## **4 Supplementary Tables and Figures**

### 5 **Table S1.** Risk of bias for included non-RCTs.

|                         | Selection |        |        | Comparability | F      | Exposure |        |        |             |          |
|-------------------------|-----------|--------|--------|---------------|--------|----------|--------|--------|-------------|----------|
|                         | Item 1    | Item 2 | Item 3 | Item 4        | Item 5 | Item 6   | Item 7 | Item 8 | Total score | Quality  |
| K. Khong, (2022)        | 0         | 1      | 0      | 1             | 1      | 1        | 1      | 1      | 6           | Moderate |
| J. Sammartino (2022)    | 1         | 1      | 1      | 0             | 0      | 1        | 1      | 1      | 6           | Moderate |
| S. Assawakosri (2022)   | 1         | 1      | 1      | 1             | 2      | 1        | 1      | 1      | 9           | Good     |
| N. Leung (2023)         | 1         | 1      | 1      | 1             | 2      | 1        | 1      | 1      | 9           | Good     |
| N. Angkasekwinai (2023) | 1         | 1      | 1      | 0             | 2      | 1        | 1      | 1      | 8           | Good     |
| Y. Chen (2022)          | 1         | 1      | 1      | 1             | 1      | 1        | 1      | 1      | 8           | Good     |
| W. Chen (2022)          | 1         | 1      | 1      | 0             | 2      | 1        | 1      | 1      | 8           | Good     |
| W. Sheng (2023)         | 1         | 1      | 1      | 0             | 2      | 1        | 1      | 1      | 8           | Good     |
| S. Assawakosri (2022)   | 1         | 1      | 0      | 1             | 0      | 0        | 1      | 1      | 5           | Moderate |
| X. Liu (2023)           | 1         | 1      | 1      | 0             | 1      | 1        | 1      | 1      | 7           | Good     |
| P. Assantachai (2023)   | 1         | 1      | 1      | 0             | 1      | 1        | 1      | 1      | 7           | Good     |
| D. Sieghart (2024)      | 1         | 1      | 1      | 0             | 1      | 1        | 1      | 1      | 7           | Good     |
| H. Xia (2022)           | 1         | 1      | 1      | 0             | 2      | 1        | 1      | 1      | 8           | Good     |
| H. Xie (2022)           | 1         | 1      | 1      | 1             | 1      | 1        | 1      | 1      | 8           | Good     |
| R. Atmar (2022)         | 1         | 1      | 1      | 0             | 2      | 1        | 1      | 1      | 8           | Good     |
| J. Ai (2022)            | 1         | 1      | 1      | 1             | 2      | 1        | 1      | 1      | 9           | Good     |

<sup>6</sup> Item 1: Representativeness of the exposed cohort.

<sup>7</sup> Item 2: Selection of the non-exposed cohort.

<sup>8</sup> Item 3: Ascertainment of exposure.

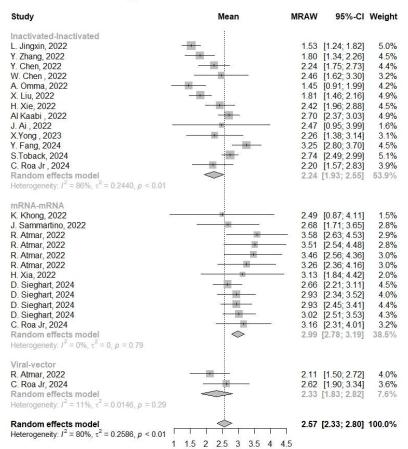
<sup>9</sup> Item 4: Demonstration that outcome of interest was not present at the start of the study.

- 10 Item 5: Comparability of cohorts based on the design or analysis.
- 11 Item 6: Assessment of outcome.
- 12 Item 7: Was follow-up long enough for outcomes to occur.
- 13 Item 8: Adequacy of follow-up of cohorts.

### 15 **Table S2.** Risk of bias of the included studies, assessed using the Cochrane RoB-2 tool.

| Study (First author)   | Randomization |               |              | Missing Measurement of |                 | Overall risk of |  |
|------------------------|---------------|---------------|--------------|------------------------|-----------------|-----------------|--|
|                        | process       | intended      | outcome data | the outcome            | reported result | bias            |  |
|                        |               | interventions |              |                        |                 |                 |  |
| L. Jingxin (2022)      | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| C. Chuang (2022)       | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| Y. Zhang (2022)        | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| S. Niyomnaitham (2022) | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| S. Clemens (2023)      | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| X. Yong (2023)         | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| Al. Kaabi (2022)       | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| A. Omma (2022)         | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| C. Roa Jr (2024)       | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| Y. Fang (2023)         | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |
| S. Toback (2024)       | Low risk      | Low risk      | Low risk     | Low risk               | Low risk        | Low risk        |  |

### 


# 

## 

### 

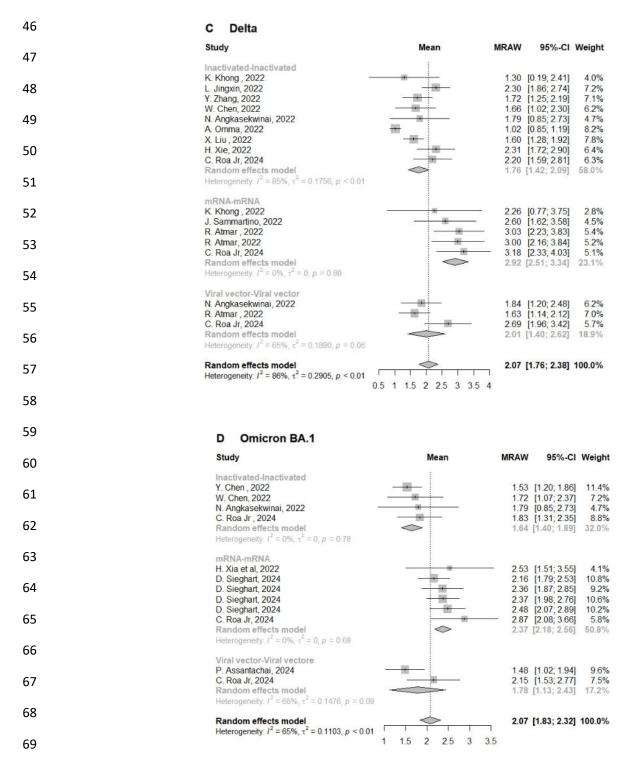
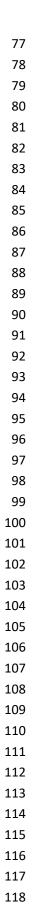
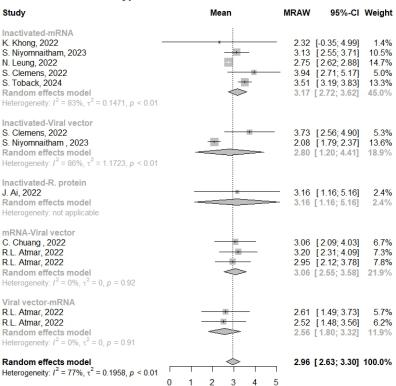
### 

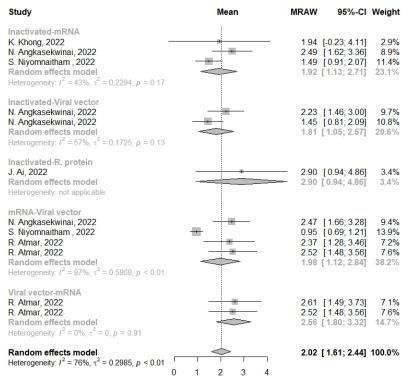
### SARS-CoV-2 wildtype



#### В Beta

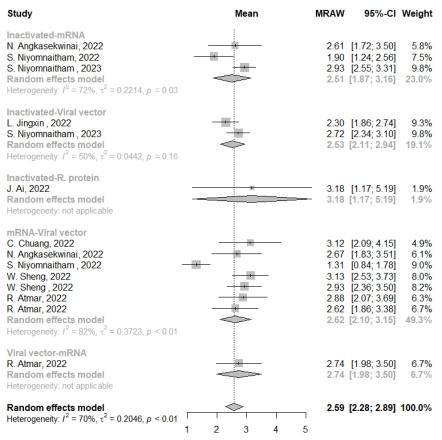
| Study                                                                                                                                                                                                  | Mean                                    | MRAW                                 | 95%-CI                                                                                                       | Weight                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Inactivated-Inactivated W. Chen, 2022 N. Angkasekwinai, 2022 H. Xie, 2022 Random effects model Heterogeneity: $I^2=16\%$ , $\tau^2=0.0338$ , $\rho=0.30$                                               |                                         | 1.57<br>2.29                         | [1.07; 2.37]<br>[0.67; 2.47]<br>[1.68; 2.90]<br>[1.47; 2.37]                                                 | 11.7%<br>8.1%<br>12.4%<br>32.2%                       |
| mRNA-mRNA K. Khong, 2022 J. Sammartino, 2022 R. Atmar, 2022 Random effects model Heterogeneity: $I^2 = 0\%$ , $\tau^2 = 0$ , $\rho = 0.98$ | *************************************** | 2.32<br>2.76<br>2.77<br>2.78<br>2.69 | [0.85; 3.63]<br>[1.34; 3.30]<br>[1.54; 3.98]<br>[1.51; 4.03]<br>[1.64; 3.92]<br>[1.55; 3.83]<br>[2.11; 3.06] | 4.3%<br>7.3%<br>5.3%<br>5.0%<br>5.8%<br>5.9%<br>33.5% |
| Viral vector-Viral vector N. Angkasekwinai, 2022 R. Atmar, 2022 C. Roa Jr , 2024 Random effects model Heterogeneity: $I^2=73\%$ , $\tau^2=0.3431$ , $\rho=0.02$                                        |                                         | 1.40<br>2.69                         | [1.01; 2.15]<br>[0.71; 2.09]<br>[1.96; 3.42]<br>[1.11; 2.64]                                                 | 13.0%<br>10.9%<br>10.3%<br>34.3%                      |
| <b>Random effects model</b><br>Heterogeneity: $I^2 = 37\%$ , $\tau^2 = 0.1200$ , $\rho = 0.10$                                                                                                         | 1 1.5 2 2.5 3 3.5 4                     | 2.12                                 | [1.80; 2.44]                                                                                                 | 100.0%                                                |

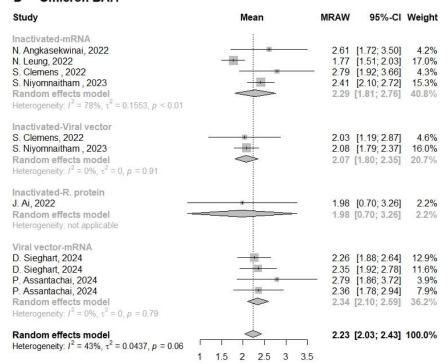


Fig. S1. Forest plot of the pooled log-transformed neutralization titers against (A) SARS-CoV-2 wildtype, (B) Beta, (C)Delta, and (D) Omicron BA.1 after homologous booster vaccination. MRAW, mean raw; 95%-CI, 95% confidence interval;  $I^2$ , index for the degree of heterogeneity between studies.  $\tau^2$ , measure of heterogeneity. Weight is an indicator of the impact of each study on the overall results. Squares represent effect sizes for a single study, and rhombus represent pooled results for all studies.



#### A SARS-CoV-2 wildtype




### B Beta




119

#### C Delta



### D Omicron BA.1



121

| 124 | Fig. S2. Forest plot of the pooled log-transformed neutralization titers against the wild             |
|-----|-------------------------------------------------------------------------------------------------------|
| 125 | type (A) SARS-CoV-2 wild type, (B) Beta, (C)Delta, and (D) Omicron BA. 1 after                        |
| 126 | heterologous booster vaccination. MRAW, mean raw; 95%-CI, 95% confidence interval; I <sup>2</sup> ,   |
| 127 | index for the degree of heterogeneity between studies. $\tau^2$ , measure of heterogeneity. Weight is |
| 128 | an indicator of the impact of each study on the overall results. Squares represent effect sizes       |
| 129 | for a single study, and rhombus represent pooled results for all studies.                             |
| 130 |                                                                                                       |