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INTRODUCTION

Gastrointestinal stromal tumors (GIST) are the most 
common mesenchymal tumors of the gastrointestinal 
system. These tumors originate from Cajal stromal cells, 
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with 95% staining positive for CD117 (c-KIT), and 70% 
staining positive for CD34 (1, 2). Previously, unless a 
characteristic expression of c-KIT and CD34 antigens was 
identified, the histopathological classification of tumors 
was challenging (1). As a result, these tumors have been 
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variably referred to as leiomyomas, leiomyosarcomas, 
and leiomyoblastomas. GIST have different degrees of 
tumor differentiation and malignant potential. Moreover, 
the degree of malignancy is closely related to the risk of 
tumor implantation and metastasis (1-3). In recent years, 
numerous risk prediction standards have been established, 
including the National Institutes of Health (NIH) modified 
criteria (4), and the Armed Forces Institute of Pathology 
(AFIP) criteria (5). The most commonly used risk grading 
standard is the NIH modified criteria, that classifies the risk 
of GIST according to the location, size, mitotic count, and 
tumor rupture, and ranges from very low to high risk (4). 
Among the various risk grading standards, the mitotic count 
is a major evaluation criteria for tumor differentiation. 
The preoperative pathological examination is not routinely 
applied to GIST (4-8). Percutaneous biopsy has the risk 
of causing tumor hemorrhage and intra-abdominal tumor 
spread (9). On the other hand, it is difficult to perform 
Endoscopic Ultrasound-Guided Fine Needle Aspiration on 
some GIST growth sites. Therefore, it may not be easy to 
obtain the preoperative biopsy data of patients diagnosed 
with (7, 9, 10). Preoperative abdominal CT enhancement 
examination can make a more accurate observation of the 
size, location, and rupture of the tumor (11, 12). However, 
there are limited studies investigating whether it can 
predict the mitotic count of GIST.

Artificial intelligence (AI) has developed rapidly in the 
medical field. Especially in medical imaging, computer 
vision technology is used to rapidly read and intelligently 
diagnose disease (13-15). As one of the power algorithms 
of AI, deep learning can simplify the procedure by learning 
predictive features directly. Moreover, compared to classical 
machine learning, it can automatically extract more 
high-level and abstract features, and strongly support 
the translation from AI into clinical application (16). 
Existing studies of various diseases such as lung cancer 
have demonstrated that deep learning can be used to 
comprehensively assess the malignancy potential of a 
tumor. It may potentially improve the accuracy of diagnosis, 
prognosis, and prediction (17-20). The purpose of this study 
was to develop a predictive model for the mitotic index of 
local primary GIST, based on a deep learning algorithm. 

MATERIALS AND METHODS

Ethics
Ethics Committee of Peking University First Hospital 

approved this retrospective study (2017-1382). This study 
was exempt from patient informed consent requirements. 

Study Population
This retrospective study included 237 patients, that 

underwent GIST surgery between December 31, 2018, and 
January 1, 2010. Sixteen patients were excluded for the 
following reasons: ten patients had incomplete imaging 
data, two patients had received neoadjuvant therapy 
before surgery, and for four patients, the pathological 
mitotic counts were not available. Thus, the total number 
of patients enrolled was 221 (105 males and 116 females: 
mean age 60.9 ± 11.3 years, range 31–82 years). All 
included patients met the following criteria: 1) patient 
underwent radical surgery in our hospital; 2) pathological 
examination of postoperative specimens, combined 
with immunohistochemistry and morphological features, 
confirmed that the patient had GIST; 3) contrast-enhanced 
CT was performed within 15 days prior to surgery; 4) 
detailed clinical and pathological data was available; 5) 
patient did not receive imatinib or other tyrosine kinase 
inhibitors as neoadjuvant therapy prior to surgery.

According to the postoperative pathological results and 
the mitotic count classification criteria of the National 
Comprehensive Cancer Network (NCCN) prognosis prediction 
guidelines (7), 147 cases were classified into a low mitotic 
count group (mitotic count ≤ 5/50 HPFs), and 74 cases were 
classified into a high mitotic count group (mitotic count 
> 5/50 HPFs). A detailed flow diagram of the study patients 
is described in Figure 1. The results included a training set 
of 108 cases, a validation set of 20 cases, and a test set of 
20 cases.

Image Acquisition and Selection
Prior to surgical resection, abdominal enhanced CT 

examinations of all enrolled patients were performed, using 
one of the following CT equipment: Siemens Somatom 
Definition Flash (Siemens Medical Solutions); Philips 
Brilliance iCT (Philips Medical Systems); Philips Brilliance 
64 (Philips Medical Systems); GE Discovery CT750 (GE 
Healthcare); and GE LightSpeed VCT (GE Healthcare). The 
other acquisition parameters were as follows: 120 kV tube 
voltage, 150–350 mAs tube current, 0.5–0.8 seconds tube 
rotation time, 64 x 0.625 mm detector collimation, 350 x 350 
mm field of view, 512 x 512 matrix, 1 mm section thickness, 
and 1 mm reconstruction interval. Prior to CT examinations, 
the patients were required to fast for at least for six hours. 
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For CT examinations, 80 mL to 100 mL of iodinated contrast 
medium was injected intravenously at a rate of 3.0 mL/s. 
The portal venous phase images (obtained 60 seconds after 
injection of the contrast agent) were selected for this study.

Segmentation of Region of Interests
As shown in Figure 2B, the tumor area was manually 

labelled as a region of interest (ROI) on the workstation 
(IntelliSpace Discovery). A radiologist with four years of 
work experience used the software to volumetrically depict 
tumors in thin-slice contrast-enhanced CT (CE-CT) images in 
the portal venous phase and recorded the tumor sites. The 
data obtained were validated and modified by a radiologist 
with 20 years of experience in abdominal imaging diagnosis. 

Image Preprocessing
Image data format was converted from Nifty to PNG. The 

final PNG format was used as the training input data. To 
achieve this, the images were pre-processed as follows. 
Finally, as depicted in Figure 2C, the pre-processed images 
were obtained.

1) The CT images were set to a window width 300 
Hounsfield unit (HU) and window level 30 HU, which are 
the usual settings required for observing a CT image of the 
abdomen.

2) The images were cropped based on the labelled areas 
to obtain images with only the ROIs.

3) Images that had an area of less than 1 cm2 after 
cropping were removed.

4) The cropped images were resized to a 224 x 224 matrix.

Transfer Learning Based on the VGG16 Convolutional 
Neural Network

VGG16 was used for transfer learning of the binary 
classification model. The VGG16 architecture (Fig. 3) 
consisted of 13 convolutional layers, 5 maximum pooling 
layers, 3 fully-connected layers, and finally, a 1000-way 
softmax classifier. Max-pooling was performed over a 2 x 2 
pixel window, with stride 2 (21). In this study, we modified 
the VGG16 model. The details of the model modifications 
are provided in the Supplementary Materials.

Model Training Parameters and Details
The parameters and details of our model training are 

described below: software environment: Python 3.6; 
hardware environment: NVIDIA Tesla P100 16 G; memory: 
256 G. The initial learning rate was set to 0.00001. The 
batch size was set to 3 and the original image size was 
224 x 224. As soon as the epoch reached 60, the loss value 
of the validation set was dropped to a stable level. We 
then halted the training. The final model had the lowest 
validation loss.

Output of Prediction Results and Model Performance 
Evaluation Indicators

The prediction results were studied for each image from 
each patient, at both, the image-level and the patient level. 
The image-level prediction results were integrated into the 

237 patients GIST

147 patients (low†)

74 patients (low)

Training cohort
54 patients (low)

+
54 patients (high)

Validation cohort
10 patients (low)

+
10 patients (high)

Test cohort
10 patients (low)

+
10 patients (high)

74 patients GIST (high‡)

16 patients excluded
- not eligible*

Random selection

Random selection

Fig. 1. Flow diagram of the study patients. *Sixteen patients were excluded for the following reasons: 10 patients had incomplete imaging 
data, two patients received neoadjuvant therapy before surgery, and four patients had missing pathological mitotic counts. †Low mitotic 
count (≤ 5/50 HPFs), ‡High mitotic count (> 5/50 HPFs). GIST = gastrointestinal stromal tumors, HPFs = high-power fields
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prediction results for each patient. At the patient level, 
if more than half of the images predicted a high mitotic 
count, the patient was considered to be in the high mitotic 
count group, and vice versa. Sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value 
(NPV) of the model were evaluated at these two levels. 
Furthermore, the model performance, at both, the image 
level and patient level, was assessed with ROC curves. 

Further, according to the AFIP criteria (5), the predicted 
mitotic count group of each patient was combined with the 
tumor site and size (according to the volume of interest, 
the long diameter of the tumor was the output value for the 
model) to predict the risk category of each the tumor.

Statistical Analysis
Statistical analysis was performed using SPSS version 

20.0 (IBM Corp.). T tests and chi-square tests were applied 
for the continuous variables and the categorical variables, 
respectively. ROC analysis was used to evaluate the efficacy 
of the model at the image level and the patient level. A 
two-sided p value < 0.05 was considered as statistically 
significant. 

RESULTS

A total of 148 contrast-enhanced abdominal CT images 
from GIST patients were studied. Patient characteristics in 
the training, validation, and test datasets are presented in 

Fig. 2. A 72-year-old man with primary GIST. 
Postoperative pathology showed a mitotic count of 8/50 HPFs. (A-C) showed the original axial CT image, segmented image, and pre-processed 
image of the tumor respectively. We used image labeling software to segment the tumor area in the CT image as the region of interest, which 
is the blue area in (B). Next, image preprocessing was performed on the basis of image segmentation and got the preprocessed image (C). The 
developed model predicted the image mitotic index classification and output the corresponding class activation heatmap (D).

A

C

B

D
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Table 1.
The statistical results at the image level are represented 

in Table 2. Three ROCs were plotted, and the area under the 
curves (AUCs) were 0.887 (95% confidence interval [CI]: 
0.878–0.895), 0.847 (95% CI: 0.826–0.866), and 0.771 
(95% CI: 0.750–0.791), respectively (Fig. 4A). In the test 
dataset, the sensitivity was 85.7% (95% CI: 0.834–0.877) 
and the specificity was 67.5% (95% CI: 0.636–0.712). The 
ROCs at the patient level are represented in Figure 4B. The 
AUCs in the training, validation, and test sets were 0.907 
(95% CI: 0.836–0.955), 0.800 (95% CI: 0.563–0.943), and 

0.800 (95% CI: 0.563–0.943), respectively. The sensitivity 
of the test dataset was 90.0% (95% CI: 0.541–0.995), the 
specificity was 70.0% (95% CI: 0.354–0.919), the PPV was 
75.0% (95% CI: 0.428–0.933), and the NPV was 87.5% (95% 
CI: 0.467–0.993) (Table 3). In addition, a class activation 
heatmap was also obtained (Fig. 2D).

Furthermore, given the differences between the anatomic 
sites (i.e., stomach, non-stomach), we tentatively explored 
diagnostic performance by location. For all gastric GIST 
cases (67) in the training set, the prediction model 
performed with an accuracy of 91.0% (95% CI: 0.840–0.981), 

224 x 224 x 3

112 x 112 x 128

56 x 56 x 256
28 x 28 x 512

14 x 14 x 512

7 x 7 x 512

Convolution + ReLU

Fully nected + ReLU
Max pooling

Softmax

1 x 1 x 4096 1 x 1 x 1000

224 x 224 x 64

Fig. 3. VGG16 neural network architecture.

Table 1. Clinical Characteristics of Patients in Different Cohorts

Mitotic Index
Training Cohort (n = 108) Validation Cohort (n = 20) Test Cohort (n = 20)

≤ 5/50 HFPs > 5/50 HFPs P ≤ 5/50 HFPs > 5/50 HFPs P ≤ 5/50 HFPs > 5/50 HFPs P
Gender 0.700 0.350 1.000

Male 28 25 8 5 5 4
Female 26 29 2 5 5 6

Age (years) 60.8 ± 10.2 60.2 ± 11.2 0.768 63.8 ± 10.9 62.7 ± 12.4 0.835 58.9 ± 11.3 63.3 ± 11.1 0.392
Tumor site 0.321 1.000 1.000

Gastric 36 31 6 7 5   6
Non-gastric 18 23 4 3 5   4

Tumor size (cm) 5.4 ± 4.1 7.7 ± 4.7 0.007 4.5 ± 1.6 9.5 ± 5.6 0.014 7.2 ± 4.2 13.2 ± 9.8 0.089
Risk categories

None   8   4 1 0 0   0
Very low 19   0 3 0 3   0
Low 16   0 5 0 2   0
Moderate   6 13 0 2 2   0
High   5 37 1 0 3 10

Data are presented as mean ± SD or n. Independent samples t test was applied in continuous variables. Chi-Squared test was applied in 
categorical variables. The risk stratification adopted the Armed Forces Institute of Pathology criteria (Miettinen’s criteria). HPF = high-
power field
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a sensitivity of 87.1% (95% CI: 0.692–0.958), a specificity 
of 94.4% (95% CI: 0.800–0.990), a PPV of 93.1% (95% 
CI: 0.758–0.988), and an NPV of 89.5% (95% CI: 0.743–
0.966). In all non-gastric cases (41), the prediction model 
performed with an accuracy of 90.2% (95% CI: 0.808–0.997), 
a sensitivity of 100.0% (95% CI: 0.822–1.000), a specificity 

of 77.8% (95% CI: 0.519–0.926), a PPV of 85.2% (95% CI: 
0.654–0.951), and an NPV of 100.0% (95% CI: 0.732–1.000). 

The predicted tumor risk category results are represented 
in Table 4. The diagnostic performance indices for the test 
set were as follows: sensitivity of 100.0% (95% CI: 0.656–
1.000), specificity of 80% (95% CI: 0.442–0.965), PPV of 

Fig. 4. ROC curves of different data set.
A. Image-level ROC. B. Patient-level ROC. ROC = region of interest
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Table 2. The Statistical Results at the Image Level (Number of Pictures)

Mitotic Index
Training Cohort (n = 108) Validation Cohort (n = 20) Test Cohort (n = 20)

≤ 5/50 HFPs > 5/50 HFPs ≤ 5/50 HFPs > 5/50 HFPs ≤5/50 HFPs > 5/50 HFPs
True 2044 3130 331 717 411   910
False   453   354 104 139 198   152
Total 2497 3484 435 856 609 1062
Accuracy (95% CI), % 86.5 (0.856–0.874) 81.2 (0.790–0.833) 79.1 (0.771–0.810)
Sensitivity (95% CI), % 89.8 (0.888–0.908) 83.8 (0.811–0.861) 85.7 (0.834–0.877)
Specificity (95% CI), % 81.9 (0.803–0.833) 76.1 (0.717–0.800) 67.5 (0.636–0.712)
Positive predictive value (95% CI), % 87.4 (0.862–0.884) 87.3 (0.848–0.895) 82.1 (0.797–0.843)
Negative predictive value (95% CI), % 85.2 (0.837–0.866) 70.4 (0.660–0.744) 73.0 (0.691–0.766)

CI: confidence interval 

Table 3. The Statistical Results at the Patient Level (Number of Patients)

Mitotic Index
Training Cohort (n = 108) Validation Cohort (n = 20) Test Cohort (n = 20)

≤ 5/50 HFPs > 5/50 HFPs ≤ 5/50 HFPs > 5/50 HFPs ≤ 5/50 HFPs > 5/50 HFPs
True 48 50   7   9   7   9
False   6   4   3   1   3   1
Total 54 54 10 10 10 10
Accuracy (95% CI), % 90.7 (0.852–0.963) 80.0 (0.608–0.992) 80.0 (0.608–0.992)
Sensitivity (95% CI), % 92.6 (0.813–0.976) 90.0 (0.541–0.995) 90.0 (0.541–0.995)
Specificity (95% CI), % 88.9 (0.767–0.954) 70.0 (0.354–0.919) 70.0 (0.354–0.919)
Positive predictive value (95% CI), % 89.2 (0.774–0.956) 75.0 (0.428–0.933) 75.0 (0.428–0.933)
Negative predictive value (95% CI), % 92.3 (0.806–0.975) 87.5 (0.467–0.993) 87.5 (0.467–0.993)
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83.3% (95% CI: 0.509–0.971), and NPV of 100.0% (95% CI: 
0.598–1.000).

DISCUSSION

On the basis of the VGG16 convolutional neural network, 
we trained a binary classification prediction model for the 
mitotic index of GIST. This prediction model has a potential 
clinical value for patient management (22, 23). GISTs are 
potentially malignant tumors. Preoperative evaluation 
of the degree of malignancy of each tumor is of great 
significance for the choice of surgery. With the development 
of neoadjuvant therapy, studies suggest that, for higher risk 
GISTs, surgical resection following neoadjuvant therapy may 
improve patient prognosis (24-26). The mitotic count of a 
GIST could be used as a prediction target. Several studies 
have demonstrated the applicability and clinical value of 
the mitotic count (27, 28).

In previous studies, radiologists have reviewed findings 
from CT imaging, and compared them with the findings from 
tumor pathology. Some studies indicate that abdominal CT 
enhancement examination, which is a routine examination 
for GIST, reveals certain imaging characteristics that are 
closely related to the degree of malignancy of the tumor 
(29, 30). Additionally, the presence of necrosis or cystic 
degeneration, tumor contour, tumor margin, and pattern 
of enhancement are also associated with risk stratification 
(31). However, the available research is influenced by the 
experience of the researcher and the factors of subjectivity. 
Moreover, the extracted information is limited. Thus, it is 
difficult to conduct quantitative research. We used a deep 
learning algorithm to extract additional image information. 
This approach can yield more information than traditional 
methods and can overcome the influence of observer 
subjectivity. A few studies demonstrate that radiomics can 

capture intra-tumoral heterogeneity, exploit high-level 
features, assess tumor biological behavior, and improve 
diagnostic accuracy and disease prognosis (32-35). Wang et 
al. (27) built radiomic prediction models using CE-CT images 
to preoperatively predict mitotic count of GIST (sensitivity 
= 63.3%; specificity = 91.3%; accuracy = 85.4%). However, 
only the largest cross-section of the tumor was chosen as 
the ROI (27). In our present study, we built a CT-based 
deep learning model with better sensitivity (90.0%) and a 
similar prediction performance, with an accuracy of 80.0% 
in the test cohort. As is consistent with the conventional 
situation, the prediction performance of our model on the 
validation set and test set is slightly lower than that of 
the training set (36). Radiomics is based on the analysis of 
hand-crafted features, that depends on arbitrary decisions 
to apply statistical analysis to a particular image, as a form 
of feature engineering. 

Our study used the deep learning approach. As a further 
development of machine learning, deep learning can be 
simplified by direct learning prediction and can extract 
learning features from images that are not affected by 
subjective extraction features. Deep learning automatically 
extracts more advanced and abstract features than manual 
extraction features (37). The VGG16 convolutional neural 
network was selected as the basis of the model. This 
network emerged from the VGG at Oxford University (21). 
In their eponymously named VGG network, it is easy to 
implement repeated structures in code in any modern deep 
learning framework with the use of loops and subroutines. 
This network is characterized by the repeated use of 3 x 
3 convolution kernels and 2 x 2 convolution kernels, that 
increase the depth of the network (21). In this research, 
we adopted the transfer learning method. We replaced the 
fully connected layer of the VGG16 to achieve our multi-
classification task. Furthermore, we selected multiple layers 

Table 4. The Predicted Tumor Risk Category Results (Number of Patients)

Risk Stratification
Training Cohort (n = 108) Validation Cohort (n = 20) Test Cohort (n = 20)

Low-Mitotic High-Mitotic Low-Mitotic High-Mitotic Low-Mitotic High-Mitotic 
True 50 50   7   9   8 10
False   4   4   3   1   2   0
Total 54 54 10 10 10 10
Accuracy (95% CI), % 92.6 (0.876–0.976) 80.0 (0.608–0.992) 90.0 (0.756–1.000)
Sensitivity (95% CI), % 92.6 (0.813–0.986) 90.0 (0.541–0.995) 100.0 (0.656–1.000)
Specificity (95% CI), % 92.6 (0.813–0.986) 70.0 (0.354–0.919) 80.0 (0.442–0.965)
Positive predictive value (95% CI), % 92.6 (0.813–0.986) 75.0 (0.428–0.933) 83.3 (0.509–0.971)
Negative predictive value (95% CI), % 92.6 (0.813–0.986) 87.5 (0.467–0.993) 100.0 (0.598–1.000)
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of tumor images that better reflected the imaging features 
of the tumor. The results obtained from comprehensive 
multi-slice CT images are more likely to reflect the overall 
biological behavior and mitotic rate of the tumor, as 
compared to hose obtained from a single layer of images 
(38).

Current research suggests that the malignant risk and 
the probability of metastasis of GISTs located in the small 
intestine and rectum are higher than that for gastric cases 
(39, 40). Our study explored the diagnostic performance of 
the model by location. In the training set, the performance 
of the model in the gastric group, including the specificity 
and PPV, was better than that of the non-gastric group. On 
the other hand, the sensitivity and NPV were worse than 
the non-gastric group. However, the differences between 
the two groups were not statistically significant. In other 
words, the model is applicable to both gastric GISTs and 
non-gastric GISTs, and there is no significant difference in 
diagnostic efficacy. However, given our limited number of 
cases, future studies must have an increased sample size. 
Further research should also explore the impact of the tumor 
site on the model’s diagnostic efficacy, or establish benign 
and malignant prediction models for different tumor sites.

The pattern classification for GIST is of great significance 
for its clinical management, as it can provide information 
for preoperative evaluation of tumors. According to the 
AFIP criteria (5), the predicted mitotic count group of 
each patient was combined with the tumor site and size 
to predict the tumor risk category. The risk was classified 
as very low risk, low risk, moderate risk, and high risk. 
In our study, the results of the tumor risk category were 
based on the predictive model results, the tumor site, 
and the tumor size. Moreover, as compared with the 
gold standard, the results were of satisfactory accuracy. 
The tumor risk category predicted by the model further 
enhanced the diagnostic efficiency of tumor malignancy 
potential. In addition, the predictive model for mitotic 
count grouping allows prediction of the biological behavior 
of GISTs according to the NCCN guidelines. This enables the 
description of a specific range of metastasis rates (7). This 
is important for clinical decision-making. 

Additionally, contrary to previous group studies, the 
predictive model is also able output a class activation 
heatmap of the corresponding image. The meaning of the 
current class activation heatmap is still unclear. However, 
we observed that, for the high mitotic count group, the 
region in the image displaying the higher color temperature 

(red) corresponds to the heterogeneous region, or the 
periphery of the necrotic region. There was no obvious high 
color temperature region in the class activation heatmap 
of the low mitotic count group. This may indicate that the 
necrotic and heterogeneous areas are image features of 
high-risk GISTs (31, 41).

There are some notable limitations of our study. First, 
in most cases, the mitotic count reported by pathological 
findings can reflect the overall state of tissue proliferation, 
and the malignant potential of the tumor. However, we are 
currently unable to match CT images to pathology sections 
layer by layer. This issue will be addressed in future studies. 
Second, at present, due to the variability in tumor sites and 
the complexity introduced due to adjacent cavity organs, 
we have been unable to achieve automatic segmentation of 
GISTs. In the future, we will further research the automatic 
segmentation of tumors to achieve segmentation and 
sequential classification of GISTs. Furthermore, in order to 
provide more valuable image reports for clinical use, the 
prediction results should be implanted into structural reports. 

In this study, we developed a GIST nuclear split 
phase two-category prediction model based on the VGG 
convolutional neural network. We were able to obtain 
satisfactory prediction results. The model can excavate 
abdominal CT imaging information. Moreover, it has 
reference value for preoperative prediction of mitotic index, 
that can help guide the clinical management of GIST.
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