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Abstract
Anxiety is a common mental disorder, and its prevalence has lately increased because of the COVID-19 pandemic. Unfor-
tunately, the available anxiolytics are often ineffective, and most possess addictive potential. Thus, searching for novel 
compounds is essential. In our previous studies, we selected a multimodal compound, HBK-15, which showed a fast antide-
pressant-like effect in animal models of depression. HBK-15 demonstrated a high affinity for serotonin 5-HT1A receptors and 
moderate for 5-HT7, dopamine  D2, and α1-adrenoceptors. Based on the receptor profile and preliminary studies, we aimed 
to investigate the anxiolytic potential of HBK-15 using the conditioned-response rat model of anxiety, i.e., the Vogel drink-
ing test. We performed hot plate and free-drinking tests to exclude false positive results in the Vogel test. Using radioligand 
binding studies, we also investigated the affinity of the compound for the selected biological targets, which play a role in 
anxiety. Our experiments revealed that HBK-15 showed an anxiolytic-like effect in rats (5 mg/kg) without influencing the 
pain threshold or the amount of water consumed in the free-drinking test. Furthermore, the tested compound did not show 
a significant affinity for the selected biological targets, which suggests that its anxiolytic-like mechanism of action could be 
connected with the interaction with other receptors. This study indicates that multimodal compounds with a receptor profile 
similar to HBK-15 could be an attractive therapeutic option for patients with a generalized anxiety disorder. However, more 
studies are required to determine the exact mechanism of action of HBK-15 and its safety profile.
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Introduction

According to the World Health Organization, mental health 
conditions are increasing globally, affecting around 20% 
of the world’s young population [1, 2]. One of the most 
common mental disorders is anxiety, which can interfere 

with daily functioning causing not only constant fear, ten-
sion, irritability, restlessness, inattention, or insomnia, but 
also many serious physical symptoms such as tachycardia, 
increased blood pressure, trouble breathing, sweating, trem-
bling or body pains [3]. Thus, patients suffering from anxiety 
disorders tend to have worse job performance, school pro-
ductivity, problems in relationships, and overall decreased 
quality of life [4]. Moreover, the COVID-19 pandemic wors-
ened this trend globally by increasing anxiety prevalence by 
25% worldwide [5, 6].

Unfortunately, the available pharmacotherapy is often 
ineffective in treating anxiety disorder and only relieves 
symptoms or prevents panic attacks [7, 8]. In the past, the 
most prescribed anxiolytics were benzodiazepines - usually 
effective in improving symptoms but with a risk of seri-
ous side effects such as dependency, tolerance, somnolence, 
and memory impairments [9]. Subsequently, several selective 
serotonin reuptake inhibitors and serotonin-norepinephrine 
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reuptake inhibitors (especially escitalopram and duloxetine) 
have been shown to reduce anxiety; however, their effects 
only appear after several weeks of treatment [10]. Another 
therapeutic option for patients with anxiety disorders is 
buspirone, which targets 5-HT1A receptors. Nevertheless, 
the Cochrane review indicated its lower effectiveness than 
benzodiazepines or antidepressants [11]. Keeping in mind 
the ineffectiveness and limitations of anxiolytics, as well as 
the fact that in the last 5 to 10 years, much less research on 
novel anxiolytics was done in comparison to experimental 
treatments for depression, searching for novel compounds 
with higher efficacy and different mechanism of action is 
needed [8].

We have previously selected a novel 2-methoxyphenyl-
piperazine derivative, HBK-15. HBK-15 is a multimodal 
compound, showing a high affinity for serotonin 5-HT1A 
receptors [12] and moderate towards serotonin 5-HT7 [12], 
dopamine  D2 [13], and α1-adrenoceptors [14]. It also showed 
antagonistic properties at the 5-HT3 receptor in biofunctional 
assay [15]. Our studies demonstrated fast antidepressant-like 
effects of HBK-15 in mouse models of depression [13, 15]. 
Our preliminary study indicated the anxiolytic potential of 
HBK-15 [12]. Therefore, in this study, we aimed to inves-
tigate further the anxiolytic potential of HBK-15 using the 
conditioned-response rat model of anxiety, i.e., the Vogel 
drinking test.

Materials and Methods

Animals

In all experiments, we used male Wistar rats (200–220 g, 
in total 140 animals), purchased from the Animal House 
at the Faculty of Pharmacy, Jagiellonian University Medi-
cal College, Kraków, Poland. The animals were kept in 
groups of 3 rats in standard cages (42.5 × 26.5 × 18 cm) at 
constant room conditions (temperature: 22 ± 2 °C, humid-
ity: 50 ± 10%). Behavioral experiments were performed 
between 8 am and 4 pm and evaluated by a trained observer 
blind to the treatments. Rats were handled for at least 3 days 
before starting the experimental procedures. Animals were 
randomly allocated to the treatment using a computer-gen-
erated sequence, and researchers making measurements on 
the animals or analyzing the results were blind to the allo-
cation. All animals were used only once. Moreover, experi-
mental groups were distributed across multiple cages, and 
the location of the cages in the room was changed following 
each day. All experimental procedures were approved by 
the Local Ethics Committee for Experiments on Animals 
in Kraków, Poland, and performed under the guidelines 

provided by the European Union Directive of 22 September 
2010 (2010/63/EU) and Polish legislation concerning animal 
experimentation.

Drugs

1-[(2-Chloro-6-methylphenoxy)ethoxyethyl]-4-(2-meth-
oxyphenyl)piperazine hydrochloride (HBK-15) was syn-
thesized in the Department of Bioorganic Chemistry, Chair 
of Organic Chemistry, Faculty of Pharmacy, Jagiellonian 
University Medical College [12]. The studied compound or 
diazepam (Sigma, Germany) was dissolved in saline and 
administered intraperitoneally (ip) in a 1 ml/kg volume. 
Control groups received saline. The doses of the studied 
compound for experiments were based on the earlier stud-
ies [16].

In Vitro Experiments

Binding Assays

Binding studies were performed commercially in Eurofins 
Laboratories using testing procedures described elsewhere: 
melatonin 1 [17] and 2 [18], adenosine 1 [19], 2A [20], 2B 
[21] and 3 [22], neuropeptide Y 1 [23] and 2 [24], N neu-
ronal α4β2 [25], N neuronal α7 [26], orexin 1 [27] and 2 
[28], histamine 1 [29], 2 [30] and 3 [31], muscarinic 1 [32], 
2 [32], and 3 receptors [33], and GABA transporter [34]. 
The results are presented as the inhibition of control-specific 
binding in the presence of HBK-15.

In Vivo Experiments

Vogel Test

The testing procedure was based on a method of Vogel et al. 
[35] and used the Anxiety Monitoring System “Vogel test” 
produced by TSE Systems (Germany). It consisted of poly-
carbonate cages (dimensions 26.5 × 15 × 42 cm), equipped 
with a grid floor made from stainless steel bars and drinking 
bottles containing tap water. Experimental chambers were 
connected to PC software by control chassis and electric 
shocks generator. On the first day of the experiment, the rats 
were adapted to the test chambers and drank water from the 
bottle spout for 10 min. Afterward, the rats were returned to 
their home cages and were given 30 min free access to water, 
followed by a 24-h water deprivation period. The adaptation 
session and water deprivation protocols were repeated on the 
second day of the experiment. On the third day, the rats were 
placed again in the test chambers 30 min after HBK-15 or 
saline administration and given free access to the drinking 
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tube. Recording data started immediately after the first lick, 
and rats were punished with an electric shock (0.5 mA, last-
ing 1 s) delivered to the metal drinking tube every 20 licks. 
The number of licks and the number of shocks received dur-
ing a 5-min experimental session were recorded automati-
cally. The Vogel conflict drinking test was employed as a 
“conditional” model where a noxious stimulus is applied.

Hot Plate and Free‑Drinking Tests

To exclude possible drug-induced changes in shock sensi-
tivity or an increasing influence on thirst drive, which can 
lead to false positive results in the Vogel conflict drinking 
test, stimulus threshold, and water consumption during a 
free-drinking session were determined in separate groups of 
rats. In either of those two studies, the rats were manipulated 
similarly to the Vogel conflict drinking test, including two 
24-h water deprivation periods separated by 10-min adap-
tation session in experimental cages and 30-min of water 
availability in their home cages. In the free-drinking test, 
each animal was allowed to drink from the drinking bottle 
freely and the amount of water (g) consumed during 5 min 
was recorded for each rat. The pain threshold was evaluated 
using a hot plate test (Commat Ltd, Turkey) in rats. The plate 
was enclosed with a transparent Plexiglass cylinder (35 cm 
high) to keep the animal on the heated surface of the plate. 
The latency to pain reaction (lick a hind paw or jumping) 
when the rat was placed on a hot plate (52.5 ± 0.5 °C, 19-cm 
diameter) was measured. The rat was removed from the plate 
immediately upon visible pain reaction or if no response 
occurred within 30 s.

Statistical Analysis

The number of animals in groups was based on our previ-
ous experiments [16]. Results are presented as means ± SD. 
Comparisons between experimental and control groups were 
performed by unpaired t-test or one-way ANOVA, followed 
by Dunnett’s post hoc. p < 0.05 was considered significant. 
All data were statistically evaluated with Prism 9.0 software 
(GraphPad Software, La Jolla, California, USA).

Results

HBK‑15 Showed No Significant Affinity 
for the Selected Biological Targets

We investigated the affinity of HBK-15 for not yet tested 
selected receptors/transporters crucial for anxiolytic effect. 
The radioligand binding studies revealed that HBK-15 
did not bind to any of the selected biological targets, i.e., 

melatonin 1 and 2, adenosine 1, 2A, 2B and 3, neuropeptide 
Y1 and 2, N neuronal α4β2, N neuronal α7, orexin 1 and 
2, histamine 1, 2 and 3, muscarinic 1, 2 and 3 receptors, or 
GABA transporter (Table 1).

HBK‑15 Demonstrated an Anxiolytic‑Like Effect 
in the Vogel Conflict Test

HBK-15 administered at a dose of 5 mg/kg increased the 
number of accepted shocks by 51.8% (F(3,27) = 3.5223, 
p < 0.05) and the number of licks by 46.8% (F(3,27) = 3.1472, 
p < 0.05) in the Vogel conflict test (Fig. 1).

Diazepam, used as a reference drug, administered at doses 
of 5 and 10 mg/kg (but not 2.5 mg/kg), produced an anti-
conflict effect; it increased the number of accepted shocks by 
160% and 143%, respectively (F(3,32) = 10.764, p < 0.0001) 
and the number of licks by 162% and 159%, respectively 
(F(3,32) = 11.466, p < 0.0001) in rats (Fig. 1).

HBK‑15 Did Not Affect the Animals’ Pain Reaction 
or Water Consumption

Neither HBK-15 at dose of  5  mg/kg nor diazepam at 
the doses of 5 and 10 mg/kg affected the pain reaction 
time in the hot plate test in rats (t(11) = 0.3144, ns and 
F(2,20) = 1.409, ns, respectively; Table 2). Similarly, none of 
the compounds changed the amount of liquid consumed by 
water-deprived rats during a 5-min session (t(10) = 0.07615, 
ns and F(2,22) = 0.239, ns, respectively; Table 2).

Discussion

We found that HBK-15 showed an anxiolytic-like effect in 
the Vogel’s test in rats. The lowest effective dose in this 
test was the same as for diazepam, an anxiolytic drug. The 
compound did not bind to the selected biological targets, 
suggesting that its effects might be mediated via other recep-
tors/transporters, such as the 5-HT1A, or 5-HT7 receptors.

Many receptors and transporters play a role in anxiety 
[36–39]. Most drugs in the clinic target the GABAergic 
system, but research has shown that not only GABA recep-
tors are involved in the pathomechanisms of anxiety. Sci-
entists indicated an important role of serotonin, dopamine, 
adenosine, or nicotinic preceptors [36–39]. Our previous 
experiments showed that HBK-15 has a high affinity for 
serotonin 5-HT1A and moderate for 5-HT7, dopamine  D2, or 
α1-adrenoceptors [14–16, 40]. Knowing that HBK-15 targets 
several receptors, as the first step, we investigated whether 
the compound influences other biological targets, which 
could be important for anxiolytic effects, i.e., melatonin 
1 and 2 receptors, adenosine 1, 2A, 2B, and 3 receptors, 
neuropeptide Y 1 and 2 receptors, N neuronal α4β2 and N 
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neuronal α7 receptors, orexin 1 and 2 receptors, histamine 
1, 2 and 3 receptors, muscarinic 1, 2, and 3 receptors, and 
GABA transporter. The radioligand binding studies showed 
that HBK-15 did not bind significantly with either of the 
studied biological targets. In our previous studies, HBK-15 
showed a high affinity for the 5-HT1A receptor (pKi = 9 [12], 
and moderate for serotonin 5-HT7 (pKi = 7,47 [12]), dopa-
mine  D2 (pKi = 7,27 [13]), and α1-adrenoceptors (pKi = 7,89 
[14]). The compound also showed antagonistic properties 
at the 5-HT3 receptor in the bifunctional assay (pKB = 7361 
[15]). However, its affinity for the 5-HT3 receptor is yet to be 
tested. Moreover, HBK-15 did not show a significant affinity 
for  GABAA receptor [40]. Thus, the observed pharmacologi-
cal effect of the compound is most likely due to the interac-
tion with either the above receptors or other not-yet-tested 
biological targets.

Interestingly, HBK-15 showed no significant affinity for 
histamine or muscarinic receptors, which agrees with our 
previous biofunctional studies [41, 42]. Affinity for hista-
mine or muscarinic receptors is an undesirable feature of 
central-acting compounds, as interaction with these recep-
tors may cause side effects such as weight gain, sedation, 

tachycardia, blurred vision, and others [43, 44]. Thus, the 
obtained results encourage further studies on HBK-15.

As the next step, we investigated the potential anxiolytic 
properties of HBK-15 using a punishment-induced conflict 
test in rats, i.e., the Vogel conflict test. The test predicts 
drugs that can effectively treat generalized anxiety disor-
ders and acute anxiety states [45]. Vogel test is based on the 
approach-avoidance conflict generated in rodents between 
an appetitive drive: to drink water after a period of water 
deprivation and the fear of doing so as water consumption is 
punished by electric shocks delivered either to the animal’s 
paws or tongue [46]. HBK-15 showed an anxiolytic-like 
effect in the Vogel conflict test. Since the compound did not 
affect pain threshold or water consumption, the observed 
effect is specific to the anxiolytic-like effect.

Interestingly, we observed an inverted U-shaped effect 
for HBK-15 (only 5 mg/kg dose was effective). This com-
mon effect is observed in neuropharmacology and is not 
fully understood [47–50]. However, in the case of HBK-15, 
it might be related to its effect on several receptors, i.e., 
depending on the dose, we observe a different level of acti-
vation of receptors that HBK-15 targets. On the other hand, 

Table 1  In vitro binding assays 
for HBK-15

HBK-15 was tested at a concentration  10−6 M, except for MT1 and MT2 receptors, where the concentration 
used was  10−7 M. The results are presented as % inhibition of control specific binding. Results showing an 
activity > 50% were considered to represent significant effects of the test compound; results showing an 
inhibition between 25% and 50% indicates moderate to weak effect; results showing an inhibition < 25% are 
not considered significant and mostly attributable to the variability of the signal around the control level. 
Binding or functional studies were performed commercially in Eurofins Laboratories (Poitiers, France)
MT melatonin, A adenosine, Y neuropeptide, NTS neurotensin, OX orexin, H histamine, M muscarine

Molecular target Source % Inhibition of con-
trol specific binding

MT1 Human recombinant (CHO cells) − 0.3
MT2 Human recombinant (CHO cells) − 30.3
A1 Human recombinant (CHO cells) − 0.7
A2A Human recombinant (HEK-293 cells) 1.3
A2B Human endogenous (HEK-293 cells) − 3.0
A3 Human endogenous (HEK-293 cells) 16.8
Y1 Human endogenous (SK-N-MC cells) 0.2
Y2 Human endogenous (KAN-TS cells) − 5.6
NTS1 Human recombinant (CHO cells) 2.9
N neuronal α4β2 Human recombinant (SH-SY5Y cells) 2.7
N neuronal α7 Human recombinant (SH-SY5Y cells) 10.3
OX1 Human recombinant (CHO cells) − 13.2
OX2 Human recombinant (HEK-293 cells) 8.3
H1 Human recombinant (HEK-293 cells) 35.0
H2 Human recombinant (CHO cells) 9.2
H3 Human recombinant (CHO cells) 6.2
M1 Human recombinant (CHO cells) 27.1
M2 Human recombinant (CHO cells) 19.1
M3 Human recombinant (CHO cells) 5.6
GABA transporter Wistar rat brain (minus cerebellum) 14.9
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at higher doses, the sedative effect of HBK-15 [12] might 
mask the anxiolytic-like effect. Nevertheless, explaining this 
issue requires further studies.

Finally, it is worth mentioning that HBK-15 showed an 
anxiolytic-like effect at the same dose as diazepam, a drug 
with proven anxiolytic properties. However, in contrast 
with HBK-15, diazepam showed its anxiolytic properties 
also at a two-fold higher dose (10 mg/kg). The obtained 
results agree with our previous experiments showing that 
anxiolytic-like properties of HBK-15 in rats in the etho-
logical conflict test – the elevated plus maze or animal 
models of depression in mice [13, 15, 16]. Together these 
findings strongly suggest that compounds with a receptor 
profile like HBK-15 might have potential in the treatment 
of anxiety disorders.
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Fig. 1  The effect of HBK-15 or diazepam on the number of shocks 
(A, C) and number of licks (B, D) in the Vogel conflict test. The test 
compound or vehicle (saline) were administered intraperitoneally 
(ip)  30  min before the test. The results are presented as bar plots 

showing the means ± SD. Statistical analysis: one-way ANOVA fol-
lowed by Dunnett’s post hoc test, *p < 0.05, ****p < 0.0001; n = 7–8 
rats per group

Table 2  The effect of HBK-15 in the hot plate and water consumption 
tests in water-deprived rats

HBK-15, diazepam, or vehicle (saline) were injected intraperitoneally 
(ip) 30 min before the test. The results are presented as means ± SD 
of time reaction in the hot plate test and amount of water consumed 
during 5-min test session. Statistical analysis: unpaired t test or one-
way ANOVA followed by Dunnett’s post hoc test, n = 6–9 rats per 
group

Treatment Dose
(mg/kg)

Hot plate test
Time of reaction [s]

Water consumption
[g/5 min]

Vehicle – 7.81 ± 1.81 5.49 ± 0.71
HBK-15 5 7.43 ± 2.55 5.45 ± 1.13
Vehicle 0 8.20 ± 2.38 5.30 ± 0.79
Diazepam 5 11.40 ± 4.76 5.30 ± 1.06

10 10.06 ± 3.70 5.00 ± 0.79
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The study has some limitations. First, we assessed the 
pharmacological effects using the Vogel test in rats only 
after a single administration. In generalized anxiety, anxio-
lytics should be taken daily; thus, investigating the effects 
of HBK-15 after chronic administration is necessary. Next, 
in future studies, we should test which receptors targeted by 
HBK-15 are predominantly engaged in the anxiolytic-like 
effect of the compound. Such information would make it 
possible to target the synthesis of new, more effective com-
pounds with anxiolytic properties and potential use in the 
treatment of generalized anxiety.

Conclusion

Our study suggests that multimodal compounds with a 
receptor profile like HBK-15, i.e., targeting 5-HT1A and, to 
a lesser extent, 5-HT7 and  D2 receptors, could be attractive 
therapeutic option for patients with generalized anxiety dis-
order. However, more studies are required to determine the 
exact mechanism of action of HBK-15 and its safety profile.
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