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Abstract
The delivery of therapies to the cochlea is notoriously challenging. It is an organ protected by a number of barriers that need to be
overcome in the drug delivery process. Additionally, there are multiple sites of possible damage within the cochlea. Despite the
many potential sites of damage, acquired otologic insults preferentially damage a single location. While progress has been made
in techniques for inner ear drug delivery, the current techniques remain non-specific and our ability to deliver therapies in a cell-
specific manner are limited. Fortunately, there are proteins specific to various cell-types within the cochlea (e.g., hair cells, spiral
ganglion cells, stria vascularis) that function as biomarkers of site-specific damage. These protein biomarkers have potential to
serve as targets for cell-specific inner ear drug delivery. In this manuscript, we review the concept of biomarkers and targeted-
inner ear drug delivery and the well-characterized protein biomarkers within each of the locations of interest within the cochlea.
Our review will focus on targeted drug delivery in the setting of acquired otologic insults (e.g., ototoxicity, noise-induce hearing
loss). The goal is not to discuss therapies to treat acquired otologic insults, rather, to establish potential concepts of how to deliver
therapies in a targeted, cell-specific manner. Based on our review, it is clear that future of inner ear drug delivery is a discipline
filled with potential that will require collaborative efforts among clinicians and scientists to optimize treatment of otologic insults.
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Introduction

The cochlea is a privileged organ within the temporal bone that
is protected from the external environment by the otic capsule
bone, the round window membrane (RWM), and blood-
labyrinth barrier. There are various cell types within the

cochlea, which are particularly sensitive to disruptions of the
local environment. Small changes within the local environ-
ment of the cochlea can introduce acquired insults, which pres-
ent as a sensorineural hearing loss (SNHL) in the clinical set-
ting and can be accompanied by tinnitus and vertigo. These
characteristics introduce significant challenges when treating
acquired cochlear disorders. There are various well-established
etiologies of acquired cochlear insult that include excessive
noise exposure, ototoxic medications, and idiopathic causes
such as Meniere’s disease and sudden SNHL. While each of
these various etiologies produces a similar clinical effect of
SNHL, there is evidence to suggest that many of the causes
of acquired SNHL preferentially introduce insults to specific
locations within the cochlea (inner hair cells (IHC) [1], outer
hair cells (OHC) [2], stria vascularis (SV) [3], spiral ganglion
neurons (SG) [4], and supporting cells [5]). The specificity of
ototoxicity is not managed differently in the clinical setting
based on location of insult, and our current clinical therapies
are non-specific. Despite these challenges, clinical and basic
science research has led to early foundational understandings
of the various mechanisms by which therapies can penetrate
the protective barriers and reach locations within the cochlea
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[6]. However, the ability of treatments to target only the spe-
cific sites of insult remains elusive and is an area of active
research that necessitates identification of target-specific
biomarkers.

A biomarker is defined as a biological molecule that can be
used as an indicator of disease state. This concept can be
applied more specifically in the study of acquired diseases of
the cochlea to indicate and identify site-specific insults to the
structures within the cochlea. In theory, each of the various
cell types within the cochlea (IHC, OHC, SV, SG, and
supporting cells) has specific molecules (biomarkers—typi-
cally proteins) that differentiate it from other cells. Further,
many of these acquired cochlear insults cause preferential in-
jury to specific sites within the cochlea (e.g., cisplatin injury to
OHC [7], noise-toxicity to spiral ganglion cells in cochlear
synaptopathy [8], loop diuretics to the stria vascularis [9]).
As such, the concept of cochlear biomarkers opens the poten-
tial for targeted, cell-specific therapies in the setting of ac-
quired cochlear injuries. While this concept holds great poten-
tial to introduce targeted drug delivery to the inner ear, one of
the necessary requirements is that the biomarker target has to
be accessible for interaction. From a structural standpoint, this
suggests that the biomarker has to be located within the cell’s
outer membrane with an available extracellular domain for
specific interactions with the treatment or delivery vehicle of
interest (Fig. 1). Intracellular targets are theoretically available
but would possess limited specificity due to potential non-
specific entry into the cell. The ideal components necessary
for targeted inner ear drug delivery are listed in Table 1.

In the clinical setting, acquired cochlear insults induce per-
manent, irreversible SNHL. Unfortunately, by the time these
disorders are recognized, subjects have already sustained
some cochlear damage. Thus, prevention and early recogni-
tion are the only options for avoiding insult. If the disorder is
identified in a timely manner, oral or intratympanic (IT)

therapies become available, although therapy to reverse these
acquired insults is currently limited to corticosteroids [14].
Even if treatment is initiated, the outcomes are highly variable.
Two factors that would likely improve preservation of cochle-
ar structures in the setting of acquired insults are (1) rapid
initiation of therapies (or pre-treatment in the context of
known ototoxic medication administration) and (2) targeted,
specific delivery of therapies to inner ear structures. If both
factors can be addressed, there is significant potential to im-
prove therapeutic efficiency and hearing outcomes in the clin-
ical setting. The timing of the initiation of therapy is depen-
dent upon patient and clinician recognition of the problem and
will not be discussed in this review. Targeted delivery of drugs
to specific locations within the cochlea is achievable because
of the characterization of potential cell-specific biomarkers,
and thus will be the focus of this manuscript.

At this time, there is significant translational animal re-
search exploring the concept of targeted local delivery for
cochlear disorders [10, 15]; however, there are no targeted
therapies available for treatment of the inner ear in the clin-
ical setting. In this review, we aim to discuss potential inner
ear biomarkers that may serve to facilitate more efficient
mechanisms of inner ear drug delivery. We will discuss
potential biomarkers by cell type and provide context as
to which clinical disorder may be addressed by targeted
therapeutics to each specific cell type. Furthermore, brief
information regarding whether potential ligands are avail-
able for targeted binding to the biomarker of interest will be
provided. Ultimately, biomarker-ligand interactions have
the scientific and clinical potential that in the future may
lead to therapeutic options for acquired cochlear insults.
While we aim to be comprehensive, limited information is
available on many of the potential biomarkers; thus, we will
detail specifics where possible, and discuss potential utility
in other instances.

Fig. 1 Example of Protein
Biomarker. Prestin is an OHC-
specific protein that is the
prototype biomarker for targeted
drug delivery: it only exists on the
OHCs, has an extracellular
domain, and there is an available
ligand that can specifically target
this extracellular domain (arrow).
Figured adapted with permission
from Springer Nature. Dallos P
and Fakler B. Prestin, a new type
of motor protein. Nature Reviews.
Molecular Cell Biology, Vol 3,
104-111, 2002
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Biomarkers of congenital cochlear disorders will not be
included in this review as this is outside the scope of the
discussion. Targeted therapeutics in the management of con-
genital hearing loss (e.g., Connexin-26, GJB2, related hearing
loss) are not currently available because subject are often deaf
at birth, and it is challenging to administer therapy in a timely
manner. Therapeutic agents for acquired cochlear disorders
will not be specifically discussed, as the focus will be on the
biomarkers that offer potential targets for therapeutic delivery.
It is our hope that this review provides the most up-to-date
information regarding the concept of cochlear biomarkers and
their role as potential targets for specific delivery of drugs to
the inner ear. Emphasis will be placed on the significant trans-
lational potential for this research.

Methodology for literature search

A literature searchwas performed using the PubMed database.
Keywords incorporating each specific cell type of the cochlea
were included in our initial search. The cell types we searched
were “inner ear,” “outer hair cells,” “inner hair cells,” “spiral
ganglion,” and “stria vascularis.” These cochlear cell types
were searched with various combinations of the words: “pro-
tein,” “target,” and “biomarker.”

Each of the titles and abstracts for these search queries was
reviewed by one of the authors. Papers that included proteins
primarily responsible for congenital or genetic types of SNHL
were excluded from this review. Additionally, any abstracts

that were repeated during the search were only included once.
The Uniprot (https://www.uniprot.org/) and human protein
atlas (www.hprd.org/) databases were then used to determine
whether the protein was exposed to the extracellular
environment. Papers that had information regarding specific
proteins within each cell type were evaluated further to
determine whether the protein of interest had been fully
characterized. It was noted that many of the proteins
identified are found in more than one cell types within the
inner ear. In this case, the proteins were characterized,
nonetheless, because of their potential utility and availability
as biomarkers for targeted drug delivery. In cases where the
proteins and genes have more than one name, the name listed
on the two protein websites will be used in this review.

Following evaluation within the protein databases, a search
for ligand-binding domains and ligands available for each
protein was performed (Fig. 2). If a protein was known to have
available ligands, they were evaluated for their potential utility
to target the drug delivery vehicles to the biomarkers of
interest.

Results

Inner and outer hair cells

Inner and outer hair cells are among the most vulnerable cell
types within the inner ear and are often the primarily damaged
cell type in the setting of insult. Despite their vulnerability,

Table 1 Components of an ideal biomarker for targeted drug delivery

Ideal situation Challenges

Accessibility 1. Biomarker target is transmembrane protein with an easily
accessible extracellular domain

2. Targeted therapy is delivered prior to or shortly after induced
damage

3. Targeted therapy has properties that allow it to enter the inner ear

1. Many known biomarkers and cellular targets are
intracellular, limiting specificity and accessibility for
therapeutic use

2. Delivering therapeutics to the target biomarker prior to
significant cellular damage

3. Many therapies have properties that restrict their entrance
to the privileged site of the inner ear [10]

Biomarker/ligand
interaction

1. Biomarker protein has a characterized ligand-binding domain
2. Ligands are available that bind to biomarker target

1. Few biomarker targets have well-characterized
ligand-binding domains

2. Few compounds are available that bind efficiently to the
available domains within biomarker

3. Many of the potential biomarkers are essential for
cochlear function. Ligand-protein interaction may alter
cellular function

Biomarker
specificity

1. Biomarker targeting is specific to a single cell type of interest
within the cochlea (e.g., OHC-specific biomarker; stria-specific
biomarker; spiral ganglion-specific biomarker)

1. Many of the potential targets available are non-specific
and exist in various cell types within the cochlea [11]

Analyzability 1. Quantifiable analysis of biomarker/ligand interaction is available
that would provide information about the efficiency of therapeutic
delivery

1. Few techniques are available that offer analysis of drug
delivery in the clinical setting, and are limited to animal
models [12]

2. Clinical outcomes with audiometry are variable and may
not reflect what is happening at the cellular level [13]
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they are well characterized both molecularly and functionally,
thus offering the realistic potential for specific, targeted deliv-
ery to potential hair cell biomarkers. Molecularly, there are a
variety of transmembrane protein channels that meet criteria
for biomarkers. Functionally, OHCs are largely supportive in
function, while IHCs are responsible for signal transduction
that converts sound to an electrical signal via its interactions
with the cochlear nerve. We will detail some of the well-
characterized proteins within the inner and outer hair cells that
have significant potential as biomarkers. Additional potential
biomarkers are listed in Table 2.

Hair cell-specific protein biomarkers

Prestin

Prestin is a well-described outer hair cell protein that functions
as a cochlear amplifier [32]. Unlikemany of the other cochlear
biomarkers, prestin is specific to the OHCs and does not exist
within any other cell type within the cochlea [25]. This makes
it particularly appealing as a biomarker for acquired disorders
of the OHCs such as cisplatin ototoxicity which preferentially
induces damage to the OHCs.

Currently, research is underway investigating targeted de-
livery of therapies to the OHCs via prestin. This work began
after phage display experiments produced a series of peptides
that bound to prestin. These peptides were successfully used

in the targeted binding of polymersomes to rat cochlear ex-
plants [26]. One of the peptides has subsequently been used
in vivo to deliver targeted liposomes containing a JNK inhib-
itor to outer hair cells in a murine model undergoing a severe
acoustic insult. The use of the prestin biomarker enabled the
payload to be successfully targeted to the outer hair cells and
greatly enhanced the protection of the mice’s hearing from the
insult [27].

Unfortunately, prestin expression in outer hair cells is
downregulated in cells undergoing kanamycin-induced apo-
ptosis. This may limit its usefulness in the treatment of
aminoglycoside-induced apoptosis in animal models if thera-
py is not introduced early enough in the clinical setting [33].

Large conductance voltage and calcium-activated potassium
(BK) channels

These protein channels are located in the outer membranes of
inner and outer hair cells. These channels play an important
role in processing the neural feedback from the brain [18].
Clinically, the BK channel has been investigated as a potential
channel involved in a tinnitus pathway [19].

A 9-amino acid peptide has been identified which binds
tightly to BK channels [19] and can be used both to modulate
BK channel activity and potentially as a targeting peptide.
Collectively, this work provides the foundation for the concept

Fig. 2 Methods for identifying
protein biomarkers available for
targeted-drug delivery to the inner
ear
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of BK channels as a potential biomarker available for targeted
delivery of therapies aimed at addressing tinnitus.

Spiral ganglion-specific protein biomarkers

The spiral ganglion cells and neural tissue within the cochlea
are an important site for targeted drug delivery because many
acquired cochlear disorders have a primary or secondary effect
at this location. Synaptopathy of the neuronal elements within
the cochlea is a rapidly growing topic within acoustic research
[34], and clinically presentation is variable depending on the
severity of damage. The few, well-characterized specific pro-
tein biomarker targets within the spiral ganglion cells will be
discussed, and the remaining will be listed in Table 3.

Trisialoganglioside clostridial toxin receptor

This trisialoganglioside clostridial toxin receptor (GT1b) is
expressed by a large number of neuronal cells within the cen-
tral and peripheral nervous system. Within the cochlea, it is a
receptor located in the spiral ganglion neurons [43, 44]. It
serves as a potential prototype biomarker for targeted delivery
to spiral ganglion cells due to its specificity to this cell type
within the cochlea. Additionally, phage display has identified
the Tet1 peptide that binds specifically to the receptor [41].
The advantage of this synthetic peptide is that binding to the
trisialoganglioside clostridial toxin receptor does not alter cell
signaling within the spiral ganglion. The Tet 1 peptide has

been conjugated to polymersomes and delivered to the inner
ear using a cochleostomy. The targeted polymersomes bound
to the auditory nerve and also to, or adjacent to, the spiral
ganglion’s NF-200-positive nerve fibers [42]. Clinically,
targeted delivery of therapies to this receptor as a biomarker
may provide treatment options for neural-based disorders such
as cochlear synaptopathy [4] in the setting of noise exposure.
Consequently, the Tet1 peptide is currently the most promis-
ing technique to deliver therapeutic payloads to the spiral gan-
glion or auditory nerve.

BDNF/NT-3 growth factors receptor (TrkB)

Within the cochlea, BDNF/NT-3 growth factors receptor is
another spiral ganglion-specific biomarker protein for which
local delivery of targeted therapies offer potential utility. As
with the trisialoganglioside clostridial toxin receptor, phage
display has been used to develop binding peptides for these
receptors. Recent work has demonstrated that nanoparticles
targeted with the TrkB binding A371 peptide bind preferen-
tially to the spiral ganglion’s neuronal cells [35], and that this
targeting peptide has enabled Rolipram, a phosphodiesterase
inhibitor, to be delivered to the mouse spiral ganglia as a
potential agent that improves cell survival [35, 45].
Additional work has suggested the possibility of targeted de-
livery of the TrkB agonist, 7,8-dihydroxyflavone (DHF) as a
means for increasing neurite growth in the setting of kainic-
acid cochlear damage [46]. Similarly, targeted delivery of

Table 2 Potential hair cell-specific biomarker proteins

Protein Gene Cell type Function Targeting Ref

Chloride intracellular channel protein 5 CLIC5 OHC, IHC Channel None [16]

Gaba receptors GABBR1, GABBR2 OHC, IHC Receptors None [17]

Large conductance voltage and calcium activated potassium (BK) channel KCNMA1 OHC, IHC Channel Peptide [18, 19]

LHFPL tetraspan subfamily member 5 protein LHFPL5 OHC, IHC Structural protein None [20, 21]

Mechanoelectrical transducer (MET) channel Various OHC, IHC Channel None [22]

Otoferlin OTOF IHC Synapse protein None [23]

Phospholipid-transporting ATPase IC ATP8B1 OHC, IHC, Transport protein None [24]

Prestin SLC26A5 OHC Motor protein Peptide [25–27]

Transmembrane channel-like protein 1 TMC1 OHC, IHC Channel None [28, 29]

Transmembrane channel-like protein 2 TMC2 OHC, IHC Channel None [28]

Vesicular glutamate transporter 3 SLC17A8 IHC, SG Transport protein None [30, 31]

Table 3 Potential spiral ganglion-specific protein biomarkers

Protein Gene Cell type Function Targeting Ref

BDNF/NT-3 growth factors receptor NTRK2 SG Receptor Peptide [35, 36]

NMDA receptors Various IHC ribbon synapses Synapse protein Peptide [37, 38]

Substance-P receptor TACR1 SG Receptor Peptide [39, 40]

Trisialoganglioside clostridial toxin receptor Not Listed SG Receptor Peptide [41, 42]
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neural growth factors such as BDNF [47] may offer the po-
tential for neural regeneration.

N-methyl-D-aspartate receptors

These excitatory glutamate receptors are found in a wide
range of neural cells that are responsible for opening ion chan-
nels and neural signaling. However, in the inner ear, they are
found within the synapses of the inner hair cells and thought to
play a role in the development of tinnitus [37]. There is sig-
nificant potential for these receptors as biomarkers for neural
tissues at the level of the synapse, and clinical work has al-
ready led to the identification of the therapeutic peptide
Rapastinel (formally Glyx-13) as a potential therapy for tinni-
tus [38]. Additional work in animal models has demonstrated
ribbon synapse protection from IT application of N-methyl-D-
aspartate (NMDA) antagonists [37].

Stria vascularis-specific protein biomarkers

Na, K-ATPase

This is a transmembrane protein expressed by a wide range of
organs. However, in the cochlea, it is expressed principally in
the stria vascularis. The function of Na, K-ATPase in the inner
ear is to pump potassium ions into the endolymph to maintain
the high potassium concentration within the fluid and the
endocochlear potential. In other organs, the pNaKtide peptide
has demonstrated binding to the Na, K-ATPase, making it
highly likely that the peptide will bind to Na, K-ATPase in
the stria vascularis [48]. Interestingly, some research has sug-
gested that this pNaKtide does not alter downstream activity
[49]. The role of the stria vascularis in maintaining
endocochlear potential is vital to the function of the cochlea,
and damage to the stria has been implicated in a variety of
acquired disorders. Classically, ototoxicity induced by loop
diuretics affects the stria [50] and disrupts the endocochlear
potential. Newer evidence supports the concept that cisplatin
may impact the stria [51], although the mechanism of cis-
platin’s effect here is not yet understood. Clinically, therapies
targeted at stria vascularis-specific biomarkers may offer op-
tions for prevention of ototoxicity induced by loop diuretics
and/or cisplatin.

In addition to the Na, K-ATPase, the Na, K, Cl Co-
Transporter, and Barttin proteins are specific to the stria

vascularis and may potentially serve as biomarkers, although
targeting peptides are currently not available (Table 4).

Non-specific protein biomarkers

Ideally, a biomarker for targeted delivery of therapies should
be specific to a particular cell type and location within the
cochlea. Nonetheless, the number of protein biomarkers
expressed in more than one cell type exceeds the number of
cell-specific protein biomarkers. Although non-specific pro-
teins may not be as useful as the cell-specific biomarkers, they
can play important roles in the delivery of therapeutics to the
inner ear. For example, these proteins can be useful to enhance
the delivery of materials to the appropriate inner ear sites in
instances where multiple cell types have suffered an insult.
Alternatively, they may offer non-specific delivery of thera-
pies to the inner ear cells for which there is currently not a
targeting peptide and in scenarios where some delivery is
more advantageous than no delivery at all (Table 5). Several
non-specific biomarkers are briefly described below.

Calcium channels

Calcium channels are ubiquitous within the various cochlear
cells. The ability to limit cellular calcium uptake in cochlear
cells that have recently experienced an insult has the potential
to reduce the number of cells that undergo apoptosis and con-
sequently lessen the hearing deficit induced by the insult
[83–85]. L- and T-type calcium channels are the two major
forms of calcium channels within the cell [67]. Several natural
peptides have been identified that target these calcium chan-
nels [68, 74]. In addition to these natural peptides, there is also
a range of synthetic calcium channel binding compounds that
have been developed by the pharmaceutical industry that may
be used as targeting compounds.

Neural growth factor receptors

The tyrosine kinase receptor A (TrkA) (gene NTRK1) is a
receptor involved in signaling responsible for neural growth
and differentiation. Although it is similar in function to TrkB,
TrkB is activated by BDNF and is specific to neural tissue,
while TrkA is activated by neural growth factor (NGF), and
the TrkA receptor is located throughout various cell types
within the organ of Corti [65]. The non-specific location of

Table 4 Potential stria vascularis-
specific protein biomarkers Protein Gene Cell type Function Targeting Ref

Barttin BSND SV Ion channel subunit None [52, 53]

Na, K-ATPase Multiple Genes SV channel Peptide [48, 54]

Na, K, Cl Co-transporter NKCC1 SV Transport protein None [55, 56]
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this receptor suggests that the NGF ligand exerts its neuro-
trophic effects at sites outside of the neural tissue. An addi-
tional advantage of this receptor is that peptide fragments of
the ligand have been demonstrated to bind to the receptor and
could be used to target the protein [66].

Serine protease proteins

Type II transmembrane serine protease (TMPRSS1/hepsin)
(Gene HPN) is expressed in the spiral ganglion and the stria
vascularis [78]. Outside the cochlea, the protein acts as a pros-
tate cancer biomarker, and small molecules that bind to the
proteins have been identified. These compounds could be
used to target the spiral ganglion and the stria vascularis [79].

Discussion

There are a wide range of cochlear insults that present with
permanent SNHL, tinnitus, and/or vertigo.Many of the insults
that result in damage have location-specific sites of injury
within the cochlea. Despite the fact that many of the locations
and mechanisms of these insults have been established,

clinical medicine has been unable to reliably translate this
work to specifically target therapies to these sites of injury.
In this review, we present an overview of potential cell-
specific biomarker proteins within the cochlea as a way for
scientists and clinicians to logically think about targeted inner
ear delivery. Our goal with this review was to offer a more
specific thought process and approach to addressing acquired
forms of inner ear damage by suggesting available protein
targets for therapeutic delivery to each of the various cell types
within the cochlea.

The concept of targeted, location-specific delivery and bio-
markers for each of the cell types within the cochlea is a
challenging order for scientists and clinicians to address. The
privileged nature of the cochlea and its sensitivity to minor
changes in the local environment create a logistical challenge
of delivering therapies to the correct location without inducing
more damage. It is likely necessary to optimize local delivery
of therapeutics to the cochlear cells using a variety of tech-
niques that include intratympanic (IT) delivery [86], direct
round window membrane (RWM) delivery [27], and
intracochlear delivery [87]. Clinically, only IT delivery is rou-
tinely used; however, the efficiency of this technique varies
based on a number of drug- and patient-related factors. There

Table 5 Potential non-specific protein biomarkers

Protein Gene Cell type Function Targeting Ref

Aquaporin 4 AQP4 Deiters’ and Hansen’s cells Channel None [57]

ATP-sensitive inward rectifier K channel 10 KCNJ10 SV, SG Deiters’ Channel None [58, 59]

Basigin BSG SV, auditory nerve Maintenance
protein

None [60]

CD44 antigen CD44 Outer pillar and Claudius
cells

Hyaluronic acid
receptor

None [61]

Clarin 1 CLRN1 OHC, IHC ,SG Structural protein None [62, 63]

Fibroblast growth factor receptor 3 FGFR3 OHC, pillar and Deiters’
Cells

Growth factor None [64]

High affinity nerve growth factor receptor NTRK1 OHC, IHC , SG supporting
cell

Receptors Peptide [65, 66]

L-type calcium channel CACNA1C
CACNB1

Ubiquitous Calcium channel Peptides, Small
Molecules

[67–69]

Otoancorin OTOA Spiral limbus, tectorial
membrane,

Anchoring
protein

None [70]

Pendrin SLC26A4 Sulcus, spiral prominence Ion transport None [71, 72]

Synaptophysin SYP OHC, IHC, SG Synapse protein None [73]

T-type calcium channel CACNA1H
CACNA1G

CACNA1I

Ubiquitous Calcium channel Peptides, Small
Molecules

[67, 74]

Transient receptor potential cation channel
subfamily V member 4

TRPV4 SG,SV
Support cells

Calcium channel Small molecules [75–77]

Type II transmembrane serine protease HPN SG,SV Protease Small molecule [78–80]

Vang-like protein 2 VANGL2 OHC, IHC, supporting cells Anchoring
protein

None [81]

Zinc transporter ZIP8 SLC39A8 Mainly OHC, IHC, SV,
supporting cells

Transport protein None [82]

Zinc transporter ZIP14 SLC39A14 Mainly OHC, IHC, SV,
supporting cells

Transport protein None [82]
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has been an explosion of research evaluating novel vehicles
for therapeutic delivery to the inner ear such as liposomes,
hydrogels, and nanoparticles [27, 88–90], and ultimately,
identifying the optimal delivery vehicle will improve the yield
on our ability to get targeted therapies to the specific bio-
markers of interest.

Once a delivery vehicle is optimized, ligands that specifi-
cally bind to the biomarker proteins of interest need to be
developed. Some of the potential biomarkers within the vari-
ous cell types have available ligands (see tables); however,
many do not. It is reasonable to predict that the next revolution
in inner ear drug delivery research may be focused on the
production of ligands for proteins that are specific to the var-
ious cell types within the cochlea. The clinical implications of
cell-specific ligands for targeted delivery of therapies to the
inner ear cannot be understated. Currently, non-specific ther-
apies such as corticosteroids are the only available clinical
treatment in use to address otologic insults. The mechanism
of corticosteroid activity within the inner ear is complex [86,
91, 92] and likely has non-specific interactions that are beyond
what we can currently measure. If ligand specificity is devel-
oped and refined, this concept would offer the potential to treat
various forms of otologic insult and hearing loss in a specific
manner. This would not only improve the efficiency of drug
delivery, but also provide the potential to measure the amount
of therapy delivered more accurately. For example, cisplatin
reliably induces insult to the OHC [93]. A ligand that binds
specifically to an available OHC biomarker would permit de-
livery of therapy where it is needed most. In the laboratory
setting, techniques would then potentially become available to
measure ligand binding interactions, which, in turn, would
improve our ability to measure the amount of therapy entering

the OHCs. This concept could just as easily be applied to the
spiral ganglion cells in the treatment of various causes of
cochlear synaptopathy and stria vascularis for loop diuretics.

It warrants mentioning that this review has focused on the
use of peptides to target the biomarkers rather than pharma-
ceutical products (e.g., FDA-approved therapies, commercial-
ly available drugs). While pharmaceutical products can bind
to the biomarkers as tightly and with the same specificity as
peptides, they can be potentially much more challenging to
conjugate to nanoparticles containing the appropriate thera-
peutic payload. The methodology to conjugate peptides to
the nanoparticle’s coat is well-established and relatively
straightforward to perform [94]. Although the methodology
to conjugate pharmaceutical compounds to nanoparticles is
possible, it is not as widely used, and largely limited to appli-
cations in oncology [95].

The simplicity of the concept of targeted delivery to cell-
specific biomarkers is currently overshadowed by the com-
plexity of execution. There are layers of complexity to each
step of this process that necessitate discussion. From a clinical
perspective, it is a risk to initiate treatment on subjects who
have any residual cochlear function because the cochlear cells
are particularly sensitive to changes within the local environ-
ment [96, 97]. Thus, many subjects with acquired forms of
otologic insult and some remaining natural hearing are unlike-
ly to be candidates in clinical trials for the initiation of targeted
treatments [98]. Next, finding the appropriate combination of
delivery vehicle, ligand, and therapy can be an overwhelming
task. While there are a handful of vehicles for drug delivery
(i.e., hydrogels, liposomes, etc.), the number of potential li-
gands is extensive when both natural and synthetic ligands are
accounted for. Even if the correct combination of vehicle and

Fig. 3 Conceptual approach to cell-specific targeted therapeutics delivery
in treatment of cochlea-related diseases. The criteria necessary for
targeted therapeutic delivery are represented in this image (see
“Discussion” section). The TrkB receptor is specific to spiral ganglion
tissue. The receptor has an accessible extracellular domain that allows
for interaction with a targeted ligand (asterisk) and downstream

therapeutic effects. Figure adapted with permission under the terms of
the Creative Commons Attribution-Noncommercial (CC BY-NC 4.0)
License. Pyykkö I, Zou J, Zhang Y, Zhang W, Feng H, Kinnunen P.
Nanoparticle based inner ear therapy. World J Otorhinolaryngol 2013;
3(4): 114-133
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ligand is discovered, there is potential that conjugating the
vehicle, ligand, and therapy may compromise the function or
binding efficiency to the target. Similarly, science has not
achieved reliable success in determining therapies that pre-
serve cochlear function or reverse cochlear insult. Thus, it
seems that the application of these concepts is not as close
as many think. Nonetheless, there is potential to apply some
of these concepts to hearing preservation during the introduc-
tion of a cochlear implant (CI) [99]. As indications for CI
expand to include subjects with residual hearing, it offers a
realistic opportunity to introduce these concepts to subjects
that have little cochlear reserve, and thus, little to lose. In fact,
some research is already evaluating the role of BDNF and
cochlear implant for SGN survival [100, 101].

In addition to the challenges listed above, the physiological
response to cellular insult introduces additional challenges.
The first challenge is that response to insult and delivery of
therapy is time sensitive. For the treating clinician, this repre-
sents a logistical challenge of getting subjects treated before
irreversible damage develops. This typically occurs within the
first few days after insult [102]. Similarly, cells within the
cochlea respond to insult by altering their homeostasis, which
manifests as a change in protein production and function. For
example, prestin expression in outer hair cells is downregulat-
ed in cells undergoing kanamycin-induced apoptosis [33].
Thus, despite the theoretical utility of prestin as an OHC-
specific protein biomarker, its utility may be limited in the
setting of aminoglycoside-induced apoptosis in both animal
models and in the clinical setting if therapy is not introduced
early enough [33]. Alternatively, proteins can be upregulated
whichmay introduce new biomarker targets, as in the setting of
cisplatin ototoxicity [103]. These concepts will likely warrant
consideration as the concept of biomarker targeting is refined.

Another consideration with this concept is that we are cur-
rently only able to present this treatment approach for acquired
forms of otologic insults in the setting of normal structure and
function of the cochlea prior to insult. Many of the well-
characterized forms of hearing loss are congenital or present
at birth [104], which may eliminate the potential for non-gene-
based therapies to reverse the process. Fortunately, there is
currently a significant amount of animal research being under-
taken that explores treatment and potential therapies of con-
genital and syndromic forms of hearing loss [105, 106].
Future considerations should aim at targeting specific sites
of dysfunction in these genetic forms of hearing loss, particu-
larly as gene therapies become available [107].

Ideally, the binding of the targeting peptide to its biomarker
should not affect the biomarker’s cellular function. However,
as the peptides are expected to target outer membrane proteins
that are exposed to the extracellular environment, it is highly
likely that many of the targeted biomarkers will be receptors or
channel proteins. In such cases, the targeting peptides may act
as an agonist or antagonist modulating cellular function [108].

For instance, care has to be taken employing the pNaKtide
peptide to target the stria vascularis as the protein acts as an
agonist modifying Na/K-ATPase-mediated amplification of
ROS signaling [48, 109]. This concern of altered cellular func-
tion has previously been demonstrated where analogs of NGF
bind TrkA and inhibit neurite outgrowth [66]. Refining and
understanding ligand-target interactions will be necessary to
avoid these unwanted interactions as progress is made.

This review has identified a large number of proteins that
have the potential to act as biomarkers. Unfortunately, ligands
and targeting peptides are not available for the majority of
these proteins. This is an indication that the study of targeted
delivery of therapeutic material to inner ear cells is in its in-
fancy, and the future for targeted nanoparticles to deliver ther-
apies to the inner ear holds great potential. As more work is
accomplished, this technology should also enable genetic ma-
terial to be delivered to cells in order to treat patients with
genetically induced progressive hearing loss in addition to
the acquired forms of hearing loss that we discuss.

Overall, cell-specific targeting for inner ear drug delivery
would fulfill the following criteria: (1) a protein biomarker
that is specific to a single cell type (IHC, OHC, SV, SG,
supporting cells) should be available; (2) this specific bio-
marker should have an accessible extracellular domain; (3) a
ligand that interacts with the cell-specific biomarker protein
should be available; and (4) the ligand-protein interaction
should lead to internalization of the therapy for downstream
action. These ideal characteristics are summarized in Fig. 3.
Despite the challenges that lie ahead in the evolution of
targeted delivery of therapies for acquired inner ear disorders,
progress is occurring. Our understanding of the function and
structure of the cells within the inner ear has evolved tremen-
dously within the last couple of decades. Biomolecular re-
search has elucidated the function of many of the proteins that
we present here as biomarkers and targets for therapeutic de-
livery. It is conceivable that ligand discovery is not far behind.
The essential component to all of this work will be the collab-
orative efforts on the part of clinicians and scientists to make
this concept a reality. Clinicians need to remain unsatisfied
with the status quo of otologic therapies, and scientists need
to continue to explore applications of their work to wide-
spread burden of otologic disorders. This idea presents an
opportunity to apply the discoveries of basic science to the
treatment of otologic disease. Importantly, it also represents
an opportunity to begin the next phase of inner ear therapeu-
tics that addresses the shortcoming of previous generations of
treatments and combines targeted, specific technology as
medicine moves into an era of personalized medicine [110].
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