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Background:  Unbiased  deep  sequencing  offers the potential  for improved  adventitious  virus  screening  in
vaccines  and  biotherapeutics.  Successful  implementation  of such  assays  will  require  appropriate  control
materials  to  confirm  assay  performance  and  sensitivity.
Methods:  A common  reference  material  containing  25  target  viruses  was  produced  and  16  laboratories
were  invited  to process  it using  their  preferred  adventitious  virus  detection  assay.
Results:  Fifteen  laboratories  returned  results,  obtained  using  a wide  range  of  wet-lab  and  informatics
methods.  Six  of 25  target  viruses  were  detected  by all laboratories,  with the  remaining  viruses  detected
dventitious virus by  4–14 laboratories.  Six non-target  viruses  were  detected  by  three  or more  laboratories.
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. Introduction

Production of live viral vaccines on animal cell or egg sub-
trates carries the risk of adventitious virus contamination of the
nal product [1,2]. Testing for adventitious viruses is therefore an
ssential quality control step in the manufacture of vaccines and
ther biological medicines. Non-specific screening for adventitious
iruses is partly based on animal tests which have served well
or decades, but there are legal and ethical imperatives to replace
uch tests. Cell culture tests largely solve the ethical issues and are
heaper to perform, and recent efforts to compare sensitivity and
pecificity with animal tests have been promising [3]. Nevertheless,
ell and animal tests are limited by the restricted tropism of some
iruses and may  not detect non-cytopathic, non-pathogenic or non-
aemadsorbing viruses. For example, porcine circovirus (PCV) DNA
as detected in two rotavirus vaccines [1,4,5] despite these rou-

ine adventitious virus tests showing no evidence of contamination.
CR-based tests offer sensitive and specific detection of their tar-
et pathogens, however screening for all potential viruses by PCR
s impractical, and non-target viruses would remain undetected.

Deep sequencing (DS, also referred to as massively parallel or
igh throughput sequencing) offers the potential for identification
f extraneous nucleic acid in samples without a priori knowledge
f the likely contaminant and without the requirement for propa-
ation of the virus. Such methods have already been successfully
pplied to detection of adventitious agents in vaccines [1], cell lines
6,7], serum [8,9] and bioreactors [10] and multiple laboratory and
nformatics methods for viral metagenomics have been developed
or clinical and other biological specimens [11–17]. There is sub-
tantial interest among vaccine manufacturers, contract research
rganisations, regulators and medicines control laboratories in
valuating the method for routine safety testing, and potentially
eplacing some or all of the existing in vitro and in vivo tests. A major
hallenge to the realisation of this potential is the identification of

 robust, sensitive and specific assay design. A wide range of meth-
ds exist for viral metagenomics, many of which are early in their
evelopment: multiple options exist for generation of sequenc-

ng libraries; several commercial sequencing platforms exist, based
n fundamentally different chemistry, with more in development;
umerous bioinformatics pipelines are used for sequence classifi-
ation, both academically and commercially developed; and the
atabases against which the reads are searched are constantly
volving. Given these parameters, it is important to have suitable
eference materials to ensure that different methods generate com-
arable results. In addition to reagents for comparison of methods
nd determination of run performance, well-characterised mate-
ials of defined virus concentration will be required in order to
etermine limits of detection for particular viruses or virus types.
e describe here a candidate material for qualitative comparison

f methods and run performance and its evaluation in an interna-
ional collaborative study encompassing 15 laboratories. The study
ighlighted that a broad range of laboratory and informatics tech-
iques are in use, and no consensus exists on the most appropriate
ombination of methods to achieve maximum sensitivity. We  dis-
uss the major challenges for the incorporation of deep sequencing
nto adventitious agent testing workflows, highlight areas requiring
articular attention and describe the requirements of future refer-
nce materials to enable validation and comparison of methods.

. Methods
.1. Aim and scope

The primary aim of the study was to evaluate the suit-
bility of reagent 11/242-001 as a reference material for deep
 (2016) 2035–2043

sequencing-based adventitious virus detection by comparing the
results obtained from 15 independent laboratories using a vari-
ety of sample preparation, sequencing and informatics methods.
Identifying the optimal processing parameters for each step of the
process was not feasible given the large number of variables. This
study did not aim to assess sensitivity of any particular method,
nor the proficiency of the individual laboratories. An outline of this
project was presented to the World Health Organisation (WHO)
Expert Committee for Biological Standardisation (ECBS) at the 2013
meeting and the committee felt that the project could provide use-
ful information on the value of the reference material and the merits
of currently used methods [18].

2.2. Participants

Participants were identified through existing networks of con-
tacts and via the Parenteral Drug Association (PDA)/Food and
Drug Administration (FDA) Advanced Virus Detection Technolo-
gies Interest Group. Participants included vaccine manufacturers,
contract research organisations, academic laboratories, regulatory
agencies and medicines control laboratories with an interest in
virus detection in biological medicines. A full list of participating
laboratories is shown in Collaboration Group.

2.3. Material

An existing multiplex quantitative polymerase chain reaction
(qPCR) run control reagent, 11/242-001, was  available for the study.
This reagent contains 25 viruses representing a range of common
hazard group 2 human viruses (United Kingdom Advisory Com-
mittee on Dangerous Pathogens classification) with a variety of
genome and envelope types (Table 1).

Individual viruses were propagated in cell culture or by egg
passage, and non-cultivable viruses were isolated from clinical
specimens. The origin of each virus is described in Table 1. Real-
time PCR (RT-PCR) Cycle Threshold (Ct) values were determined
for individual virus stocks, and the viruses were then pooled such
that the predicted Ct value of each would be approximately 30.
Pooled virus was  formulated in 10 mM Tris, pH 7.4, supplemented
with 2% foetal calf serum. 1 ml  of reagent was  filled into 2856 2 ml
screw-cap Sarstedt vials and frozen at −70 ◦C. Samples of pooled
material were assessed by in-house RT-PCR (see Supplemental
table* 1 for PCR conditions) to determine the presence of the 25
viruses (Table 1). Not all viruses were detected following formu-
lation – hence development of the reagent as a qPCR control was
ceased and the material was deemed an ideal candidate for the cur-
rent study. Infectivity of pooled viruses was  not confirmed as the
intended use was  in nucleic-acid based detection methods. The pre-
cise concentrations of individual viruses are not known, however
RT-PCR data suggest the viruses are present at a range of nucleic
acid concentrations (Ct values range from ∼24 to not detectable,
Table 1). A previous study found that up to 22 of the 25 viruses
were detectable by sequencing at modest read depth (∼2,000,000
reads) [14]. The presence of additional viruses in the reagent was
considered a possibility due to the isolation of several of the target
viruses from human clinical specimens, the propagation of others
in cell culture and the addition of foetal calf serum to the reagent.
The presence of such viruses was  not known in advance.

2.4. Study design

Two vials of reagent were shipped to each laboratory on dry ice.

The list of target viruses was  known to the laboratories to facilitate
import and appropriate biocontainment. Laboratories processed
the reagent according to their preferred method. Technical repli-
cates were requested, but not mandatory due to the high costs
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Table  1
Virus composition of multiplex reagent 11/242-001.

Group Family Envelope Species/serotype Genome size (kb) PCR Ct value Sample origin

dsDNA Adenoviridae No Adenovirus 2 35.9 29.71 293 cell culture
Adenovirus 41 34.2 ND Clinical specimen

Herpesviridae Yes Human herpesvirus 1 151.2 30.59 MRC5 cell culture
Human herpesvirus 2 154.7 32.48 MRC5 cell culture
Human herpesvirus 3 (VZV) 124.8 29.02 MeWo  cell culture
Human herpesvirus 4 (EBV) 171.7 31.27 B95-8 cell culture
Human herpesvirus 5 (CMV) 233.7 28.95 MRC5 cell culture

dsRNA Reoviridae No Rotavirus A 18.5 24.49 Clinical specimen

ssRNA  (+) Astroviridae No Astrovirus 6.8 30.53 Clinical specimen
Caliciviridae No Norovirus GI 7.6 ND Clinical specimen

Norovirus GII 7.5 ND Clinical specimen
Sapovirus C12 7.5 33.37 Clinical specimen

Coronaviridae Yes Coronavirus 229E 27.2 ND MRC5 cell culture
Picornaviridae No Coxsackievirus B4 7.4 30.72 Hep-2 cell culture

Rhinovirus A39 7.1 31.16 MRC5 cell culture
Parechovirus 3 7.2 29.35 LLC-MK2 cell culture

ssRNA  (−) Orthomyxoviridae Yes Influenza A virus H1N1 13.2 32.02 Egg passage
Influenza A virus H3N2 13.6 ND Egg passage
Influenza B virus 14.2 ND Egg passage

Paramyxoviridae Yes Metapneumovirus A 13.3 31.86 LLC-MK2 cell culture
Parainfluenzavirus 1 15.5 34.43 PRF5 cell culture
Parainfluenzavirus 2 15.7 33.87 PRF5 cell culture
Parainfluenzavirus 3 15.4 ND PRF5 cell culture
Parainfluenzavirus 4 17.4 31.83 PRF5 cell culture
Respiratory syncytial virus A2 15.2 34.33 Hep-2 cell culture

ds double-stranded, ss single-stranded, VZV Varicella Zoster Virus, EBV Epstein Barr Virus, CMV Cytomegalovirus, ND not detectable. Ct values provide a crude estimate of
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iral  genome abundance; quantitative PCR data are not available.

nvolved. Laboratories were asked to analyse the entire data set,
lus a random subset of 2 million reads.

.5. Analysis

The parameters reported in the primary analysis were (a) total
umber of target viruses detected; (b) rankings of target viruses;
nd (c) correlation between read depth and number of target
iruses detected. The majority of laboratories ran two  technical
eplicates, with the replicate detecting most target viruses selected
or primary analysis. In the event that both replicates detected
qual numbers of target viruses, the replicate containing fewer
otal sequencing reads was selected. Secondary analysis included
a) reporting of non-target viruses detected by three or more labs;
b) ranking of all target and non-target viruses detected by three
r more labs; and (c) consistency of virus detection between repli-
ates. Rankings were determined based on the absolute numbers
r proportions of reads matching the indicated viruses, to account
or the fact that total numbers of reads, and proportion of reads
dentified as viral differed greatly between laboratories.

One lab reported difficulty in distinguishing Norovirus strains
ue to a large number of closely related sequences available in
ublic databases. This lab provided an explanation and reported
its to ‘Human norovirus’ rather than to serotypes GI and GII. For
esult plotting, hits to ‘Human norovirus’ (for this laboratory only)
ere considered to be to Norovirus GII that had a higher overall

ank. Hits to Ad2 and AdC were merged as the reference sequences
re identical. Similarly hits to Mastadenovirus F were merged with
d41.
.6. Reagent availability

The reagent is available via the NIBSC catalogue (nibsc.org/
roducts), reference 11/242-001.
3. Results

3.1. Return of data

Data were returned from 15 of 16 laboratories. One laboratory
was unable to complete analysis within the study time frame. A
wide range of sample preparation and informatics methods was
used by the laboratories, with no two laboratories using identical
methods (Table 2, Supplemental Tables 2 and 3). Four laboratories
returned data generated using two different methods. The majority
of laboratories employed informatics methodology that identified
viruses in a blind manner rather than specifically targeting the 25
known viruses (Supplemental table* 3).

3.2. Number of target viruses detected and effect of read number

Participating laboratories generated differing numbers of reads
depending on the library preparation and sequencing platform
used. Using a subset of 2,000,000 reads, a single lab detected all
25 target viruses (range 6–25). Using all reads, two labs detected
all 25 viruses (range 6–25, Fig. 1). The majority of methods detected
at least 20 target viruses using 2,000,000 reads (median 20.5) and
at least 21 viruses using all reads (median 22) (Fig. 2). The number
of target viruses detected did not correlate with total read num-
bers (Fig. 2), though it is expected that the underlying variation
between methods masked any effect. For a given method, increas-
ing read depth would be expected to increase the probability of
detecting a given virus, though this analysis was beyond the scope
of the current study.

3.2.1. Consistency of replicates

Ten laboratories (13 methods) performed technical replicates.

The vast majority of viruses detected were present in both repli-
cates (Fig. 1). The most common inconsistency was the presence
of Norovirus GI, GII or Influenza B in one replicate but its absence
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Table 2
Summary methods by laboratory.

Lab Nuclease Extraction Primary lib Seq library Platform Database(s) Primary
identification

Blind/targeted

L01-A Yes Column/silica Ion Torrent Ion Torrent Ion Proton In-house Smith-
Waterman/BLAST

Blind

L01-B Yes Column/silica Ion Torrent Ion Torrent Ion Proton In-house Mapping to
targets

Targeted

L02  Yes Column/silica Fragmentation-
ligation

Ion Torrent Ion Proton Virus
RefSeq/in-
house

Proprietary Blind

L03  DNAse EZ1 cDNA
amplification
Nucleic acid
extract

Nextera XT MiSeq nt (Jun 2014) SURPI Blind

L04  No Column/silica cDNA synthesis Nextera XT MiSeq NCBI Align to NCBI Blind
L05  No Column/silica Adaptor

ligation
TruSeq HiSeq2500 NCBI Viral

Genome
Neighbor

Alignment to
references

Blind

L06 No Beads Adaptor
ligation

Custom HiSeq2000 In-house BWA
alignment

Blind

L07 No Phenol/chloroform Confidential Nextera MiSeq Virus
RefSeq/NCBI

Mapping to all
viruses

Both

L08  No Maxwell None ScriptSeq MiSeq Virus RefSeq/nr BLAST Blind
L09  No Column/silica Proprietary Custom 454 In-house

(Ref/Seq
GenBank
derived)

Proprietary Not specified

L10-A  No Column/silica Fragmentation-
ligation

TruSeq HiSeq2500 GenBank 2013,
clustered viral
partition

BLASTn Blind

L10-B  No Column/silica Fragmentation-
ligation

TruSeq HiSeq2500 GenBank 2013,
clustered viral
partition

BLASTn Blind

L11  No Column/silica cDNA Nextera XT HiSeq1500 In-house BLAST Blind
L12-A  No Column/silica Random

RT-PCR
Nextera XT MiSeq Virus RefSeq/nt BLASTn Blind

L12-B  No Column/silica MDA/SPIA Nextera XT MiSeq Virus RefSeq/nt BLASTn Blind
L13  No Magnetic beads TruSeq TruSeq MiSeq Virus RefSeq BLAST/

CENSUSCOPE
Blind

L14  DNAse Column/silica Fragmentation-
ligation

Illumina
PCR

MiSeq GenBank SLIM Both

L15-A* Yes Column/silica MDA/SPIA Nextera XT MiSeq In-house BWA  then
BLAST

Targeted

L15-B* Yes Column/silica MDA/SPIA Nextera XT MiSeq In-house BWA  then
BLAST

Targeted

Individual laboratories are represented by coded identifiers unrelated to the order in Supplemental Table 2. Separate methods performed by the same laboratory have the
suffix-A/-B. Blind indicates methods where viruses were identified without reference to the 25 target viruses. Targeted indicates methods where these 25 viruses were
specifically targeted. *L15-A and L15-B represent similar methodology, but performed using variable amounts of starting material (Supplemental Table 2).

Fig. 1. Number of target viruses detected by individual laboratories and methods. Horizontal hatched bars, target viruses detected in best replicate using 2 million reads. Solid
black  bar, target viruses detected in best replicate using all reads. Grey bar,  target viruses detected in second replicate using all reads. White bar, target viruses detected in
both  replicates using all reads. Laboratories L01-B, L11, L13 and L15-B performed analysis only on the total read set.
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n the other (Supplemental table* 4). The nine viruses where dis-
repancies were observed were predominantly the bottom ranked
iruses in the positive replicate, i.e. the replicate in which the virus
as detected (Supplemental table* 4 and Fig. 4).
3.2.2. Consistency of virus detection across methods and
laboratories

A detailed breakdown of viruses detected by each laboratory is
shown in Supplemental table* 5. Ad2, Human Herpesvirus (HHV)-3
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Fig. 2. Frequency of target virus detection in all methods. Left panel, Correlation between number of target viruses detected in 2,000,000 reads (median 20.5) and entire read
set  (median 22). Four laboratories performed analysis only on the total read set and these are shown left of the dotted line. Right panel, correlation between number of target
viruses detected and read depth. Graph shows best fit and 95% confidence bands for regression line.

Fig. 3. Consistency of virus detection across different methods and laboratories. Left panel, proportion of all methods detecting target viruses. Right panel, proportion of all
laboratories detecting target viruses using best method. Grey shading indicates viruses not detected by real-time PCR.
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nd HHV-5 were detected by all methods (Fig. 3, left panel). Ad2,
d41, HHV-3, HHV-5, Parechovirus, and Rotavirus A were detected
y all laboratories (Fig. 3, right panel). Norovirus GI and Influenza

 were detected by fewer than 50% of methods while Norovirus
I was detected by fewer than 50% of laboratories. The current
tudy did not aim to directly compare PCR and deep sequencing
or detection of these viruses, however with the exception of Ad41,
he viruses detected by the fewest laboratories and methods were
hose that were not detected by real-time PCR.
.2.3. Additional viruses detected
Ten of 15 laboratories reported the detection of additional

iruses; those detected by three or more laboratories are described
n Table 3. At least 20 additional viruses were reported by single
labs; these are not reported here as their presence was not corrob-
orated by a second lab.

3.2.4. Rank order of target viruses
Of the 25 targets, Parechovirus had the highest rank based on

proportion of reads returning a hit (median rank 1.5, Fig. 4), while
Norovirus GI had the lowest rank (median 26, i.e. not detected).
The ranking varied significantly between laboratories, most notably
rotavirus A, which varied from a rank of 1–26 (median 10). This may
suggest that different methods are differentially likely to detect a
given virus or family of viruses, however the low sample numbers

and wide range of methods used precluded statistical analysis of
the major factors influencing virus detection. When rankings were
calculated with the inclusion of the additional viruses detected by
three or more laboratories, the non-target Bovine Viral Diarrhoea
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Table 3
Non-target viruses detected by three or more laboratories.

Virus Number of laboratories (methods) Laboratory/method

Bovine viral diarrhoea virus 10 (13) L01-A, L02, L03, L06, L07, L09, L10-A, L10-B, L11, L12-A, L12-B, L15-A, L15-B
Human bocavirus 7 (8) L01-A, L02, L03, L06, L10-A, L10-B, L11, L12-B
Human enterovirus (multiplea) 6 (8) L02, L07, L09, L10-A, L10-B, L11 L12-A, L12-B
Aichi  virus 4 (5) L03, L10-A, L12-A, L15-A, L15-B
Bovine parvovirus 4 (5) L01-A, L02, L10-A, L10-B, L11
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Porcine/other circovirus 3 (3) 

a Multiple similar results are consolidated to ‘Human enterovirus’. Some laborato

irus had a median rank of 8 and several other non-target viruses
ad rankings higher than target viruses (Fig. 4, bottom panel).

.3. Summary results

The current study was not a proficiency test, and it is recognised
hat multiple experimental design considerations affect the abil-
ty to detect particular viruses. The results obtained in the current
tudy, may  be used for reference when using this material:

All laboratories detected: Ad2, Ad41, HHV-3, HHV-5, Pare-
hovirus 3, and Rotavirus A.

Greater than 90% of laboratories detected Astrovirus, Cox-
ackievirus B4, HHV-1, HHV-2, HHV-4, Metapneumovirus A,
arainfluenzavirus 1, Parainfluenzavirus 4, Rhinovirus A39, and
apovirus C12.

Greater than 50% of laboratories detected: Coronavirus 229E,
nfluenza A H1N1, Influenza A H3N2, Influenza B, Norovirus GII,
arainfluenza virus 2, Parainfluenzavirus 3, Respiratory Syncytial
irus A2, and the non-target Bovine Viral Diarrhoea Virus.

Fewer than 50% of laboratories detected: Norovirus GI, as well as
he non-target Human Bocavirus, Human Enterovirus, Aichi Virus,
ovine Parvovirus, and Porcine/other Circoviruses.

. Discussion

The detection of infectious PCV-1 in a human vaccine [19]
emonstrated that existing safety tests may  not detect some virus
ontaminants, and highlighted the potential for deep sequenc-
ng methods to form part of an improved testing scheme [1].
his study employed a reagent containing diverse virus families,
enome and coat types, for comparison of the different strategies.
he large diversity in laboratory and informatics methods used
nd the variability in detection of target viruses underscore the
eed for such materials to facilitate assay development and method
omparison. The study highlighted a number of issues facing the
uccessful implementation of deep sequencing within a manufac-
uring/regulatory environment and these are discussed below.

.1.1. Issues in assay design and sample preparation

The nature of the material being tested will be determined by
he product and production stage and different materials may  have
istinct upstream processing requirements (e.g. filtration, concen-
ration, centrifugation). The discrepancies in detection of target
iruses may  in part be attributable to the assay design. For exam-
le, assays targeting only particle-protected nucleic acid and using
uclease may  discriminate against certain signals, relative to those
argeting total nucleic acid, though notably one laboratory that
dentified all 25 viruses (L02) reported using nuclease. Extrac-
ion methods may  also affect the ability to detect different viruses
14] and variable efficiency of reverse transcriptase steps may  bias

gainst detection of RNA viruses. Sequencing library preparation
ypically requires nanogram to microgram amounts of DNA that

ay be challenging to obtain from certain starting materials. Lower
mounts of DNA may  yield adequate sequencing libraries in some
L03, L06, L15-B

id not report non-target viruses.

cases, but deviating significantly from recommended inputs may
be problematic in a Good Laboratory Practice (GLP) or Good Man-
ufacturing Practice (GMP) environment. Amplification by PCR or
Phi29-based systems was  employed by two  laboratories, however
the risk of bias due to different template preferences should be
considered. As with any molecular technique, the inclusion of no
template controls is essential to avoid or identify false positives due
to trace contamination of the sample extraction columns [7,20],
molecular biology reagents [7,21] or sample-to-sample contami-
nation during library preparation or sequencing [22].

4.2. Matrix effects

Matrix effects may  be broadly defined as any change in the sen-
sitivity and specificity of a detection assay due to substances in a
sample which inhibit extraction of the target and/or co-purify and
interfere with downstream processing. Adventitious virus detec-
tion is likely to be performed on diverse samples including raw
materials, culture supernatants and bulk harvests, some of which
may  interfere with nucleic acid detection methods [23]. Competi-
tion by non-viral nucleic acids, e.g. from host cells, will negatively
impact limits of detection, and the concentration of such may vary
significantly between sample types. In such cases, nuclease treat-
ment may  increase sensitivity for particle-protected viruses, but
should be used with caution for the reasons described in the previ-
ous section. A detailed investigation of matrix effects was  beyond
the scope of the study, however future reference materials should
be compatible with a variety of matrices, and methods should be
validated using a matrix similar to that of the test article.

4.3. Issues in bioinformatics and databases

It is important that bioinformatics algorithms strike an appro-
priate balance of speed, sensitivity and specificity. The size of
sequencing datasets and reference databases continues to grow,
offering obvious advantages in terms of sensitivity; however this
has necessitated the development of new sequence classification
algorithms to enable data analysis within a reasonable time, at a
cost of potentially increased false negative rate [24–27]. A range
of methods were used in the current study and thresholds for
assigning hits varied, with some laboratories reporting detection
of a virus on the basis of a single read but others requiring that
additional criteria were met. Viral identification stringency should
be determined by the context. A low stringency will maximise the
chance of detecting novel viruses which may  be highly divergent
from databases references at the risk of increased false positives,
and may  be appropriate e.g. for screening of master cell and virus
banks where follow-up testing can be performed. In a routine
testing scheme, or where a defined set of contaminants is being
screened for, higher stringency may  be appropriate to minimise
false positives, e.g. due to matches with host sequences similar to

viral genes. While the current study focussed on the detection of
known viruses, many of the pipelines employed are entirely com-
patible with virus discovery investigations simply by altering the
processing and search parameters.
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Fig. 4. Rank order of viruses using all methods. Top panel, ranking of target viruses. Bottom panel, ranking of all viruses, excluding results where no additional viruses were
reported. Horizontal bars indicate median rank of viruses; open circles indicate individual data points. Solid circles and prefix NT indicate non-target viruses reported by three
or  more laboratories. Data points below dotted line indicate that virus was not detected – such viruses were assigned a rank order of 26 (for target viruses) or 31 (for all
viruses) for plotting and calculation of median.
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We  also observed variation in the databases used for sequence
lassification. Publicly available databases such as those hosted by
CBI [28] are valuable but incomplete and not curated, and consid-
ration is needed of what action should be taken if sequencing reads
hat are currently non-classified are later identified as being of viral
rigin. The size, breadth and complexity of databases can pose

 challenge to sequence identification pipelines, especially when
atabases contain entries whose taxonomy is erroneously assigned.

t may  therefore be advisable for adventitious virus screens to be
erformed using curated databases, even though their breadth of
overage may  be more limited.

.4. General issues

Once hits are identified by deep sequencing, it will be important
o confirm the presence of the contaminant by a second molecu-
ar method. Infectivity should be assessed if an appropriate assay
xists. The presence of certain viral nucleic acid, e.g. that remaining
fter viral inactivation or reduction processes, may  be considered
cceptable if there is no evidence of infectious virus, though the fact
hat some viruses produce infectious nucleic acids [29–31] neces-
itates a cautious approach. Investigation procedures both within

 Good Manufacturing Practice and regulatory setting will likely
ollow existing guidelines.

.4.1. Intended use and limitations of the reference material
The reagent is intended to be used as a control to assess assay

erformance relative to the results presented herein, or to results
rom historical runs of the reagent. While not a proficiency testing

aterial (since some assays have different design parameters), the
eagent will enable users to perform inter-assay, intra-laboratory
nd inter-laboratory comparisons.

The reagent does not purposefully contain a single-stranded
NA virus, a class of virus of particular interest given its detection

n two vaccine products [1]. However, circovirus and parvovirus
equences were detected in the sample by three and four labora-
ories respectively (Table 3), providing evidence for the presence
f these ssDNA viruses in the reagent, albeit at a low level. The
ost commonly reported non-target virus, Bovine Viral Diarrhoea
irus, likely originates from the foetal bovine serum used in the
eagent, as does the Bovine Parvovirus. The detection of Human
ocavirus and Aichi Virus most likely reflects the use of faecal sam-
les as a source for several of the target viruses (Table 1), while
he ‘Human Enterovirus’ category likely reflects a combination of
uthentic enteroviruses from the faecal samples and potentially
is-classification of reads originating from Coxsackievirus and

hinovirus. Only short sequence contigs were obtained for the cir-
oviruses and definitive identification was not achieved, hence the
rigin of these viral reads cannot be determined.

Absolute quantification of the components, in terms of infec-
ious units, particles or genomic equivalents is not available.
he reagent is therefore not suitable for determination of lim-
ts of detection or quantification. A number of reports have
egun addressing limits of detection of particular viruses by deep
equencing [32–35], and the potential replacement of existing
n vitro and in vivo tests [10,23]. Empirical definition of limits
f detection for all possible viruses is impractical, but limits of
etection for a set of viruses representing all major genome and
oat types is a minimal starting point, with potential extension to
nclude the full set of viruses for which screening is mandatory.

Future reference materials will contain purified virus parti-
les representing the diverse size, genome structure, GC-content

nd particle structure (enveloped or not) of the virus Kingdom.
he materials should be subject to comprehensive character-
sation including precise quantification, be compatible with a
ariety of sample matrices commonly encountered in biologicals
 (2016) 2035–2043

manufacturing and not be restricted to particular molecular biol-
ogy techniques or sequencing platforms, since these are likely to
change over time.

4.5. Summary

The collaborative study highlighted the diversity of meth-
ods currently employed for adventitious virus screening by deep
sequencing, and the variability in target virus detection under-
scored the need for a suitable reference material to enable assay
comparison. Reagent 11/242-001 will serve as a useful first genera-
tion reference material for evaluating and improving such methods,
monitoring of intra-laboratory consistency and enabling inter-
laboratory comparisons to support this promising but nascent
application of deep sequencing.
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