). Based 
on the above observations, 25 µM of AOX2 (2.5 µM of each component), ascorbic acid, 
quercetin, and curcumin were chosen for further studies. All of the treatments were com-
pared to a DMSO control with ≤5% cytotoxicity level. 

Figure 1. The viability (A) and survival fraction (B) of BEAS-2B cells after exposure to γ-irradiation.
The cell viability was measured using the MTS assay. The survival fraction was determined using the
clonogenic cell survival assay, where BEAS-2B cells were incubated for 24 h after irradiation. Then,
the cells were re-seeded into 60 mm dishes and cultured for 21 days. Colonies were stained with
crystal violet. Experimental values presented are mean ± SD of three independent experiments in
triplicate. One-way analysis of variance was performed with Tukey’s pairwise comparison. Means
that share the same letter are not significantly different at p ≤ 0.05.

3.2. AOX2 Is Not Cytotoxic at Lower Concentrations

AOX2 had no cytotoxic effect on BEAS-2B cells up to 100 µM, but at high concentrations
of 250 µM and above, the cell viability reduced significantly (p ≤ 0.05) (Figure 2A). Cur-
cumin caused over 20% loss of cell viability at and above 50 µM concentration (Figure 2B).
In a prior work, we found that ascorbic acid had no cytotoxic impact, but higher concentra-
tions of quercetin (1 mM) were cytotoxic to BEAS-2B cells (Merlin et al., 2021). Based on the
above observations, 25 µM of AOX2 (2.5 µM of each component), ascorbic acid, quercetin,
and curcumin were chosen for further studies. All of the treatments were compared to a
DMSO control with ≤5% cytotoxicity level.
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Figure 2. The viability of BEAS-2B cells against dose-dependent exposure to AOX2 (A) and curcumin
(B) for 24 h. Experimental values are mean ± SD of three independent experiments in triplicate.
One-way analysis of variance was performed with Tukey’s pairwise comparison. Means that share
the same letter are not significantly different at p ≤ 0.05. Abbreviations: AOX2, dietary antioxidant
formulation-2; DMSO, dimethyl sulfoxide.

3.3. AOX2 Reduced the γ-Irradiation- and Carcinogen-Induced Intracellular ROS

In a recent investigation, we found that 100 µM NNKOAc is the optimum concentra-
tion for use in this carcinogen-induced DNA damage cell model [13,21]. Employing the
DCFH-DA dye ROS assay, we examined the impact of dietary antioxidants on lowering
intracellular ROS levels in γ-irradiated- and carcinogen-exposed BEAS-2B cells (Figure 3).
In comparison to the control, the γ-irradiated- and NNKOAc-treated BEAS-2B cells had
1.5-fold higher intracellular ROS. However, pre-exposure to AOX2 and tested reference
antioxidants reduced ROS levels significantly (p ≤ 0.05) when compared to the control
γ-irradiation- and NNKOAc-exposed cells.
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carcinogen (B) induced BEAS-2B cells. Experimental values are mean ± SD of three independent
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comparison. Means that share the same letter are not significantly different at p≤ 0.05. Abbreviations:
AOX2, dietary antioxidant formulation-2; AA, ascorbic acid; Q, quercetin; Cur, curcumin; DMSO,
dimethyl sulfoxide; γ-IR, γ-irradiation.
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3.4. AOX2 Ameliorates DNA Damage Caused by Carcinogenic Factors

An ELISA technique [30] was used to determine the amounts of DNA fragments
in BEAS-2B cells (Figure 4). The γ-irradiation and NNKOAc exposure increased DNA
fragmentation almost four-fold when compared to the DMSO control. AOX2 and tested
antioxidants alone did not cause any DNA fragmentation. The pre-treatment with an-
tioxidants significantly reduced (p ≤ 0.05) DNA fragmentation levels in γ-irradiated or
carcinogen-treated cells.
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age and the DDR [31]. The nucleus was stained with DAPI and observed under a fluores-
cence microscope, and the red γ-H2AX foci co-localized with the blue DAPI-stained nu-
cleus were estimated. γ-Irradiated- and NNKOAc-treated cells showed more than 3-times 
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Figure 4. DNA fragmentation was reduced by the tested antioxidants in γ-irradiation (A) or carcino-
gen (B) induced BEAS-2B cells. DNA fragmentation was determined by ELISA. Experimental values
are mean ± SD of three independent experiments in triplicate. One-way analysis of variance was
performed with Tukey’s pairwise comparison. Means that share the same letter are not significantly
different at p ≤ 0.05. Abbreviations: AOX2, dietary antioxidant formulation-2; AA, ascorbic acid;
Q, quercetin; Cur, curcumin; DMSO, dimethyl sulfoxide; γ-IR, γ-irradiation.

Since histone protein serine 139 phosphorylation is a recognized cytological marker of
DNA DSBs, the γ-H2AX immunofluorescence assay was used to evaluate DNA damage
and the DDR [31]. The nucleus was stained with DAPI and observed under a fluorescence
microscope, and the red γ-H2AX foci co-localized with the blue DAPI-stained nucleus were
estimated. γ-Irradiated- and NNKOAc-treated cells showed more than 3-times greater
DNA damage as compared to the DMSO control cells (Figure 5). When compared to DMSO
control cells, pre-treatment with AOX2, AA, Q, or curcumin alone caused no increase in
DNA damage; however, their pre-exposure decreased γ-H2AX foci/nuclei induced by
γ-irradiation and carcinogen exposure significantly (p ≤ 0.05).

A well-known technique for determining DNA damage and repair kinetics in cells is
the comet assay, which calculates the “tail moment,” or the tail length × the percentage of
fragmented DNA migrating from the nucleus in the tail, during single-cell electrophore-
sis [32]. The tail-moment in DNA was evaluated after γ-irradiation and carcinogen expo-
sures to the cells with and without dietary antioxidants (Figure 6). Both γ-irradiated and
carcinogen-treated cells had about an 8-fold higher tail moment than the controls. AOX2,
AA, Q, and curcumin-treated cells had a decreased percentage of fragmented DNA in the
tail (p ≤ 0.05).
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A well-known technique for determining DNA damage and repair kinetics in cells is 
the comet assay, which calculates the “tail moment,” or the tail length × the percentage of 
fragmented DNA migrating from the nucleus in the tail, during single-cell electrophoresis 
[32]. The tail-moment in DNA was evaluated after γ-irradiation and carcinogen exposures 
to the cells with and without dietary antioxidants (Figure 6). Both γ-irradiated and carcin-
ogen-treated cells had about an 8-fold higher tail moment than the controls. AOX2, AA, 
Q, and curcumin-treated cells had a decreased percentage of fragmented DNA in the tail 
(p ≤ 0.05). 

Figure 5. BEAS-2B cells were exposed to γ-irradiation, carcinogen, or in combination with pre-
incubation with antioxidants followed by immunofluorescence staining with γ-H2AX antibody and
photographed by epifluorescence microscopy at a magnification of 100× (A). The nuclei were stained
blue, whereas the γ-H2AX foci (S 139) appeared red. Phosphorylated-H2AX level was reduced
by pre-exposure to tested antioxidants in γ-irradiation (B) or carcinogen (C) induced BEAS-2B
cells. Quantification of focus/nucleus ratio was calculated for each sample from at least 30 cells.
Experimental values are presented as mean ± SD of three independent experiments in triplicate.
One-way analysis of variance was performed with Tukey’s pairwise comparison. Means that share
the same letter are not significantly different at p ≤ 0.05. Abbreviations: AOX2, dietary antioxidant
formulation-2; Cur, curcumin; DMSO, dimethyl sulfoxide; γ-IR, γ-irradiation.
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Figure 6. DNA tail damage in BEAS-2B cells that were exposed to γ-irradiation or carcinogen
NNKOAc with or without pre-treatment of antioxidants. The cells were stained with CYGREEN®

dye and imaged by fluorescence microscopy (A). DNA single-strand break was reduced by pre-
exposure to tested antioxidants in γ-irradiation (B) or carcinogen (C) induced BEAS-2B cells. DNA
single-strand break was determined as % DNA tail moment measured by comet assay. Quantification
was performed for at least 30 comets that were photographed using fluorescence microscopy. Ex-
perimental values are mean ± SD of three independent experiments in triplicate. One-way analysis
of variance was performed with Tukey’s pairwise comparison. Means that share the same letter are
not significantly different at p ≤ 0.05. Abbreviations: AOX2, dietary antioxidant formulation-2; AA,
ascorbic acid; Q, quercetin; Cur, curcumin; DMSO, dimethyl sulfoxide; γ-IR, γ-irradiation.

3.5. Dietary Antioxidants Affect DDR Cell Signaling

The phosphorylation of tumor suppressor protein p53 and H2AX was also examined
and quantified using Western blot analysis (Figure 7). In γ-irradiated and NNKOAc-treated
cells, the DDR signaling cascade was boosted, as observed by the levels of p-p53 and
γ-H2AX. Pre-treatment with AOX2, AA, Q, or curcumin led to a significant (p ≤ 0.05)
reduction in phosphorylation of p53 and H2AX in γ-irradiated and NNKOAc-treated
cells. Overall, we discovered that pre-treatment with AOX2 and reference antioxidants
AA, Q, or curcumin at 25 µM decreased the phosphorylation of these key proteins of DDR
cell signaling.
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Figure 7. Effect of tested antioxidants on DNA damage repair signaling proteins in BEAS-2B exposed
to γ-irradiation (A–C) or NNKOAc (D–F). Phosphorylated p53 (p-p53, B,E) and phosphorylated
H2AX (γ-H2AX, C,F) were assessed by Western blotting. The relative amount of each protein expres-
sion level of p-p53 and γ-H2AX was calculated with respect to beta-actin protein. Experimental values
are mean ± SD of three independent experiments in triplicate. One-way analysis of variance was
performed with Tukey’s pairwise comparison. Means that share the same letter are not significantly
different at p ≤ 0.05. Abbreviations: AOX2, dietary antioxidant formulation-2; AA, ascorbic acid;
Q, quercetin; Cur, curcumin; DMSO, dimethyl sulfoxide; γ-IR, γ-irradiation.

4. Discussion

The global environmental radioactive pollution and the radiological impacts on human
health are emerging concerns. For example, exposure to ionizing radiation damages
DNA, and inefficient repair could lead to mutations, SSB, and DSB DNA damage causing
cancer in humans [33,34]. Gamma rays are a type of ionizing radiation that have a high
penetrating ability. They can act directly on cellular macromolecules or indirectly on
water molecules, causing water radiolysis and subsequently generating free radicals [35].
Secondary consequences of ionizing radiation include ROS generation, which oxidizes proteins
and lipids while also causing DNA damage such as apurinic/apyrimidinic sites and SSBs.
In addition, mutated extracellular nucleotides, including purinergic signaling, also affect a
variety of pathological processes such as inflammation and carcinogenesis [26,36]. All of these
alterations, when taken together, result in cell death and mitotic failure [37].

The three primary pathways of NNK metabolism are carbonyl reduction, pyridine ni-
trogen molecule oxidation, and α-hydroxylation of the methyl or methylene carbons [38]. A
substantial part of NNK is transformed into the carcinogenic metabolite 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanol (NNAL), which is then oxidized back to NNK via the carbonyl re-
duction pathway. Both NNK and NNAL are α-hydroxylated by CYP450 enzymes, resulting
in electrophilic intermediates that can interact with DNA to form large pyridyloxobutyla-
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tion DNA (POB-DNA) adducts [39]. In cell culture, NNKOAc generates α-hydroxymethyl
metabolites that spontaneously release 4-3-pyridyl-4-oxobutane-1-diazohydroxide. Diazo-
hydroxides react with DNA generating POB–DNA adducts. In BEAS-2B cells, NNKOAc
breaks down into cytosolic reactive electrophilic compounds that cause DNA damage [40].
Therefore, NNKOAc in cultured cells mimics the DNA damage mechanism caused by NNK
in vivo [41].

As a result of DNA damage and the inability to repair, it can cause mutations and
aberrant cell growth, which transform normal cells into premalignant cells [29]. In this
investigation, we established that the AOX2 formulation consisting of 10 well-studied
antioxidants can reduce the DNA damage caused by low-dose γ-irradiation and a chemical
carcinogen (NNKOAc) in BEAS-2B cells. Previous research has shown that certain vitamins
and flavonoids can reduce NNKOAc-induced DNA damage in BEAS-2B cells [21]. Here,
we demonstrated that the tested antioxidants do not have cytotoxicity at the efficacious low
concentrations, which could be possible to achieve through dietary supplementation. The
administration of exogenous ATP in mice and monkeys has shown a radioprotective effect
on the lungs [42,43]. However, because ATP is broken down rapidly in living organisms, it
can be much more effective in protecting against radiation by regulating concentrations in
the lungs using ATP analogs that are not metabolized [26,44].

Clinical data are limited on radioprotective dietary supplements [45]. Cell-based stud-
ies and experimental animal models can be employed for the identification and pre-clinical
assessment of such dietary supplements. Here, we have optimized an experimental model
of low dose γ-irradiation-induced DNA damage using BEAS-2B cells. ROS production is
one of the key contributing factors inducing DNA damage in normal healthy cells [46]. In
BEAS-2B cells, pre-incubation with AOX2 and the tested single antioxidants significantly
reduced the toxic effects of γ-irradiation. Our prior study showed that a vitamin-containing
antioxidant formulation (AOX1), apple flavonoids (AF4), quercetin, and quercetin 3-O-d-
glucoside (Q3G) reduced carcinogen-induced DNA damage [21]. The potential of certain
phytochemicals to scavenge ROS is well-known [47]. Ursolic acid prevents cell death by in-
hibiting free radical generation, lipid peroxidation, oxidative DNA damage, inflammation,
and activation of the NF-κB pathway, all of which are caused by radiation [35].

DSBs are among the most complex DNA damages to repair in normal cells. If DSB-
induced DNA damage is not repaired, it can lead to genomic instability and, gradually, to
tumorigenesis [48]. γ-H2AX phosphorylation is essential for the detection and adoption
of cells to DNA damage [49]. Exposure to the radiation and carcinogen used in this study
was found to increase γ-H2AX phosphorylation. DNA damage induced by inter stream
cross-linking formed by replication forks is observed in γ-irradiated and NNKOAc-treated
cells, which is the major cause of γ-H2AX lesions [50]. Furthermore, we used the comet
assay to study DNA damage and fragmentation that can detect both SSBs and DSBs [51].
In the present study, we were able to monitor the degree of DNA damage caused by γ-
radiation and NNKOAc through quantitative analysis using the properties of comet tail
moment. Compared to γ-irradiation/carcinogen treatment, a significant reduction of DNA
tail damage was seen when the cells were pretreated with AOX2 and tested antioxidants.

The DDR factor of DNA damage was investigated in this study by Western blotting
of two effector proteins, i.e., p53 and γ-H2AX (Figure 7). Activation by phosphorylation
of ATM in response to DSB in A549 adenocarcinoma cells followed by phosphorylation
of γ-H2AX, Chk2, and p53 has been previously reported [52]. Dietary antioxidants have
been shown to possess chemopreventive effects by regulating various signaling pathways,
including the p53 pathway. In response to oxidative stress, the activated p53 further
activates transcription factors involved in DNA repair, metabolism, aging, apoptosis,
autophagy, and angiogenesis [20].

According to a recent study, flavonoids protect Swiss albino mice from ionizing
radiation-induced DNA damage in vivo [23]. Celastrol, a triterpene, showed protective
effects against γ-radiation-induced DNA damage in Balb/c mice [53]. The study suggested
that vitamin C enhances the antiviral activity and also prevents lung fibrosis and injury [54].
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Another study found that administration of aerosolized reduced glutathione (GSH) to
cystic fibrosis (CF) patients could assist vitamin C status in bronchial epithelia [55]. A re-
cent study demonstrated that quercetin protects BEAS-2B cells from hexavalent chromium
(Cr(VI))-induced carcinogenesis by targeting miR-21-PDCD4 signaling [56]. Furthermore,
quercetin reduces the lipopolysaccharide-induced release of inflammatory mediators in
BEAS-2B cells by increasing cyclic adenosine monophosphate (cAMP) level [57]. As well,
curcumin can protect BEAS-2B cells from fine particulate matter (PM2.5)-induced oxidative
damage and inflammation by activation of NRF2-related pathways to prevent apopto-
sis [58]. Similarly, the combination of eucalyptol (EUC) and curcumin reduced cigarette
smoke extract (CSE)-induced oxidative stress and inflammation to promote cell survival
in BEAS-2B cells [59]. Our result showed that the protective effects of AOX2 are similar
to those of single antioxidants such as ascorbic acid, quercetin, and curcumin. However,
high doses of single antioxidants could act as a prooxidant and may raise the concern of
potential toxicity and adverse effects [21].

Phase II metabolism of quercetin is dependent on UDP-glucuronosyltransferases,
which are active in UGT1A1, UGT1A8, and UGT1A9, while the rate of conjugation may
vary with species and organs [60]. Phase I and II enzymes convert ascorbic acid to oxidized
metabolites with higher water solubility and enhanced clearance, which are then used
as the electron donor in physiological processes [61]. Folate metabolism is crucial for
methylation, reductive processes, and nucleotide production. It also plays a significant
part in the carbon pathway [62]. The metabolism of vitamin B12 is a complicated process;
however, deoxyadenosylcobalamin and methylcobalamin are two major metabolites [63].
Two processes that make up lipoic acid metabolism are interdependent and unable to fully
compensate for each other, and the first lipoylation of the H-protein in the glycine cleavage
system (Gcv3) is necessary [64]. The response to dietary and medicinal interventions
varies significantly across individuals depending on how α-tocopherol is metabolized. The
various metabolites of α-tocopherol have been discovered in human blood, which gives
rise to the potential of exploring the variability, known as “vitamin E metabolome” [65].
A limited number of investigations have been done on CoQ10 metabolism. The metabolites
were primarily discovered in the urine and were also noted in the feces, where significant
amounts of non-metabolized CoQ10 were discovered [66]. Zeaxanthin, which is mostly
found in the eyes, skin, and brain, has not yet been studied in terms of its metabolism [67].
In primary rat hepatocytes, astaxanthin can be metabolized into 3-hydroxy-4-oxo-ionone
and 3-hydroxy-4-oxo-7,8-dihydro-ionone. Enzymes that catalyze the formation of the
metabolites have not yet been fully understood, nor have their potential biological activities.
Astaxanthin raises cytochrome P450 (CYP) enzyme levels in hepatocytes [68]. Selenium (Se)
is a vital micronutrient with many beneficial effects including antioxidant properties. In
general, selenium is well tolerated by organisms through bioaccumulating and converting
to selenoproteins. The glutathione metabolism pathway plays a significant role in selenium
metabolism [69].

The ultimate goal of this research was to develop an enhanced natural dietary an-
tioxidant formula or dietary supplement which can reduce the risk of cancer by exposure
to diagnostic radiation and chemical carcinogens. As such, dietary antioxidant formula-
tions could help in reducing the growing burden in the healthcare system from radiation
and carcinogen-induced cancers. Our findings indicate that dietary antioxidants and
phytochemical preparations such as AOX2 can protect against DNA damage in normal
bronchial BEAS-2B cells from exposures to radiation and smoking-related carcinogens,
which warrants further exploration using pre-clinical animal models to further understand
the oncoprotective properties of AOX2.

5. Conclusions

This study shows that pre-exposure of BEAS-2B cells to the AOX2 dietary antioxidant
formulation protects the cells from low dose γ-radiation or carcinogen NNKOAc. However,
the present findings need to be validated using pre-clinical animal and human clinical
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studies before recommending dietary antioxidants as therapeutic supplements to reduce the
risk of cancer due to exposure to carcinogenic environmental factors, genotoxic diagnostic
radiation, or chemotherapy.
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