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SUMMARY

Neural population space analysis was performed to assess the dimensionality and dynamics of the 

neural population in the primary motor cortex (M1) during a reach-grasp-manipulation task in 

which both the reach location and the object being grasped were varied. We partitioned neural 

activity into three components: (1) general task-related activity independent of location and object, 

(2) location- and/or object-related activity, and (3) noise. Neural modulation related to location 

and/or object was only one-third the size of either general task modulation or noise. The neural 

dimensions of location and/or object-related activity overlapped with both the general task and 

noise dimensions. Rather than large amplitude modulation in a fixed set of dimensions, the active 

dimensions of location and/or object modulation shifted progressively over the time course of a 

trial.
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In Brief

Rouse and Schieber show that during reach-grasp-manipulate movements, M1 activity related to 

location and object occurs not in a fixed set but rather in a shifting set of neural dimensions that 

overlap with those of general task and noise activity.

INTRODUCTION

Descending signals from the brain generate coordinated movements such as reaching, 

grasping, and manipulating. These signals would be potentially straightforward if some 

neurons were responsible for signaling when to move, others where to reach, and yet others 

what to grasp and manipulate. In the primary motor cortex (M1) during a reach-grasp-

manipulate (RGM) task, however, we observed that individual neurons do not appear to 

segregate into such specific groups (Rouse and Schieber, 2016a). In particular, the firing rate 

of most M1 neurons varied in relation both to reach location and to the object being grasped 

and manipulated. We now examine how much of the neural variance in the M1 population is 

related to the general action of per-forming an RGM movement versus the specific aspects 

required for a particular object in a particular location. We challenge the hypothesis that the 

neural variance related to the task in general, to location and/or object feature tuning, and to 

noise each occur in a separate subspace. We also test the hypothesis that location and/or 

object encoding occurs in a fixed set of neural dimensions that remains stable as a movement 

trial proceeds in time.

Variation in the firing rate of neurons in the M1 during an experimental task can be viewed 

as having three major parts: task-specific encoding, condition-independent modulation, and 

noise. First, the firing rate of M1 neurons varies in relation to specific parameters or other 

features of bodily movement, such as kinematics, kinetics, muscle activity, etc. Such 

relation-ships, often referred to as tuning or encoding, have been demonstrated in relation to 

movement direction and velocity (Georgopoulos et al., 1986; Moran and Schwartz, 1999), 
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trajectory fragments (Hatsopoulos et al., 2007), force (Kalaska et al., 1989; Fagg et al., 

2009), electromyographic (EMG) activity in particular muscles (Thach, 1978; Pohlmeyer et 

al., 2007), combi-nations of movement kinematics and muscles (Kakei et al., 1999; Griffin et 

al., 2015), and movement of particular fingers (Schieber and Hibbard, 1993). As movements 

progress in time, these features can be decoded from populations of simultaneously recorded 

M1 neurons (Georgopoulos et al., 1988; Salinas and Abbott, 1994; Wessberg et al., 2000).

A second part of firing rate variance in M1 neurons reflects the structure of the behavioral 

task used in such studies, which typically involves a movement preceded and followed by 

maintained postures. During the movement, the firing rate of many M1 neurons modulates 

relative to their individual baselines regardless of the particular experimental conditions in 

the cur-rent trial. The firing rates of most M1 neurons are comparatively low until ~ 100 ms 

before the onset of movement, change during the movement, and finally return to near 

baseline levels as a final posture is established and maintained (Fortier et al., 1993; 

Crammond and Kalaska, 2000; Velliste et al., 2014). Although the discharge of some 

individual neurons may decrease for some or all of the experimental conditions, the majority 

of M1 neurons and population averages both typically show a general increase in activity 

during movement (Rouse and Schieber, 2016a). Such a general increase in the discharge of 

M1 neurons during movement contrasts both with that of spinal interneurons, which tend to 

show increased discharge during movement that is maintained while the final posture is held 

(Shalit et al., 2012), and with that of cerebellar Purkinje cells and nuclear neurons, which 

have a substantial tonic discharge rate that can be modulated both higher and lower during 

movement (Thach, 1970a, 1970b).

A third part of firing rate variance in M1 neurons, like that of many other CNS neurons, is 

noise. Some of this noise may reflect variation in neural signals related to features not 

controlled in the current experiment, which becomes evident in the shared noise correlations 

among a population of M1 neurons (Lee et al., 1998; Goris et al., 2014; Vinci et al., 2016). 

Noise also may include a stochastic component that reflects individual neuron variability in 

the cellular processes underlying spike generation (see, however, Mainen and Sejnowski, 

1995).

The firing rates of individual M1 neurons typically include all three parts (Rouse and 

Schieber, 2016a). Nevertheless, task-specific signals, condition-independent signals, and 

noise each might be ascribed to different linear or even non-linear combinations of the firing 

rates of the simultaneously recorded neural population, which we will refer to as neural 

dimensions (Yu et al., 2009; Cunningham and Yu, 2014; Sadtler et al., 2014; Kobak et al., 

2016). A recent analysis of activity in the dorsal premotor and M1 during reaching, for 

example, found that reaching-tuned activity occurred in neural dimensions that were largely 

orthogonal to those of the simultaneous condition-invariant activity (Kaufman et al., 2016). 

To what extent might such be the case for more complex movements that involve not only 

reaching but grasping and manipulation as well? Here, using the activity of M1 neuronal 

populations recorded simultaneously during movements that involved reaching, grasping, 

and manipulation, we tested the hypothesis that these three partitions of neural variance—

related to location and/or object feature tuning, to the task in general, and to noise—are 

segregated into three separate, orthogonal subspaces of the neural space. In addition, we 
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tested the hypothesis that as a trial progresses in time, location and/or object encoding 

remains fixed within a small number of neural dimensions.

RESULTS

We analyzed neural activity recorded as two monkeys performed an RGM task involving 4 

different objects each positioned at up to 8 different locations, described in detail previously 

(Rouse and Schieber, 2015, 2016a). For the present study, we selected only those recording 

sessions in which data had been collected simultaneously from all 6 microelectrode arrays 

implanted in M1, spanning the entire upper extremity representation of “new” M1 (Rathelot 

and Strick, 2009) in the anterior bank and lip of the central sulcus. We analyzed the firing 

rates of all recorded units from all electrodes, totaling N = 346 M1 units from monkey L and 

N = 466 M1 units recorded from monkey X

For each unit, data were available from approximately 30 successfully completed trials 

involving each of 24 different location and/or object conditions (see STAR Methods). In 

populations of M1 neurons recorded simultaneously during RGM movements, we first 

partitioned the variance of M1 firing rates that was related to (1) the execution of a 

movement in general, (2) the two independent variables of the behavioral task—the location 

to which the subject reached and the object the subject grasped and manipulated—and (3) 

the remaining noise (see STAR Methods; Figure 7). We used this partitioned data to 

determine whether neural dimensions of location and/or object encoding occurred in a 

separate subspace orthogonal to that of general task activity and/or noise. We also examined 

whether the location and/or object encoding subspace shifted with time during a trial.

Variance in Partitioned Neural Activity

We initially compared the variance in each partition averaged across all units as a function of 

time in RGM trials. Figure 1 illustrates the time course of the general task (GT), location 

and/or object (LO), and noise sample variance, averaged across all trials in each monkey. GT 

variance is the result of each neuron’s firing rate averaged across all task-specific conditions 

changing relative to the individual neuron’s baseline. In both monkeys, the GT variance 

(black) started at zero (see STAR Methods) and increased as neurons modulated away from 

their individual baselines, becoming largest between movement onset (M) and peripheral 

object contact (C) and decreasing thereafter. Most units increased their firing rates relative to 

baseline, as follows: 82% (282/346) for monkey L and 78% (364/466) for monkey X (Figure 

S1). The LO variance (green) began to increase at about the same time, but peaked shortly 

after peripheral object contact, continually remaining substantially smaller than the GT 

variance. In contrast to the GT and the LO variance, the noise variance (gray) remained 

relatively constant over the time course of RGM trials. Noise variance was continually larger 

than LO variance.

We further subdivided the LO partition into variance related to location, to object, and to 

location × object interactions. Across all times, 185/346 = 53% (L) and 298/466 = 64% (X) 

of all the re-corded units were tuned to location, 251/346 = 73% (L) and 391/ 466 = 82% 

(X) were tuned to object, and 177/346 = 51% (L) and 284/466 = 61% (X) were tuned to both 

location and object (Figure S2). As shown in Figure 1 (enlargements), however, the time 
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course of location-related variance (red) and object-related variance (blue) did not simply 

follow that of the collective LO variance. Though more overt in monkey X than in monkey 

L, location-related variance peaked earlier near the time of movement onset (M), while 

object-related variance peaked later near the time of peripheral object contact (C), with the 

interaction-related variance remaining relatively small throughout (Rouse and Schieber, 

2016a). Significant location-related modulation was present at movement onset in 86/346 

(25%) units in monkey L and 137/466 (29%) units in monkey X and at peripheral object 

contact in 66/346 (19%) in L and 146/466 (31%) in X. Conversely, object-related 

modulation was present at movement onset in 72/346 (21%) in L and 126/466 (27%) in X, 

increasing by the time of peripheral object contact to 186/346 (54%) in L and 293/466 

(63%) in X.

To quantify the magnitude of variance in the three partitions, we averaged the square-root 

firing rate variance per unit per trial across all time points. The average variance in the GT 

partition was 1.27 (95% confidence interval [CI]: 1.01–1.53) in monkey L and 1.01 (95% 

confidence interval: 0.87–1.16) in monkey X, in the LO partition was 0.36 (0.31–0.41) in L 

and 0.35 (0.31–0.40) in X, and in the noise partition was 1.45 (1.37–1.54) in L and 1.19 

(1.14–1.24) in X. In each monkey, the average neural variance in the GT and noise partitions 

was similar in magnitude, whereas the average neural variance in the LO partition was only 

one-third as much. Within the LO partition, the average location-related variance was 0.07 

(0.06–0.08) in monkey L and 0.10 (0.09–0.12) in monkey X, the average object-related 

variance was 0.20 (0.16–0.24) in L and 0.16 (0.13–0.19) in X, and the location × object 

interaction variance was 0.09 (0.08–0.10) in L and 0.09 (0.08–0.10) in X. In both monkeys, 

the neural variance in the LO partition thus was significantly less than the variance in both 

the GT partition and the noise partition. Within the LO partition, object-related variance was 

significantly larger than location-related variance.

Dimensionality of Neural Partitions

Having partitioned the firing rate of each unit during each trial, we compared the 

dimensionality of the neural variance in the three partitions. To identify the neural 

dimensions that captured most of the variance in each partition, we performed principal 

component analysis (PCA) separately on that portion of the firing rate modulation of the N 
units related to the GT, the LO conditions, or the noise. Because analysis of the noise 

required individual trials of simultaneously recorded data, this analysis was performed on a 

single session with N = 98 units for monkey L and N = 63 units for monkey X. For each 

monkey, the thick lines in Figure 2 show the cumulative variance explained by the rank-

ordered principal components (PCs) of the GT activity (left, black), the LO activity (center, 

green), and the remaining noise (right, gray). In each monkey, ≥ 90% of the GT variance was 

explained by the first 2 PCs (left, vertical black line), and virtually all (≥99%) was explained 

by the first 4 PCs, indicating that this condition-independent modulation of all N units 

occurred in a low-dimensional subspace of the N-dimensional neural space. The 

dimensionality of the LO modulation was higher. To account for ≥ 90% of this condition-

dependent variance required 23 PCs in monkey L and 16 in monkey X (center, green vertical 

line). The dimensionality of the noise partition was higher still, requiring 73 PCs in L and 49 

in X to account for ≥ 90% of the variance. Noise modulation thus was distributed relatively 
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evenly across the population of units in each mon-key. Relatively uniform noise standard 

deviations across units and low magnitude pairwise noise correlations suggested that the 

activity in the noise partition was consistent with a uniform, independent noise model. 

(Figure S3). The differences observed in the dimensionality of the three partitions did not 

result from GT or LO modulation occurring in limited numbers of units but rather represent 

common, correlated modulation occurring across the M1 population (Figure S4). Within the 

LO partition, rather than location- and object-related variance occurring in different units, 

the units with large location-related variance were more likely to have considerable object-

related variance, and conversely those with large object-related variance were more likely to 

have considerable location-related variance (Figure S5).

To what extent did the neural dimensions that captured most of the GT variance also capture 

LO variance and vice versa? To address this question, we also examined the cumulative 

variance of each of the other two partitions projected onto the rank-ordered PCs determined 

for a given partition, shown as thin lines in Figure 2. The 2 PCs that captured ≥ 90% of the 

GT variance captured only 11% (L) or 14% (X) of the LO variance, indicating that most of 

the LO modulation occurred outside of the GT subspace. In contrast, the 16 dimensions that 

explained ≥ 90% of the LO variance also captured 74% (L) or 73% (X) of the GT variance. 

The noise variance projected onto either the GT PCs or the LO PCs increased as a relatively 

linear function of the number of PCs, indicating that the noise variance was distributed 

evenly across the population of units in each monkey, unrelated to the dimensions containing 

GT and/or LO activity.

For each monkey, we also quantified the overlap between the variance distributions of all 

three possible pairs of partitions. Overlap was measured using a normalized sum of dot 

products across all neural dimensions weighted by the variance in each dimension (see 

STAR Methods). A 95% confidence interval was also estimated as if the two variance 

distributions had been oriented at random. The following overlap between GT variance and 

the LO variance was somewhat more than could be expected by chance alone: 0.26 (chance 

95% confidence interval: 0.02–0.18) in monkey L and 0.26 (0.02–0.20) in monkey X. In 

neither monkey were these variance distributions orthogonal to one another (overlap = 0). 

The overlap between GT and noise was 0.18 (0.11–0.17) and 0.24 (0.15–0.21) for monkeys 

L and X, respectively. The overlap between LO and noise was 0.29 (0.20–0.29) and 0.36 

(0.26–0.33) for monkeys L and X. Over-lap of the noise partition with either the GT or LO 

partition was similar to or slightly greater than what would be expected by chance alone. 

Noise dimensions were not orthogonal to either GT or LO dimensions.

Neural Trajectories during RGM Movements

The firing rates of all N simultaneously recorded units can be considered instantaneously as 

a single point in an N-dimensional neural state space, and the time series of successive 

points then forms a neural trajectory through this space. We first examined such neural 

trajectories during RGM trials by performing PCA on the GT partition of neural activity. 

The black traces in Figure 3 show the GT trajectory for each monkey projected in the plane 

of the first two GT PCs. In addition, separate curves representing the neural trajectories of 

the summed GT + LO activity for each of the 24 LO conditions (averaged across trials) have 
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been projected onto these first two GT PCs. Rotational dynamics were evident in the overall 

GT trajectory. Proceeding clockwise in time, the black GT trajectory begins at instruction 

onset (+), pro-gresses to the onset of movement (filled circles), rotates sharply and then 

proceeds downward to the time of peripheral object contact (filled squares), turns again 

through completion of the manipulation (filled diamonds), and ends 100 ms later during the 

final hold (x). The 24 different colored GT + LO trajectories generally follow the overall GT 

rotation, deviating from it to different degrees at different times and changing in their posi-

tions relative to one another.

Time-Resolved PCA of the LO Partition

We next performed PCA on the LO partition alone and then pro-jected the 24 LO 

trajectories (without GT activity) in the first six LO PCs (Figure S6). These trajectories 

showed no simple organi-zation. The maximal separation of different locations/object tra-

jectories in this LO subspace occurred at different points in time, suggesting that the neural 

dimensions of the LO partition may shift progressively over the time course of RGM trials.

To examine this possibility further, we performed PCA on the partitioned LO activity taken 

at two separate time points—move-ment onset (M) and peripheral object contact (C)—and 

then pro-jected the neural trajectories of the 24 different LO conditions onto the first two 

PCs derived at movement onset and separately onto the first two PCs derived at peripheral 

object contact (Figure 4, top). More specifically, for each neuron we averaged the firing rate 

separately at the movement onset and at the periph-eral object contact time points across all 

trials of each of the 24 conditions and then performed PCA on these averages for all the 

units from a given monkey. We refer to these two sub-spaces as “move” and “contact,” 

respectively. We then pro-jected the averaged firing rates for each of the 24 conditions at all 

time points onto the first two PCs of the move subspace and the contact subspace separately.

The same high-dimensional neural trajectories projected into these two different PC spaces 

were quite different in each monkey. Projected onto the first two PCs of the move subspace, 

the trajectories diverged substantially near the time of movement onset (circles) based 

largely on location (Figures 4A and 4C, color saturation scale, emphasized by the gray scale 

inset). In contrast, when projected onto first two PCs of the Contact subspace the trajectories 

diverged most near that time point (squares) largely depending on the object (Figures 4B and 

4D, color hue).

We quantified this apparent difference in location versus ob-ject separation of the 24 

trajectories in the move versus contact subspaces by calculating at each time point the 

location vari-ance and the object variance explained by PC1 and by PC2 as a fraction of the 

total LO variance across all dimensions. Although the fraction of location versus object 

variance differed between monkeys, in both monkeys the fractional location- related 

variance of PC1 was greatest near the time of movement onset (M; Figures 4E and 4G), 

whereas the fractional object-related variance was greatest near the time of peripheral object 

contact (C; Figures 4F and 4H). PC2 captured a smaller fraction of object-related variance in 

both subspaces. At time points further from the movement onset or peripheral object contact, 

these time-specific PC subspaces captured less of the location and object variance. These 
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differences in the move versus contact subspaces provide additional evidence that the neural 

dimensions of the LO partition shift over the time course of RGM trials.

In previous studies of reaching movements, jPCA (Churchland et al., 2012) has shown 

strong rotational dynamics of condition-dependent activity (similar to our LO partition), 

with different neural trajectories all rotating at different radii around a common center. 

Common rotation was less evident in the present LO neural trajectories in the move and 

contact PCA spaces. We therefore performed jPCA on the present LO partition from each 

monkey. As shown in Figure S7, the LO trajectories in the jPCA space, while showing some 

degree of rotational dynamics, were complex and less simply organized for RGM 

movements than for the reaching movements of previous studies.

Video S1 illustrates more completely the motion of the 24 LO trajectories projected in the 

PC1 versus PC2 plane of (1) the GT subspace (left); (2) the move subspace (middle); and (3) 

the contact subspace (right). All 24 neural trajectories progress through the GT subspace on 

the left with a similar curved path (Figure 3). Averaged, these 24 GT + LO trajectories form 

the GT trajectory. Meanwhile, the LO trajectories first separate in the move subspace, with 

their largest separation reflecting reach location (Figure 4A, saturation). Later, the 

trajectories separate in the contact subspace, with the largest separation related to the object 

being grasped and manipulated (Figure 4B, color).

These differences in the same neural trajectories projected onto the move versus contact PCs 

indicate that the neural dimensions capturing much of the LO variance shifted as RGM trials 

progressed from one time point to another. To examine this progressive shift in greater 

detail, we performed a PCA using the data at each trial time point separately. Figure 5 shows 

the 24 high-dimensional LO trajectories projected as a function of time onto the first two 

PCs of subspaces derived at 13 selected time points. The time point used to derive each set 

of PCs has been indicated by a thick, black vertical line in each plot. The move and contact 

subspaces of Figure 4 and Video S1 are indicated at left. In each of these 13 time-specific 

subspaces, the 24 trajectories dispersed maximally at a time point close to that used to derive 

the PCs. The maximal dispersion therefore progressed in time, producing a “traveling-wave” 

appearance. These observations indicate again that within the N-dimensional neural state 

space, the largest variance LO dimensions shifted progressively over the time course of the 

RGM trials.

We quantified the overlap of the LO partition variance derived at different time points by 

calculating the fractional overlap be-tween the LO variance at each time point compared to 

the LO variance at every other time point. The overlap was estimated by taking the 

normalized sum of dot products of all dimensions weighted by each dimension’s variance 

(see STAR Methods). Figure 6 shows the fractional overlap of LO variance at the 13 

selected time points shown in Figure 5 with the LO variance at every other time point, all as 

a function of time. For each selected time, LO overlap decreased as the temporal separation 

increased both preceding and following the time point used, consistently producing 

approximately bell-shaped temporal profiles that plateaued at minimal values for temporal 

separations beyond ~300 ms in either direction. For statistical comparison (see STAR 

Methods), we estimated the overlap expected if two randomly sampled subspaces came from 
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either (1) an identical fixed, common LO space sampled twice (upper shaded region) or (2) 

completely unrelated subspaces sampled independently (lower shaded region). As might 

have been expected, the degree of overlap for small temporal separations was within the 

range expected had an identical subspace been sampled twice, whereas the overlap for large 

temporal separations was not much more than if two subspaces had been selected randomly 

from unrelated subspaces. These progressive changes in over-lap indicate that the active 

dimensions of the neural space that encoded location and object information shifted 

gradually through the global neural space as the trials proceeded in time.

DISCUSSION

We quantified the variance in populations of M1 neuron firing rates related to the following 

three factors: (1) the GT, i.e., the performance of a RGM movement trial in general; (2) the 

particular movement performed, i.e., the combination of the location reached to and the 

object grasped and manipulated; and (3) noise unexplained by item 1 or 2 (Figure 7). We 

then compared the neural subspace occupied by these three partitions as well as the neural 

trajectories in the GT and LO partitions across the time course of RGM trials.

Variance in the GT, LO, and Noise Partitions

The neural variance in the GT partition was large, indicating substantial changes in neural 

firing rates during an RGM movement that were similar regardless of the location or object. 

In part, this GT variance reflects an average increase in discharge during movement relative 

to posture and may also reflect stronger parametric relationships to movement velocity than 

to position (Moran and Schwartz, 1999; Reina et al., 2001; Paninski et al., 2004; Saleh et al., 

2012). GT variance also may enable transfer of more information from M1 to brainstem and 

spinal centers (Shalit et al., 2012; Tsianos et al., 2014). Given their tendency for low firing 

rates during rest, a general increase during movements would enable otherwise quiescent 

M1 neurons to modulate their firing rates both up and down to encode condition-specific 

features, such as reach location and grasp shape.

Consistent with a recent report on reaching movements (Kaufman et al., 2016), we observed 

that the neural variance related to specific LO conditions in our RGM task was substantially 

smaller than either the GT variance or the noise variance. The smaller magnitude of LO 

activity contradicts the common impression that firing rate modulation in M1 neurons by 

and large encodes movement features. Though smaller in magnitude, the LO subspace 

occupied substantially more neural dimensions than the GT subspace. This higher 

dimensionality of the LO subspace overlapped partially with the dimensions of the GT 

subspace that, together with the shift of neural dimensions over the time course of trials (see 

below), may be key for reliable population encoding of movement features by M1.

The variance of the noise partition was large but was distributed relatively evenly across the 

entire recorded neural space throughout the duration of movement trials. We found little if 

any evidence that the neural dimensions with the greatest noise variance were either more or 

less likely to contain the neural variance related to the GT or LO. These observations 

support the notion that the neural encoding of reaching and grasping relies on multiple 

neurons to reduce the inherent noisiness of individual neurons. It also suggests that neural 
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dimensions with task-related information are not systematically less noisy than other neural 

dimensions.

Initial Partitioning versus Demixing: Implications for Overlap of Subspaces

In contrast to the recently developed approach of demixed PCA (dPCA), which identifies 

PCs that best transform the original data to reconstruct different partitions of the neural 

activity (Brendel et al., 2011; Kobak et al., 2016), we chose to partition the data first and 

then perform standard PCA on each partition separately. Because any dimension of the 

neural space may have variance in more than one partition, dPCA may not always identify 

the highest variance PCs in a given partition if those PCs also include variance from other 

partitions. While dPCA may improve visualization, our present approach was designed to 

quantify the magnitude and dimensionality of neural activity in each partition separately, as 

well as the overlap between partitions. We also performed dPCA on our dataset with 

qualitatively similar results (not illustrated). The demixed PCs were more distinct from those 

of other partitions, but a larger number of demixed PCs were required to account for the 

same amount of variance within a partition. These differences were to be expected because 

our separate PCA of each partition identified the optimal orthogonal transform to account 

for the most variance in the fewest dimensions of a given partition without regard for other 

partitions.

Partitioning first, we found a moderate amount of overlap be-tween the GT and LO 

dimensions, more than would be expected by chance alone. In contrast, a recent study of 

reaching movements found that the condition-invariant and condition-dependent partitions 

were almost completely orthogonal (Kaufman et al., 2016). This study, however, used a form 

of dPCA that con-strained the identified dimensions to be orthogonal (Brendel et al., 2011), 

which could have minimized any overlap. Moreover, the grasps and manipulations included 

in our RGM task may have required activity in larger numbers of neural dimensions, 

providing more opportunity for overlap of the present GT (condition-invariant) and LO 

(condition-dependent) partitions.

Population Dynamics in the GT and LO Partitions

The neural trajectory in the GT partition was more than a simple rise and fall along a single 

dimension in the neural state space.The GT neural trajectory rotated through approximately 

four dimensions over the time course of an RGM trial. Such rotation of neural trajectories 

has been described previously in cortical neuron populations under a variety of 

circumstances (Churchland et al., 2012; Hall et al., 2014; Kaufman et al., 2014; Michaels et 

al., 2016). Our results show that a single major rotation in a low-dimensional manifold 

occurs not only with reaching movements but also when the movement includes grasping 

and manipulation.

The neural dimensions related to the LO features of the task shifted progressively over the 

time course of RGM trials. While previous studies have shown that much of such condition-

dependent activity during reaching tasks can be captured by a single oscillation within a 

neural plane identified with jPCA (Churchland et al., 2012), we observed more complex 

trajectories applying jPCA to the LO partition in the present RGM task (Figure S7). For an 
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ideal cyclic trajectory to occur in a single plane, the neural activity should lie in a given 

neural dimension, move to an orthogonal neural dimension, shift back to the (negative) 

original dimension, and finally return to the (negative) second dimension before completing 

the cycle. Our results did not meet this pattern in two ways (Figure 6). First, the neural 

dimensions occupied early during RGM movements were not substantially reoccupied later 

following a period of orthogonal activity (overlap = 0). Instead, the neural dimensions of LO 

activity early versus later became progressively more distinct, approaching a random 

orientation with respect to one another. Second, the variance in the LO dimensions occupied 

substantially more of the neural space than a single, dominant plane. As the complexity of 

various movements increases—such as adding grasping and manipulation to reaching—our 

findings suggest that the percentage of condition-dependent variance accounted for in a 

single 2D neural plane may diminish, possibly becoming even less than in the present study 

as the set of movements examined become more varied and naturalistic.

Shifting Task Encoding with Time

Several previous studies have highlighted the evolution of individual neuron tuning as a 

movement evolves in time, showing shifts between encoding of movement direction, 

distance, and target (Fu et al., 1995); tuning to particular kinematic trajectory fragments 

(Hatsopoulos et al., 2007); or changes in directional tuning (Churchland and Shenoy, 2007; 

Suway et al., 2018); or limb biomechanics (Suminski et al., 2015). Rather than encoding 

within a set of neural dimensions fixed across time (as would be expected if each neural 

dimension represented a weighted, linear representation of a given movement parameter), 

the pre-sent time-resolved PCA showed that the neural dimensions with the most LO activity 

shifted progressively over the time course of RGM trials. A large majority of the present 

task-related units showed time-varying tuning to both location and object (Rouse and 

Schieber, 2016a). Hence it was the combination of M1 neurons carrying LO information—

not different sets of neurons encoding either location or object—that shifted gradually over 

the movement time course. A similar progressive shift has been described in the sub-

population of parietal area 7a neurons carrying task-critical spatial information (Crowe et al., 

2010).

Although reaching and grasping traditionally have been considered to be mediated through 

independent channels (Jeannerod, 1984), considerable evidence suggests that under 

appropriate conditions, variation in reaching affects grasping and vice versa (Wallace and 

Weeks, 1988; Paulignan et al., 1991; Hoff and Arbib, 1993; Haggard and Wing, 1998; 

Connolly and Goodale, 1999). Our previous studies of the present RGM movements have 

shown that location-related variance predominates early and object-related variance later, not 

only in the activity of individual M1 neurons (Rouse and Schieber, 2016a) but also in the 

EMG activity of individual muscles (Rouse and Schieber, 2016b) and in the kinematics of 

individual joints (Rouse and Schieber, 2015). Our findings here that a similar population of 

neurons in the motor cortex is related both to reach location and to the object grasped and 

manipulated—but with progressively shifting neural dimen-sions of activity—may provide a 

framework to better understand these observations. We note, however, that our neural 

recordings sampled the upper extremity representation in new M1 (Rathelot and Strick, 
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2009) in the anterior bank and lip of the central sulcus, and our findings therefore may not 

necessarily apply to “old” M1 on the crown of the precentral gyrus.

Limitations in Understanding Natural Motor Behavior

The concepts of GT, condition-dependent, and noise variance are defined within the 

framework of repeated trials between which experimental conditions are varied. Both the 

reaching movements studied by others and the RGM movements studied here involved a 

clear beginning and end. In part, the GT activity may reflect this trial structure. Whether GT 

(condition-independent) and LO (condition-dependent) activity are so distinct in behaviors 

without well-defined movement onsets and offsets remains un-clear. More naturalistic 

forelimb movements will need to be studied to assess the extent to which neural trajectories 

in the GT partition maintain their relatively simple rotational dynamics or become more 

complex (Hall et al., 2014). Likewise, more diverse movement conditions will be needed to 

assess how many different dimensions of the neural space are occupied in making the 

diverse arm and hand movements possible in primates.

Implications for Neural Control of Movement and Decoding

While encoding task-specific information with activity in gradually shifting neural 

dimensions may entail more computational complexity than time-invariant encoding, we 

speculate that the progressive shifting of the active dimensions in the LO partition together 

with the rotational dynamics in the GT partition could better encode the temporally varying 

patterns of muscle activity and kinematics needed across the time course of RGM 

movements. Shifting neural subspaces could provide selective encoding of specific 

kinematic, dynamic, or muscular parameters most critical at specific times, leading to more 

precise control of movements on different scales, including both the quick reach to a target 

and the fine manipulation of the object in our RGM task. These considerations may be 

relevant to the design of brain-computer interfaces, which are limited to recording from a 

small fraction of all neurons, each individual neuron having a limited dynamic range. 

Indeed, recent work has suggested that shifts in neurons’ dynamic ranges already occur in 

brain-computer interface movements when switching between a simple 2D and 3D cursor 

task (Rasmussen et al., 2017). Our findings further suggest that control of upper extremity 

brain-computer interfaces might be improved by decoding strategies that make use of 

shifting active neural dimensions.

STAR*METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Marc H. Schieber (mschiebe@ur.rochester.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Non-human primates—Two male rhesus monkeys, L and X (weight 9 and 12 kg, age 7 

and 9 years old, respectively), were subjects in the present study. All procedures for the care 

and use of these nonhuman primates followed the Guide for the Care and Use of Laboratory 

Animals and were approved by the University Committee on Animal Resources at the 
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University of Rochester, Rochester, New York. The neuronal recordings analyzed here were 

previously published in Rouse and Schieber (2016a).

METHOD DETAILS

Behavioral task—Each monkey was trained to perform a RGM task as described in detail 

previously (Rouse and Schieber, 2015). Briefly, four objects were placed in the coronal 

plane in front of the subject: a perpendicular cylinder, a coaxial cylinder, a push button, and 

a sphere. The four objects were located at 45° intervals on a semicircle centered on a second 

coaxial cylinder that served as the home object from which all trials were initiated. The array 

of peripheral objects could be rotated about the home object to vary the combination of 

reach location and object type. Objects thereby were positioned in 1 of 8 different locations 

ranging from 0° (to the monkey’s right on the horizontal meridian) to 157.5° (to the left, 

22.5° above the horizontal meridian) in steps of 22.5°. Data was collected in blocks with the 

objects in a fixed location for approximately 10 successful trials involving each object. Then 

the peripheral object array was rotated to a different position. Due to physical constraints, 

only 24 of the 32 potential LO combinations were used. In each recording session, 

approximately 30 trials were completed to each of these 24 LO combinations.

Neural recordings—Six 16-channel floating microelectrode arrays (MicroProbes) were 

implanted in the anterior bank of the central sulcus to record from M1 in each monkey, using 

methods described in detail previously (Mollazadeh et al., 2011; Rouse and Schieber, 

2016a). In both animals, intracortical microstimulation (ICMS) of some electrodes on the 

most lateral array generated twitches in facial musculature, whereas ICMS of some 

electrodes on the most medial array generated twitches of trunk musculature, with many 

sites in between generating twitches of shoulder, elbow, wrist, or digit musculature (Figure 1 

in Rouse and Schieber, 2016a), altogether indicating that the present recordings spanned the 

entire upper limb representation of M1 in a similar way for both monkeys. Channels with 

spiking activity were thresholded manually on-line. The spike snippets were sorted offline 

with a custom, semi-automated algorithm (Rouse and Schieber, 2016a). Both single- and 

multi-unit recordings were used in the present analysis. The current datasets consist of 

approximately 1/3 definite single units, 1/3 probable single units with minor contamination, 

and 1/3 multi-units (Rouse and Schieber, 2016a).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis—The firing rate of each unit was estimated by convolving spike times 

binned at 1 ms resolution with a Gaussian (s = 50 ms) smoothing window. All data was 

time-aligned separately on four behavioral events present in each successfully performed 

trial: instruction onset (I), movement onset (M), contact with the peripheral object (C), and 

beginning of the final hold (H). (Movement onset was defined based on the sudden increase 

in the average speed of 36 markers positioned on the upper extremity tracked at 200 Hz by a 

Vicon motion capture system [Rouse and Schieber, 2015].) All firing rates were square-root 

transformed. As firing rates tend to be distributed closer to what would be expected for a 

Poisson process than a normal distribution, the square-root transformation renders variance 

more similar from low to high firing rates, making the comparison of different rates more 

reliable (Kihlberg et al., 1972; Ashe and Georgopoulos, 1994). The mean square-root 
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transformed firing rate across all trials at the time of instruction onset (I) was considered to 

be the baseline firing rate for each unit. This baseline firing rate was subtracted from all 

firing rates so each unit’s firing rate started with zero mean at time point I. These smoothed, 

square-root transformed, baseline-subtracted firing rates, r, were used for all analyses. 

Notably, as shown in the Results, after square-root transformation and baseline subtraction, 

noise was uniform in magnitude throughout individual trials (see Figure 1) and was 

distributed evenly across units (see Figure 2), consistent with the theoretical assumptions of 

normality and uniform scaling of variables required for principal component analysis.

The complete dataset consisted of the estimated firing rate (r) in a three-dimensional array 

composed of: N spiking units x I trials x T time points. There were N = 346 and 466 sorted 

spiking units for monkeys L and X, respectively. Each session consisted of approximately 

700 successfully performed RGM trials. For each monkey, there were K = 24 different trial 

types, i.e., LO combinations. Aligning separately on the four behavioral events—I, 

movement onset, peripheral object contact, and H—and truncating the data at the midpoint 

time between events using the median event durations for each monkey, there were T = 658 

time points for monkey L and T = 706 time points for monkey X corresponding to 658 and 

706 ms of firing rate data per trial.

Partitioning of Neural Modulation—To examine the variation in the neural trajectories 

that depended on the 24 LO conditions, we partitioned the firing rate modulation of each 

unit into GT modulation, LO modulation, and noise. As illustrated for an example unit in 

Figure 7, the GT modulation that occurred during all RGM movements was calculated first 

by averaging at each time point across all trials, regardless of the particular LO condition. 

This GT modulation, which can be considered to be the activity associated with performing 

any RGM movement in general, then was subtracted from the firing rate at each time point 

of each trial. The remaining firing rate modulation then was aver-aged at each time point 

across all trials for each of the 24 LO conditions separately, providing the time course of the 

unit’s modulation that depended on the particular LO condition. Finally, the GT and the 

appropriate LO modulation both were subtracted from the unit’s original activity in each 

trial, leaving the portion of the firing rate that could be attributed neither to the GT nor to the 

LO modulation, which we therefore considered to be “noise.” All three partitions—GT, LO, 

and Noise—thus were calculated for each unit as a function of time in each trial. Note, 

however, that the GT modulation of a given unit was identical across all trials, and the LO 

modulation was identical across all trials of each LO condition.

The deviation of each unit’s firing rate from its baseline at each time point, t, then can be 

expressed as:

r t = rGT t + rLO, k t + rNoise, i t

where rGT (t) is the same for all trials regardless of location or object and varies only as a 

function of time; rLO,k (t) is condition-dependent, differing for each of the k = 1…24 LO 

combinations; and rnoise,i (t) was calculated by subtracting both the GT modulation and the 

appropriate LO modulation from the original firing rate in each trial, i.
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The sample variance was calculated for each unit across all trials partitioned into GT, LO, 

and Noise. The total variance, calculated as the sum of the squares (r2), is equal to the sum 

of the partitioned sum of the squares for the three partitions (rGT, rLO, rNoise):

n

N

i

I
r t 2 =

n

N

i

I
rGT t 2 +

n

N

i

I
rLO, k t 2

n

N

i

I
rnoise, i t 2

where N is the total number of units indexed by n and I is the total number of trials indexed 

by i. The sum for each trial, i, has a fixed value for the GT, a particular value for the location 

& object, k, and individual value for noise on trial i. The sum of squares across trials then 

can be combined across all units to yield the total sum of squares across all units as a 

function of time.

For some analyses, the LO partition was partitioned further to calculate the variance of the 

individual factors: location, object, and their interaction (location x object).

n

N

i

I
rLO, k t 2 =

n

N

i

I
rLoc t 2 +

n

N

i

I
rOb j t 2 +

n

N

i

I
rLoc × Ob j t 2

This partitioning of the location, object, and interaction was identical to the time-resolved 

analysis of variance used previously (Rouse and Schieber, 2016a). Compared to a full 3-way 

ANOVA of time, location, and object, certain factors have been combined. The i) time-

independent location and time x location interaction term and ii) time-independent object 

and time x object interaction terms were combined into single ANOVA terms we denote 

simply as location and object, respectively, as all location and object effects are assumed to 

vary with time (see Kobak et al., 2016 for further details).

Bootstrapping to Estimate Confidence Intervals of Neural Variance—The 95% 

confidence interval for the variance of the recorded neural population (Figure 1) was 

estimated using bootstrapping. A new distribution of variances of all spiking units was 

created by resampling with replacement from the original population, repeated 1000 times. 

The range of mean variances was estimated by using the 2.5th and 97.5th percentiles of the 

mean variances of these randomly resampled distributions.

Principal Component Analysis of Neural Partitions—The neural space which 

contained modulation for each partition was examined using principal component analysis 

(PCA). PCA identifies and ranks orthogonal neural dimensions from largest to smallest 

variance in the N-dimensional neural state space. Separate PCAs were performed on each of 

the three partitions of firing rate modulation.

1. GT modulation - PCA was performed on rGT which consisted of T firing rates 

(averaged across all I trials) in N neural dimensions.

2. Location & object modulation – PCA was performed on rLO which consisted of 

K ∙ T firing rates across N neuron dimensions, respectively.
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3. Noise modulation – PCA was performed on rnoise(t) which consisted of I∙ T 
firing rates across N neural dimensions.

Each PCA generates an orthonormal transformation matrix, W, that transforms the input 

firing rates, r, into a rotated space.

Quantifying subspace overlap—The overlap between two data partitions or the LO 

data at two time points was estimated as the similarity of the two datasets’ covariance 

matrices:

Overlap =
tr Σ1 Σ2

Σ1 F
· Σ2 F

The trace of the product of the two covariance matrices, tr(Σ1Σ2), is the sum of all dot 

products of all dimensions scaled by their variance. The result is then normalized by the total 

variance using the Frobenius norm (∥…F∥) of the covariance matrix to obtain a metric 

between 0 and 1.

The expected amount of overlap was simulated for two conditions: i) two subspaces sampled 

from a fixed, common space that does not change with time; and ii) two subspaces sampled 

at random with no relationship. To estimate how much overlap would be expected if a 

common space with a constant LO data distribution occurred across all time-points, 24 data 

points to simulate the 24 LO movements were drawn from a multivariate, normal 

distribution with the covariance of the LO data observed across all times. The overlap was 

then calculated from pairs of 100 randomly generated data points, (100×99) ÷ 2 = 4950 

independent pairs, to estimate the 5th percentile, generating a lower bounds of the 95% 

confidence interval. To estimate how much overlap would be expected at random, 24 data 

points to simulate the 24 LO movements were drawn from a multivariate, normal 

distribution with the covariance of the LO data observed across all times, but the dimensions 

were randomly permuted so the pair of subspaces had no relationship. The overlap was then 

calculated from 4950 independent pairs to estimate the 2.5th and 97.5th percentile to 

generate a 95% confidence interval.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Neural modulation related to location and/or object is smaller than general 

task modulation

• Neural dimensions of location and/or object overlap with those of the general 

task

• Neural dimensions of location and/or object modulation shift as a trial 

progresses in time

• Noise is large but evenly distributed across neural dimensions and time
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Figure 1. Time-Resolved Variance of Neural Firing Rate across the Recorded Population 
Partitioned by General Task (Black), Location and/or Object (Green), and Noise (Gray)
The location and/or object variance is further sub-divided by location (red), object (blue), 

and location 3 object interaction (cyan). The right panel is an enlargement to enhance 

visualization of the time course of the location and object partitions. The variance is 

calculated as the sum of squares of the square-root transformed firing rate and normalized by 

dividing by the number of units and number of trials resulting in the squared firing rate per 

unit per trial. Data have been aligned separately on the times of instruction (I), movement 
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onset (M), contact (C), and hold (H). Shaded regions for each curve show the 95% 

confidence interval for the mean variance of that partition (see STAR Methods).
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Figure 2. Dimensionality and Overlap of Neural Activity Partitions
PCA was performed separately on each of the 3 partitions. In each panel, the thick line 

shows the cumulative variance explained for data in the partition on which the PCA had 

been performed; vertical lines indicate the number of dimensions needed to account for 90% 

of variance in the general task (GT) (left), LO (center), and noise (right) partitions. The 

cumulative variance explained by those PCs for the data in each of the other two partitions 

has been plotted as thin lines. Note that because this analysis of noise variability relies on 

individual trials, the simultaneously recorded data shown here come from a single session.
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Figure 3. Neural Trajectories through a GT-Derived PC Space for Monkeys L and X
The neural trajectory for each of the 24 location and/or object conditions (colored lines) as 

well as the GT (black line, averaged across all trials) has been projected onto the first 2 PCs 

derived from the GT partition, using the data concatenated across all trials of all locations/

object conditions at all times for each monkey. In the color scale, saturation represents 

location (0°, lightest; 157.5°, darkest), whereas hue represents object (sphere, tan; button, 

purple; coaxial cylinder, blue; perpendicular cylin-der, green). Data have been aligned 

separately at the times of instruction (+), movement onset (circle), contact (square), and hold 

(diamond).
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Figure 4. Time-Specific PCs of the Location and/or Object Partition
For each monkey (L, left; X, right), PCs were derived from the data at two particular time 

points, as follows: movement onset and peripheral object contact. The trajectories for each 

of the 24 location and/or object combinations then have been projected into the plane of the 

first two move PCs (A and C) and the first two contact PCs (B and D), respectively. Colors 

are the same as Figure 3 with insets showing gray scale to emphasize location (lightest, 0; 

darkest, 157.5). Location, object, and location 3 object variance are shown as functions of 

time for PC1 (upper row) and in PC2 (lower row) of the move subspace (E and G) and of the 

contact subspace (F and H).
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Figure 5. Time-Resolved PCA of LO Activity
The24location and/orobject trajectories have been projected as a function of time on to the 

first two PCs (PC1 and PC2) derived at 13 sequential time points (thick, black vertical lines) 

progressing sequentially from the top of the figure to the bottom at intervals of50 ms. Move 

and contact labels indicate the PC subspaces shown in the two-dimensional plots of Figures 

4A–4D. Colors as in Figure 3.
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Figure 6. Fractional Overlap of LO PC Subspaces
For each of the 13 selected time points illustrated in Figure 5, fractional overlap of the of the 

LO variance derived at that time point with the LO variance at every other time point is 

shown as a function of time. The subspace at each selected time point overlapped most with 

the subspaces at nearby time points and decreased progressively with increasing temporal 

separation both before and after. Colors are arbitrary and unrelated to colors used in Figures 

1, 2, 3, 4, and 5. The range of expected overlaps if two subspaces were sampled randomly 

from the same fixed, global LO space is shown with the upper shaded region (95% limit) 

and solid line (median). The range of expected overlaps for two completely unrelated 

subspaces randomly sampled from an N-dimensional space is shown with the lower shaded 

region (95% limit) and dashed line (median). See STAR Methods for further details.

Rouse and Schieber Page 27

Cell Rep. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Three Partitions—GT, Location and/or Object, and Noise
A single unit’s square-root transformed firing rate during each trial of an experimental 

session (total) first has been averaged across all trials to obtain the unit’s GT activity. This 

GT modulation then was subtracted from the original firing rate in each trial, and the 

remainder was averaged separately for each location and/or object condition (LO). Finally, 

subtracting both the GT and appropriate LO modulation from the original firing rate left the 

remaining noise in each trial. Data have been aligned separately at the times of the 

instruction onset (I), movement onset (M), contact (C), and hold (H). Colors as in Figure 3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Neuronal Recordings Rouse and Schieber, 2016a http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1716-16.2016

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com/products/matlab.html

TEMPO Experimental Control System Reflective Computing http://reflectivecomputing.com/

Multichannel Acquisition Processor 
Software

Plexon Inc. Plexon http://plexon.com/products/map-software

Offline Sorter Plexon Inc. Plexon https://plexon.com/products/offline-sorter

Other

MAP Data Acquisition System Plexon Plexon Inc. Plexon https://plexon.com/products/map-data-acquisition-system-plexon/

Floating Microelectrode Arrays 
(FMAs)

Microprobes for Life 
Sciences

https://www.microprobes.com/products/multichannel-arrays/fma
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