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A B S T R A C T

Dysregulation of adenosine-to-inosine (A-to-I) RNA editing has been implicated in cancer progression. However, 
a comprehensive understanding of how A-to-I RNA editing is incorporated into miRNA regulation to modulate 
gene expression in cancer remains unclear, given the lack of effective identification methods. To this end, we 
introduced an information theory-based algorithm named REMR to systematically identify 12,006 A-to-I RNA 
editing-mediated miRNA regulatory triplets (RNA editing sites, miRNAs, and genes) across ten major cancer 
types based on multi-omics profiling data from The Cancer Genome Atlas (TCGA). Through analyses of functional 
enrichment, transcriptional regulatory networks, and protein-protein interaction (PPI) networks, we showed that 
RNA editing-mediated miRNA regulation potentially affects critical cancer-related functions, such as apoptosis, 
cell cycle, drug resistance, and immunity. Furthermore, triplets can serve as biomarkers for classifying cancer 
subtypes with distinct prognoses or drug responses, highlighting the clinical relevance of such regulation. In 
addition, an online resource (http://www.jianglab.cn/REMR/) was constructed to support the convenient 
retrieval of our findings. In summary, our study systematically dissected the RNA editing-mediated miRNA 
regulations, thereby providing a valuable resource for understanding the mechanism of RNA editing as an epi
transcriptomic regulator in cancer.

1. Introduction

RNA editing is a widespread and essential modification process that 
alters RNA sequences without affecting the DNA sequences [1]. The 
most common type of RNA editing is the conversion of adenosine to 
inosine (A-to-I), which is catalysed by the adenosine deaminase acting 
on the RNA (ADAR) family of enzymes [2]. Inosine is recognized as 
guanosine by the cellular machinery, thus altering the sequence and 
function of RNA molecules [3]. Previous studies demonstrated that RNA 
editing plays a crucial role in complex diseases, including cancer [4–7]. 
With the development of high-throughput sequencing technologies and 
RNA editing detection methodologies, millions of known editing sites 
have been identified in the human transcriptome [8]. In cancers, most 

informative editing sites are located at genomic regions with unknown 
functions, such as 3′-untranslated regions (UTRs) and intronic regions 
[9,10]. Previous studies have indicated that dysregulation of RNA 
editing in 3′-UTRs can affect post-transcriptional regulation, subse
quently influencing the cancer hallmark-associated processes, such as 
cell proliferation, differentiation, and drug resistance [11–13]. Howev
er, the landscape of the editing sites that mediate post-transcriptional 
regulatory perturbations has not been systematically studied. Further
more, the comprehensive identification of post-transcriptional regula
tion mediated by editing sites in the transcriptome offers a new 
perspective and resource for epitranscriptome-based gene regulation 
strategies.

MicroRNA (miRNA) is a class of non-coding RNAs typically 
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consisting of approximately 22 nucleotides, which post-transcriptionally 
regulates gene expression by binding to the 3′-UTR of target messenger 
RNA (mRNA) molecules [14,15]. The dysregulation of miRNAs has been 
implicated in various diseases, particularly cancer [16]. The miRNA 
regulatory network, composed of regulatory circuits from miRNAs to 
their target genes, provides detailed maps of gene expression regulation 
in specific cellular contexts [17]. Understanding the intricate mecha
nisms of dysregulation of miRNA-gene associations is expected to assist 
in developing therapeutic strategies for complex diseases. Extensive 
studies have indicated the critical role of miRNA regulatory networks in 
tumor progression and treatment [18–20]. Previous studies have 
demonstrated that RNA editing can alter miRNA binding sites, thereby 
influencing miRNA regulation and driving crucial cancer-related func
tions [21–24]. For example, ADAR1-mediated RNA editing in the 3′-UTR 
of MDM2 disrupts miR-155 binding, stabilizing MDM2 mRNA and 
inhibiting p53 activation, which in turn enhances the self-renewal and 
quiescence of chronic myeloid leukemia progenitor cells [21]. Similarly, 
RNA editing in the 3′-UTR of DHFR prevents the binding of miR-25–3p 
and miR-125a-3p, leading to DHFR upregulation in breast cancer, 
enhanced cell proliferation, and methotrexate resistance [22]. Notably, 
most RNA editing events in cancer occur in 3′-UTR, highlighting its 
critical role in mediating miRNA regulation. Consequently, RNA editing 
in the 3′-UTR has the potential to significantly reshape miRNA-gene 
regulatory networks. However, most previous studies have little atten
tion to RNA editing for de novo reconstruction of miRNA regulatory 
networks in cancers. With the continuous emergence of RNA editing 
data and improvements in detection accuracy, there is an urgent need 
for the systematic identification of RNA editing-mediated miRNA reg
ulatory perturbations.

In this study, we used conditional mutual information (cMI) mea
surements [25,26] to identify RNA editing-mediated miRNA regulation 
triplets in ten cancer types. Through analyses of miRNA regulatory 
network, protein-protein interaction (PPI) network modules, and func
tional enrichment, we discovered that RNA editing-mediated miRNAs 
and genes predominantly participate in crucial pathways related to 
cancer, including apoptosis, the cell cycle, platinum drug resistance, and 
immune-related pathways. Furthermore, we identified RNA editing 
site-miRNA-gene triplets associated with drug response and patient 
prognosis. Finally, we constructed an omnibus repository that provided 
a user-friendly interface for the convenient retrieval of our findings 
(freely available at http://www.jianglab.cn/REMR/). Overall, this study 
provides new resources and insights for deciphering potential 
post-transcriptional regulatory mechanisms from the perspective of RNA 
editing mediation in cancer.

2. Materials and methods

2.1. Data collection and preprocessing

The RNA editing profiles of various cancer types were downloaded 
from Synapse (syn2374375, https://www.synapse.org/). The Annovar 
tool [27] was used to re-annotate the genomic information of the RNA 
editing sites. The miRNA expression data (reads per million mapped 
reads [RPM]), gene expression data (transcripts per million mapped 
reads [TPM]), and clinical data of the patient samples were obtained 
from the GDC Data Portal (https://portal.gdc.cancer.gov/). In the pre
sent study, we used log-transformed miRNA and gene expression values.

2.2. REMR algorithm

2.2.1. Prediction of miRNA targets using TargetScan
For the editing sites in 3′-UTRs, sequences of ± 50 base pairs (bp) 

relative to each editing site were extracted by using the bedtools 
(v2.29.2). Based on the 101 bp edited and unedited sequences, the 
TargetScan tool (v7.0) was used to predict potential miRNA binding to 
the sequences [28]. We retained the miRNA-gene associations where the 

editing sites were located in the seed regions.

2.2.2. Calculation of conditional mutual information
For each RNA editing site-miRNA-gene triplet filtered as mentioned 

above, the cMI was computed based on the editing level of the site and 
the expression data of the miRNA and gene, that is, cMI (miRNA, gene | 
site). cMI evaluates the dependence of miRNA regulation on the editing 
levels of sites in the 3′-UTR. To ensure statistical power, triplets were 
required to have simultaneous RNA editing, miRNA expression, and 
gene expression levels in at least 200 samples. As a result, only ten 
cancer types were available for downstream analysis. Here, we used 
equal-width discretization with 10 bins. The R (v4.2.0) package infotheo 
(v1.2.0.1) was used to calculate the cMI of each triplet in each cancer 
type. Moreover, for each triplet, a null distribution of cMI (miRNA, gene | 
shuffle (site)) was constructed by shuffling the sample labels of the 
editing profiles for 1000 randomized permutations. Thereafter, the p- 
value was calculated by counting the number of times the random cMI 
values exceeded the observed cMI value, and then dividing by the total 
number of permutations (1000). A one-tailed test was used to identify 
RNA editing-mediated miRNA regulatory triplets with p < 0.05.

2.3. Validation of RNA editing-mediated miRNA regulations

For each triplet, the samples were sorted in ascending order, based 
on the editing level of the site. All samples were then categorised into a 
high editing group (top 25 %) and a low editing group (bottom 25 %). 
Pearson correlation coefficients of miRNA and gene expression were 
calculated for the two groups. Differential miRNA and gene expression 
analyses between two groups were performed separately using a t-test.

2.4. Functional annotation and enrichment

Functional annotation and enrichment of the gene sets were con
ducted using the R (v4.2.0) package clusterProfiler (v4.6.2) [29]. The 
clusterProfiler package provides two functions, enrichGO and enrich
KEGG, to perform functional enrichment analyses of Gene Ontology 
(GO) terms and Kyoto Encyclopedia of Genes and Genome (KEGG) 
pathways through a hypergeometric test. Functional annotation and 
enrichment of the miRNA sets were conducted using miRNA Enrichment 
Analysis and Annotation Tool (miEAA) [30]. Significantly enriched GO 
terms and KEGG pathways with p < 0.05 were used for the downstream 
analyses.

2.5. Construction and analyses of PPI network

High-quality PPIs were assembled in a previous study that included 
217,160 PPIs connecting 15,970 unique proteins [31]. RNA 
editing-mediated miRNA regulation may affect translation. Therefore, 
we extracted genes in the triplets and their interacting neighbours in the 
PPI network as a neighbour network. The MCODE tool[32] with default 
parameters in Cytoscape was used to identify densely connected mod
ules in the neighbouring network.

2.6. Collections of functional gene sets

Genes in the Cancer Gene Census (CGC), which included mutations 
that had been causally implicated in cancers, were downloaded from 
COSMIC (https://cancer.sanger.ac.uk/census). The KEGG-cancer, 
KEGG-immunity, and KEGG-resistance gene sets were downloaded 
from the KEGG pathway database (https://www.genome. 
jp/kegg/pathway.html). Experimentally validated drug resistance- 
related genes were downloaded from DRESIS [33].

2.7. Identification of prognosis-associated triplets

To identify prognosis-associated RNA editing site-miRNA-gene trip
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lets, patients were randomly divided into training and test sets for each 
cancer type. Next, univariate Cox regression analysis was used to eval
uate the association between patient survival time and editing levels of a 
site, as well as the expression levels of miRNAs and genes separately. A 
negative regression coefficient suggests that an increase in the value of 
this element is associated with increased survival, indicating that it is a 
protective factor. Conversely, a positive coefficient suggests that an in
crease in the value of this element is associated with decreased survival, 
indicating that it is a risk factor. Subsequently, a mathematical formula 
for survival prediction was created, considering both the strength and 
direction of each factor in the triplet for survival. Based on the same 
principle used in previous studies [34], the risk score for each patient 
was calculated as follows: 

RiskScore =
∑k

i=1
aiXi,

where k is the number of molecules in a triplet (site, miRNA, or gene). ai 
is the regression coefficient of the i-th molecule (site, miRNA, and gene) 
obtained from the univariate Cox regression analysis, Xi is the expression 
level or editing level of the i-th molecule. We used a five-fold cross- 
validation repeated 100 times with random groupings to evaluate the 
performance of each triplet model. We calculated the risk scores for the 
samples in the training set and used the median score in training as the 
cut off to categorise the patients into high-risk and low-risk groups. The 
coefficients and risk score cut offs obtained in the training set were then 
applied to the test set. Similarly, we divided the patients in the test set 
into high and low-risk groups. The Kaplan-Meier (KM) curve and log- 
rank test were used to evaluate whether there was a significant differ
ence in survival time between the high and low-risk groups. The time- 
dependent Receiver Operating Characteristic (timeROC) curve is used 
to evaluate the performance of a survival model at specific time points. 
Finally, we selected the triplets with a log-rank test p < 0.05 in at least 
80 out of 100 repeated 5-fold CV.

2.8. Identification of drug response-associated triplets

Drug response data of tumor samples from The Cancer Genome Atlas 
(TCGA) were downloaded from the GDC Data Portal. Only samples 
labelled “progressive disease” and “complete response” were referred to 
as resistant and sensitive samples, respectively. We then defined the 
drug and treated cancer type as a condition, and assigned patient sam
ples to each condition. Here, we selected conditions that included at 
least ten samples from both the resistant and sensitive groups for further 
analyses. Thereafter, a five-fold cross-validation repeated 100 times 
with random groupings was used to evaluate the performance of each 
triplet model. Under each condition, samples were randomly divided 
into five equal groups, ensuring that the number of resistant and sen
sitive samples was balanced across all groups. Univariate logistic 
regression was used to train the model parameters for sites, miRNAs, and 
genes in each triplet, respectively. The model parameters were inte
grated according to the following formula to calculate the probability 
values of drug resistance for the samples: 

prob =
∑m

k=1

1
1 + e− (αk+βkXk)

,

where m represents the number of molecules in a triplet (site, miRNA, 
gene), αk and βk are parameters of the k-th molecules (site, miRNA, and 
gene) obtained from the univariate logistic regression analysis, Xk is the 
expression level or editing level of the k-th molecules. The predicted 
probability values (prob) of > 0.5 indicated drug resistance, whereas 
values of < 0.5 suggested drug sensitivity. We applied the parameters in 
the training sets to the test sets and predicted the drug responses of the 
patient samples in the test sets. The area under the receiver operating 
characteristic curve (AUROC) was used to measure the predictive 

performance of triplet-based models. Triplets with an average AUROC of 
> 0.8 were considered reliable drug response-associated triplets.

3. Results

3.1. Landscape of the RNA editing-mediated miRNA regulatory triplets in 
cancers

To comprehensively analyse of the effect of A-to-I RNA editing on 
miRNA regulation in cancer, we introduced an information theory-based 
method termed REMR to systematically identify RNA editing-mediated 
miRNA regulatory triplets by integrating RNA editing, miRNA expres
sion, and gene expression data from various cancer types in TCGA (refer 
to the Methods section for details). Fig. 1 illustrates the integrative 
framework used in this study. First, we identified miRNA-gene associ
ations with potential A-to-I editing sites in their seed regions. The 
combination of sites, miRNAs and genes was referred to as the potential 
triplet for further screening. Subsequently, the cMI value for each po
tential triplet, which assessed the dependence of miRNA regulation on 
the editing levels of a site, was calculated based on the editing levels 
(site) and the expression levels of molecules (miRNA and gene) in each 
cancer type. The number of samples with available data from the cancer 
types is shown in Fig. 2a, and the number of editing sites before and after 
filtering is shown in Fig. 2b. A total of 2964–23,988 sites were involved 
in the cMI calculation across the cancer types. Statistical significance 
was determined by comparing the actual cMI with that of the null dis
tributions (refer to the Methods section for details). Finally, we identi
fied 12,006 significant RNA editing-mediated miRNA regulation triplets 
in all ten cancer types.

The number of identified triplets varied across the cancer types, 
ranging 216–2743 (Fig. 2c, Supplementary Table S1). In addition, the 
number of miRNA-gene associations affected by the editing sites in each 
cancer type ranged 214–2691 (Fig. 2d). A significant correlation was 
observed between the number of triplets and number of editing sites 
(Supplementary Fig. S1a and Fig. 2e) across different cancer types. 
Similarly, the number of miRNA-gene associations in triplets was also 
significantly correlated with the number of editing sites (Supplementary 
Fig. S1b and Fig. 2f). A previous study showed that large variations in 
the number of informative editing sites among cancer types were pri
marily attributed to differences in the number of tumor samples per 
cancer type and in the number of mappable reads per sample [9]. These 
results indicate that RNA editing-mediated miRNA regulatory triplets 
showed no significant bias toward one or a few cancer types. Further
more, the triplets included 132–559 miRNAs, regulating 104–657 target 
genes modulated by 199–2458 editing sites in various cancer types 
(Fig. 2g). We observed that only 7.7 % of the triplets were recognized in 
at least two cancer types, with most triplets exhibiting cancer-type 
specificity (Fig. 2h). Similarly, only 13.1 % of the miRNA-gene associ
ations were identified in at least two cancer types (Fig. 2i). This may be 
due to the tissue-specific expression of miRNAs in different cancer types. 
In contrast, we observed that 28.9 % of the sites, 74.1 % of the miRNAs, 
and 68.3 % of the genes appeared in at least two cancer types 
(Supplementary Fig. S1c–e), respectively. These findings suggest that 
RNA editing influences various miRNA regulation in different cancer 
types.

3.2. Validation and case study of RNA editing-mediated miRNA 
regulations

To validate the reliability of the identified triplets, we initially 
examined the correlation between editing levels of single site in the 3′- 
UTRs and expression levels of ADAR1, ADAR2, and ADAR3, respec
tively. Compared to ADAR2 and ADAR3, ADAR1 expression exhibited 
the strongest correlation with the editing levels of the sites 
(Supplementary Fig. S2a and Fig. 3a), consistent with a previous study 
[2], suggesting that the data were qualitatively reliable for downstream 
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analyses. In this study, the computational approach for identifying 
triplets follows a two-step filtering process. We observed that the editing 
levels of the sites in the triplets identified at each step exhibited a higher 
correlation with the expression levels of ADAR1 than those not selected 
(Fig. 3b), which has been validated in most cancer types (Supplementary 
Fig. S2b). In addition, ADAR enzymes must bind to mRNA to perform 
their editing functions [35,36]. Thus, a correlation analysis between the 
expression levels of ADARs and genes harboring editing sites in the 
3′-UTRs was further conducted. ADAR1 expression levels exhibited the 
strongest correlation with gene expression levels compared to ADAR2 
and ADAR3 (Supplementary Fig. S2c and Fig. 3c). Similar to the analysis 
of the editing site, we observed that the expression levels of genes in the 
triplets identified at each step exhibited a stronger correlation with the 
expression levels of ADAR1 than those not selected (Fig. 3d), which was 
also observed in most cancer types (Supplementary Fig. S2d). This result 

confirms the effectiveness of our two-step filtering process. Collectively, 
these results suggested that ADAR1 played more important roles for the 
editing of sites in the triplets, affecting the expression of genes harboring 
the editing sites in the 3′-UTRs.

On the other hand, we also validated the reliability of the miRNA- 
gene associations in the triplets. Specifically, experimentally validated 
miRNA-gene associations in human tissues or cell lines were obtained 
from miRTarBase [37] and TarBase [38]. We determined that 
miRNA-gene associations in triplets were significantly enriched in the 
experimentally validated associations (Fig. 3e, hypergeometric test, 
p = 2.56 × 10− 130). In addition, we showed two examples to illustrate 
our hypothesis (refer to the Methods section for details): (1) The editing 
of chr2:216808755 in the 3′-UTR of MREG may lead to the loss of 
miR-130–3p and MREG association (Fig. 3f): the expression levels of 
miR-130–3p were not correlated with MREG expression levels in the 

Fig. 1. Workflow of dissection of RNA editing-mediated miRNA regulations. Using a miRNA i (miRNAi), a potential target gene j (Genej), and an A-to-I RNA editing 
site e (sitee) within the seed region of miRNA binding as examples, the diagram illustrates the utilization of multi-omics data in identifying RNA editing-mediated 
miRNA regulatory triplets. The identified triplets were analyzed for different functional characteristics, including cancer hallmarks and underlying mechanisms, 
as well as their association with drug response and prognosis.
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high editing group, but showed a significant negative correlation with 
MREG expression levels in the low editing group. The edited site may 
have disrupted the association between miR-130–3p and MREG, leading 
to increased MREG expression in the high editing group; (2) The editing 
of chrX:48436349 in the 3′-UTR of RBM3 may lead to the gain of 
miR-139–5p and RBM3 association (Fig. 3g): In our results, the high 
editing group showed a significant negative correlation between the 
expression levels of miR-139–5p and RBM3, whereas no correlation was 
observed in the low editing group. It is possible that A-to-I editing led to 
the gain of miR-139–5p and RBM3 association, resulting in a decrease in 
RBM3 expression in the high editing group. Collectively, the RNA 
editing-mediated miRNA regulation identified in this study may serve as 
a post-transcriptional regulatory resource for gene expression in cancer.

3.3. Overview of RNA editing-mediated miRNA regulatory networks

We identified miRNA regulation that depend on RNA editing levels 
of specific site in the 3′-UTR for each cancer type. This miRNA regulation 
forms an interconnected miRNA regulatory network, which is defined as 
an editing-mediated miRNA regulatory network (edMRN), for each 
cancer type. Furthermore, the edMRNs were constructed separately for 
each cancer type. Subsequently, we combined all the edMRNs as pan- 
cancer edMRN (Supplementary Fig. S3a). We observed a power-law 
distribution in the degrees of nodes within these edMRNs (Fig. 4a and 

Supplementary Fig. S3b), suggesting that these networks adhered to a 
scale-free structure. In such networks, a few nodes, referred to as hubs, 
exhibited a substantial number of connections.

Hubs play a crucial role in scale-free networks. Hence, the top ten 
genes with the highest degrees were selected as hub genes in the edMRN 
for each cancer type (Fig. 4b). We observed that 81.4 % of these genes 
have been experimentally validated for their involvement in cancer 
progression and drug resistance, including XIAP [39], PSMB2 [40], CTSS 
[41], and CTSB [42]. We conducted functional annotation and enrich
ment analysis of the hub genes to identify critical functions and path
ways associated with cancer (Supplementary Table S2), such as 
apoptosis, the PPAR signalling pathway, fatty acid metabolism, and 
immune-related functions. For instance, XIAP, a crucial member of the 
apoptosis inhibitory gene family, is closely linked to tumor progression 
[43,44], and has been validated as a potential therapeutic target in 
cancer [39]. In this study, we identified several editing sites in the 
3′-UTR of the XIAP that may influence miRNA regulations. Furthermore, 
we showed the miRNA-gene associations involving XIAP, identified in at 
least two cancer types (Fig. 4c). These triplets contained 24 miRNAs and 
40 editing sites. Notably, 11 of these miRNAs had been experimentally 
confirmed to regulate XIAP, including miR-129–5p [45] and miR-10a-5p 
[46]. In addition, we predicted several potential miRNAs that regulate 
XIAP, including miR-769–3p and miR-214–5p.

Similarly, we screened the hub miRNAs in the edMRN of each cancer 

Fig. 2. Overview of A-to-I RNA editing-mediated miRNA regulatory triplets in ten cancer types. a) Number of samples used for each cancer type. b) Number of sites 
before and after filtering in each cancer type. c) Number of triplets identified in each cancer type. d) Number of miRNA-gene associations in triplets in each cancer 
type. e) Associations between the number of filtered sites and the number of identified triplets across ten cancer types. f) Associations between the number of filtered 
sites and the number of miRNA-gene associations across ten cancer types. R2 values were calculated using linear regressions in e and f. g) Number of sites, miRNAs, 
and genes in triplets in each cancer type. h) Number of triplets that were identified in a different number of cancer types. i) Number of miRNA-gene associations that 
were identified in a different number of cancer types.
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type (Supplementary Fig. S3c). All 31 hub miRNAs identified in ten 
cancer types were confirmed to be associated with cancer occurrence, 
progression, metastasis, or drug resistance. We used the miEAA tool [47]
to conduct functional annotation and enrichment analysis of hub miR
NAs, revealing their involvement in crucial cancer-related functions and 
pathways (Supplementary Table S3). These pathways include apoptosis, 
epithelial-mesenchymal transition, and B-cell receptor signalling 
pathway. A previous study has reported that miR-24–3p is associated 
with innate immunity and cancer malignancy [48]. Furthermore, we 
identified miRNA-gene associations involving miR-24–3p in at least two 
cancer types (Supplementary Fig. S3d). Triplets of miR-24–3p involved 
17 genes and 30 editing sites, with 64.7 % (11/17) of the genes exper
imentally confirmed as targets of miR-24–3p, such as KPNA6 [49]. We 
also predicted the potential target genes regulated by miR-24–3p, 
including APOL6, GATD1, and PTGR2. Collectively, these results suggest 
that RNA editing-mediated miRNA regulation is a crucial biological 
process in human cancers.

3.4. Biological insights of RNA editing mediated miRNA regulation

We observed that the intersection of genes within triplets was larger 
than that of triplets between any two cancer types (Supplementary 
Fig. S4a), indicating the presence of similar functional consequences of 

RNA editing across different cancer types. To further elucidate the 
biological functions governed by RNA editing-mediated miRNA regu
lation, we conducted a functional enrichment analysis for genes 
involved in triplets in each cancer type. Cancer-related GO terms were 
significantly enriched across various cancer types, including RNA 
modification, ribosome biogenesis, and ncRNA processing 
(Supplementary Fig. S4b). Moreover, cancer-related pathways, 
including RNA polymerase, platinum drug resistance, and apoptosis, 
were significantly enriched in various cancer types (Supplementary 
Fig. S4c). Abnormalities in miRNA regulation could affect the trans
lation of target genes [50]. Therefore, we investigated the interactions 
between genes within the triplets in the PPI network. A highly reliable 
PPI network has been obtained from a previous study [31]. Genes in the 
CGC and cancer-related pathways from KEGG were obtained as 
cancer-related genes. Drug resistance-related genes were extracted from 
the KEGG and DRESIS databases [33], and immune-related genes were 
downloaded from the KEGG database. We observed that genes in the 
triplet were more likely to interact with genes related to cancer, im
munity, and drug resistance in the PPI network (Supplementary 
Table S4, chi-square test, CGC p < 2.2 ×10− 16, KEGG-cancer 
p < 2.2 ×10− 16, KEGG-immunity p = 1.3 ×10− 14, DRESIS 
p < 2.2 ×10− 16, KEGG-resistance p = 9.7 ×10− 16). These results sug
gest that miRNA regulation influenced by RNA editing may mediate 

Fig. 3. Potential regulatory mechanisms of RNA editing. a) Distribution of Spearman correlation coefficients between the RNA editing levels of each site in the 3′- 
UTR of genes within triplets and the expression levels of ADAR1, ADAR2, and ADAR3. b) Comparison of Spearman correlation coefficients between ADAR1 
expression and RNA editing levels across the all-sites, step 1 and step 2 groups. Step 1 represents the first screening, where the editing site occurs within the miRNA- 
gene binding region. Step 2 represents the second screening, where conditional mutual information (cMI) was applied to further refine the candidate triplets. Sites 
that did not pass either filtering step are classified as the all-sites group. c) Distribution of Spearman’s correlation coefficients between the expression of gene 
harboring editing sites in the 3′-UTR and the expression of ADAR1, ADAR2, and ADAR3. d) Comparison of Spearman correlation coefficients between ADAR1 and 
other gene expression across the all-genes, step 1 and step 2 groups. e) Overlap of miRNA-gene associations in the triplets and the experimentally validated pairs in 
miRTarBase and TarBase databases. Significance of the overlap was assessed using a hypergeometric test. f, g) Case studies of RNA editing-mediated miRNA reg
ulations. Boxplots show miRNA and gene expression in the high and low editing level group. Lines show the correlation between miRNA and gene expression in two 
subgroups. Blue, low editing level group; red, high editing level group. In these analyses, the significance of the difference between two groups was assessed using a 
Wilcoxon test.
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important biological functions related to cancer, immunity, and drug 
resistance.

In addition, we explored the biological functional modules mediated 
by RNA editing. Briefly, we extracted genes in triplets and their directly 
interacting neighbours from the PPI network to construct a neighbour 
network. Subsequently, we utilized the MCODE tool to identify densely 
connected modules in the neighbouring network [32]. Eighteen modules 
were identified (Supplementary Table S5), and the top five modules with 
the highest scores were presented in Fig. 5a. Functional enrichment 

analysis of each module revealed that densely connected modules gov
erned distinct biological functions (Fig. 5b). Specifically, Module 1 was 
primarily involved in ribosome biogenesis and assembly, Module 2 
played a key role in tumor stem cell differentiation and immune-related 
functions, Module 3 was primarily associated with functions related to 
DNA replication, cell cycle, and immune response, Module 4 was pri
marily involved in functions related to DNA transcription and RNA po
lymerase, and Module 5 was primarily involved in cell apoptosis. These 
results suggest that RNA editing may mediate different miRNA 

Fig. 4. Overview of RNA editing-mediated miRNA regulation networks (edMRNs). a) Node degrees in the edMRNs exhibit a power-law distribution for each cancer 
type. b) Hub genes in each cancer type. The darker the color, the higher the degree. c) 24 miRNAs were identified to target XIAP in at least two cancer types, and the 
triplets including these miRNA-gene associations are shown. Red miRNA names indicate that these miRNAs have been experimentally confirmed to target XIAP.
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regulations that affect distinct cellular functional mechanisms.

3.5. Clinical relevance of identified triplets

Recent studies have indicated that RNA editing signatures can be 
used to stratify patients with different prognoses, suggesting their po
tential as effective prognostic markers [51,52]. Thus, we identified 
prognosis-associated RNA editing site-miRNA-gene triplets by inte
grating the clinical data of patients (refer to the Methods section for 
details). Specifically, for all ten cancer types, we identified a total of 
15.6 % triplets associated with prognosis (Fig. 6a, Supplementary 
Table S6). To verify the key roles of triplets in predicting patient prog
nosis, we first compared the predictive performance of models based on 
triplets and those based on single molecules (site, miRNA, and gene) in 
the triplets. Compared to models based on single molecules, the 
triplet-based models showed better predictive performance (Fig. 6b). 
This indicates that prognostic-associated triplets could serve as markers 
for prognostic subtypes. We showed the top ten prognostic-associated 
triplets with the highest significance based on their p-values in the full 
sets (Fig. 6c).

As an illustrative example, we highlight a triplet involving 
chr1:204521711, miR-9–5p, and MDM4. Our analysis predicts that, RNA 
editing at chr1:204521711 in the 3′-UTR of MDM4 may disrupt the 
binding of miR-9–5p, potentially leading to altered mRNA stability. 
Previous studies have demonstrated that inhibiting MDM4 can activate 
the p53 tumor suppressor pathway, which in turn inhibits tumor growth 
[53]. Additionally, the prognostic risk model based on this triplet 
effectively predicted survival outcomes for lower-grade glioma (LGG) 
patients, with a highly significant log-rank test result (p < 0.0001, 
Fig. 6d). The time-dependent receiver operating characteristic (time
ROC) analysis further demonstrated the robust predictive performance 
of the prognostic risk model, with area under the curve (AUC) values of 

0.87 at 1 year, 0.80 at 2 years, and 0.78 at 3 years (Fig. 6e). These 
findings underscore the relevance and efficacy of the identified triplet in 
prognosis prediction.

Another example of a prognostic-associated triplet identified in our 
study involves chr17:4929934, KIF1C, and miR-15b-5p. The RNA edit
ing at chr17:4929934 within the 3′-UTR of KIF1C may lead to gain of 
binding site of miR-15b-5p, which could alter the regulation of KIF1C 
expression. KIF1C, a member of the kinesin-3 family, is recognized as a 
crucial factor in cancer cell invasion [54]. The prognostic model 
developed based on this triplet exhibited strong predictive power, with a 
log-rank test p < 0.0001 and AUC values of 0.82 at 1 year, 0.85 at 2 
years, and 0.82 at 3 years (Fig. S5a). These results suggest that the 
regulatory impact of the editing event on KIF1C via miR-15b-5p may 
contribute to cancer progression, making this triplet a robust marker for 
prognostic assessment. Other triplets among the top candidates that 
were significantly associated with patient prognosis are shown in Sup
plementary Fig. S5b–i. Collectively, our study successfully identified 
RNA editing site-miRNA-gene triplets associated with prognosis, 
providing valuable support and reference for the development of tumor 
prognostic markers.

3.6. Drug resistance mechanism revealed through the identified triplets

The dysregulation of RNA editing is associated with anticancer drug 
resistance [55]. In this study, we discovered that RNA editing-mediated 
miRNA regulation can affect crucial genes in drug resistance-related 
pathways, including platinum drug resistance pathways, the cell cycle, 
and apoptosis (Supplementary Fig. S4b and c, and Supplementary 
Table S2, 3). Therefore, we integrated data on RNA editing levels, along 
with miRNA and gene expression data, and identified 41 triplets asso
ciated with drug response. This analysis, which was performed under 
five conditions across four distinct cancer types (Fig. 7a, Supplementary 

Fig. 5. Biological functional modules mediated by RNA editing in protein-protein interaction (PPI) network. a) Top five modules identified by MCODE in the 
neighbouring network of genes in the triplets. The colors of nodes represent a known function. b) Top ten significantly enriched GO terms (p < 0.05) in each module.
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Table S7), was based on the implementation of a logistic regression al
gorithm (refer to the Methods section for details). Furthermore, the 
triplet-based models exhibited better predictive performance than the 
single-molecule-based models (Fig. 7b). This result indicated that the 
drug response-associated triplets identified in this study could serve as 
biomarkers for precision medicine.

In our study, we identified that the RNA editing at chr1:179325742 
in the 3′-UTR of SOAT1 may lead to the loss of miR-485–5p binding. 
Previous research has reported that dysregulation of SOAT1 is strongly 
linked to the proliferation of glioma[56]. Furthermore, miR-485–5p has 
been shown to be significantly related to drug resistance in glioma [57]. 
Therefore, this RNA editing site has a potential impact on drug resis
tance in glioma. Our analysis further demonstrated that a model based 
on this triplet effectively predicts the response of LGG patients to 
temozolomide. This triplet-based model shows significantly superior 
predictive performance compared to models based on single molecules 
(Fig. 7c). These findings suggest that incorporating the impact of RNA 
editing sites on miRNA binding sites into predictive models can more 
accurately assess drug response of LGG patients.

In addition, we also examined the RNA editing at chr11:125526139 
in the 3′-UTR of CHEK1. This RNA editing event may lead to the gain of 
miR-150–5p binding. Previous studies have shown that CHEK1 dysre
gulation impacts DNA repair and apoptosis [58]. Moreover, miR-150–5p 
has been implicated in drug resistance across various types of cancer 
[59,60]. Our research found that this triplet effectively predicts the drug 

response of bladder cancer (BLCA) patients to cisplatin. This 
triplet-based model outperforms single-molecule-based models in pre
dictive performance (Fig. 7d). Fig. S6 presented the model performance 
based on several triplets associated with cancer progression and drug 
resistance. In summary, the miRNA regulations modulated by RNA 
editing could serve as biomarkers for predicting drug response and 
exploring the mechanisms of anticancer drug resistance.

4. Discussion

RNA editing in 3′-UTR of transcripts has been recognized as modu
lators of gene expression by affecting binding of miRNAs [22,61]. The 
dysregulation of RNA editing is closely associated with the progression 
of numerous complex diseases, including cancer. Studies have reported 
that RNA editing events are abundant in the non-coding regions in 
cancer. Most previous studies have focused on specific sites or coding 
regions. However, a comprehensive investigation of the potential func
tions of RNA editing in cancer is lacking.

Perturbations in miRNA regulation have been reported and studied 
in several cancer types [62,63]. Unraveling the potential factors un
derlying cancer disruption has emerged as an important and challenging 
topic in the field of tumor biology. In this study, we used cMI to sys
tematically delineate the mechanisms of A-to-I RNA editing-mediated 
miRNA regulation by leveraging multi-omics data from TCGA. Our 
study encompassed the entire transcriptome and explored each RNA 

Fig. 6. Prognosis-associated triplets in various cancer types. a) Survival landscape of site-miRNA-gene triplets. The X-axis indicates cancer type, and the Y-axis 
indicates the number of 5-fold cross-validation iterations with a log-rank test p < 0.05. Each dot represents a triplet identified in each cancer type. Dots are marked by 
the same color as the corresponding cancer type. b) Comparison of the concordance index (C-index) of single-molecule-based (site editing level, miRNA expression, or 
gene expression) and triplet-based risk models. The difference among groups was calculated using a Wilcoxon test. c) Top 10 candidate prognosis-associated triplets. 
d) For the triplet, chr1:204521711_MDM4_miR-9–5p, KM plot of survival for Lower Grade Glioma (LGG) patient with different risk scores. The survival difference 
among groups was calculated using a log-rank test. Red, high-risk group; blue, low-risk group. e) Time-dependent ROC curves illustrate the model’s ability to predict 
outcomes at different time points.
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editing site across multiple cancer types. Firstly, we predicted that 
editing events in 3′-UTRs of genes could lead to the gain or loss of miRNA 
binding, specifically focusing on the seed regions. This not only ensured 
the reliability of the identified miRNA-gene associations but also 
reduced the computational time for subsequent analyses. Next, by 
integrating the RNA editing, miRNA, and gene expression profiles of 
patients with tumors from TCGA, we used cMI measurements to identify 
miRNA regulation mediated by RNA editing in each cancer type. In 
particular, cMI has been used to effectively assess the dependence of 
transcriptional regulation on methylation levels of CpG sites in cancers 
[25]. We observed that the miRNA-gene associations in our results were 
significantly enriched in experimentally validated miRNA-gene associ
ations. This underscores the reliability of the triplets identified in this 
study. In this study, we constructed an edMRN for each of the ten major 
cancer types by linking miRNAs and genes in triplets. The edMRN rep
resents a novel reconstruction of the miRNA regulatory network medi
ated by RNA editing. Moreover, we systematically explored the 
functional implications of RNA editing-mediated miRNA regulation in 
both miRNA regulation and PPI networks. The genes in the triplets 

exhibited a preference for interacting with cancer, immune, and drug 
resistance-related genes, highlighting their potential involvement in 
crucial biological processes and functions. In addition, we explored the 
clinical relevance of these triplets and uncovered their potential as 
biomarkers for predicting patient prognosis and drug response. These 
findings further underscores the importance of the triplets identified in 
our study for understanding the regulatory effect of RNA editing ab
normalities on cancer progression.

However, this study has some inherent limitations associated with 
computational predictions, underscoring the need for comprehensive 
experimental validation to augment the robustness of our findings in the 
future. Due to sample size constraints, our study currently covers ten 
major cancer types from the TCGA. As more extensive and diverse 
datasets become available, we plan to extend our algorithm to additional 
cancer types. This will enhance our understanding of RNA editing’s role 
across a broader range of cancers. Furthermore, integrating a broader 
spectrum of omics data, such as DNA mutations, copy number varia
tions, and epigenetics, has the potential to boost the accuracy of iden
tifying and quantifying the effect of RNA editing. Additionally, the 

Fig. 7. Drug response-associated triplets across different conditions. a) Drug response landscape of site-miRNA-gene triplets. The X-axis indicates condition, and the 
Y-axis indicates average AUROC in repeat 5-fold cross-validation (CV) 100 times. Each dot represents a triplet in each condition, and the color of dots represents 
conditions. b) Comparison of performance (AUROC) between models based on single molecule (site, miRNA, or gene) and triplets. Each Row represents a drug 
response-associated triplet. c, d) For two candidate triplets, chr1:179325742_SOAT1_miR-485–5p in LGG_Temozolomide and chr11:125526139_CHEK1_miR-150–5p 
in BLCA_Cisplatin, the comparison of performance of triplet-based and single-molecule-based models.
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choice of discretization methods and bin number can influence results. 
In the future, emerging gold-standard datasets will help optimize dis
cretization methods and bin number, improving accuracy and mini
mizing biases. Moreover, cMI is a valuable measurement for capturing 
both linear and non-linear regulatory interactions, making it particu
larly effective for revealing complex miRNA-gene dependencies. Our 
two-step filtering framework, which first identifies RNA editing sites 
that affect miRNA binding and then uses cMI to assess the strength of 
dependencies, aims to minimize false positives. Future work will focus 
on expanding and validating this framework using more extensive data 
and experimental studies. RNA editing can affect miRNA regulation, 
leading to changes in mRNA levels. Thus, the emerging proteomic data 
from patient with tumors will provide valuable support for compre
hending RNA editing-mediated miRNA regulation. Our study focused 
primarily on regulatory effects of RNA editing on miRNA-mediated gene 
expression. However, notably, additional post-transcriptional regulato
ry factors, such as long non-coding RNAs or RNA-binding proteins, 
should be included in future studies. Despite these limitations, our work 
provides valuable insights into the intricate landscape of RNA editing- 
mediated miRNA regulation in cancer, paving the way for further 
investigation in this field.

5. Conclusions

In conclusion, an information theory-based method REMR was used 
to systematically identify RNA-mediated miRNA regulation across 
various cancer types using TCGA multi-omics data. These results provide 
a comprehensive functional evaluation of RNA editing-dependent 
miRNA regulation in cancers. This study provides a computational al
gorithm and serves as a resource for exploring the regulation of gene 
expression and the mechanisms related to cancer progression.
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