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Time series reconstructing using 
calibrated reservoir computing
Yeyuge Chen1, Yu Qian2 & Xiaohua Cui1*

Reservoir computing, a new method of machine learning, has recently been used to predict the state 
evolution of various chaotic dynamic systems. It has significant advantages in terms of training cost 
and adjusted parameters; however, the prediction length is limited. For classic reservoir computing, 
the prediction length can only reach five to six Lyapunov times. Here, we modified the method of 
reservoir computing by adding feedback, continuous or discrete, to “calibrate” the input of the 
reservoir and then reconstruct the entire dynamic systems. The reconstruction length appreciably 
increased and the training length obviously decreased. The reconstructing of dynamical systems is 
studied in detail under this method. The reconstruction can be significantly improved both in length 
and accuracy. Additionally, we summarized the effect of different kinds of input feedback. The more 
it interacts with others in dynamical equations, the better the reconstructions. Nonlinear terms 
can reveal more information than linear terms once the interaction terms are equal. This method 
has proven effective via several classical chaotic systems. It can be superior to traditional reservoir 
computing in reconstruction, provides new hints in computing promotion, and may be used in some 
real applications.

In recent years, building model-free methods to predict the state evolution of nonlinear dynamic systems with 
machine learning methods has received increasing attention1–3. Among these methods, reservoir computing 
(RC)4,5, a simplified recurrent neural network, has usually played a core role in prediction in many interdisci-
plinary fields6–9. For example, some work investigated the dependence of computing performance on system 
parameters by time-delay autonomous Boolean node reservoir computing10. The Lyapunov exponents11,12 of 
the dynamical system can be estimated from the time series, in addition to the critical transition13,14 and the 
sensing phase coherence15. The application of reservoir computing in complex systems and nonlinear dynamics 
has developed rapidly. Such studies have focused on the identification of chaotic signals16,17, inference of partial 
variables18,19, and dynamic observation of excitable systems20. In real life, reservoir computing has been applied 
to some high-dimensional systems, such as the prediction of depletion-induced seismicity21, forecasting of 
atmospheric22, control of mechanical sensors23, and the fast response of chemosensors24.

Among the most prominent examples one applied RC is the prediction of chaotic systems. Classical reservoir 
computing has achieved 5–6 Lyapunov times in the prediction of large-scale spatiotemporal chaotic sequences25. 
Furthermore, a hybrid forecasting scheme that consists of both reservoir computing and a knowledge model 
extends the prediction length to 12 Lyapunov times26. Other studies proposed to extend the prediction length, 
such as a framework that uses a special equation to “update” the input information in the prediction phase to 
obtain long-term effective predictions27. It is believed that even a small amount “update” can help various chaotic 
systems reach an arbitrarily long prediction length. But the equation parameter c is not clear. A recent study18 
used RC with continuous partial variables of the system to infer other unknown variables by changing the 
model structure. This shows that RC is a very effective and versatile tool for robustly reconstructing unmeasured 
dynamical system variables. However, it cannot make effective reconstructions when the system variable is sym-
metric. These studies all demonstrate the practicality of RC in the prediction of chaotic systems, although the 
prediction length or effect is limited due to the initial sensitivity or some system interaction structures.

In practice, a system may have many variables interacting with each other. However, the observation and 
recording of all variables in the entire process are impossible or costly. The effective prediction of a variable 
will benefit our understanding and judgment. Here, we consider a system that has a dynamical model, but the 
model is not sufficiently accurate. The all variables of the system can be recorded for a short period, and one or 
two of the variables can be continually or discretely measured. The short period of all variables is used as the 
“training” set, and the other information is used as the “calibration” in the reconstruction phase. We observed 
that the reconstruction length ( Ttest ) can be significantly improved and the reconstruction error decreased. We 
verified our method by using different time series from several dynamical systems such as the Rössler system, 

OPEN

1School of Systems Science, Beijing Normal University, Beijing 100875, China. 2Nonlinear Research Institute, Baoji 
University of Arts and Sciences, Baoji 721007, China. *email: xhcui@bnu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-20331-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16318  | https://doi.org/10.1038/s41598-022-20331-3

www.nature.com/scientificreports/

the Lorenz system, the Rucklidge system, the coupled Lorenz system, and so on. The efficiency of reconstruc-
tion can be maintained. Moreover, we found that the reconstruction is related to the dynamical interactions. 
The types and times of interaction between the variables used to “calibrate” and the reconstructed variables will 
bring different reconstruction.

Model
We consider a dynamical system dx/dt = f (x) with vector valued variables x(x1, x2, . . . , xn) . Suppose 
xi(i = 1, . . . ,N) can be measured over a specific period[0,Ttrain ], but only some xi can be measured after that 
period (t >Ttrain ). We try to replace the trajectories of the variable xi of the same dimension in output variable s 
in t >Ttrain only depending on measurable data instead of reconstructing function f. Therefore, we use “reservoir 
computing” which was proposed for the reconstruction of time series, to seek the results.

In this paper, we adopt the reservoir technique proposed by Jaeger and Haas4. Reservoir computing is mainly 
composed of a linear input layer with M nodes, a recursive nonlinear reservoir layer with N dynamic nodes, and 
a linear output layer with M nodes. We assume that all variables of the system can be recorded in a short period, 
and partial variables can be continuously recorded over a long period. The variables that can be recorded in the 
entire process are labeled as measured variables, while the variables that cannot be recorded are labeled as recon-
structed variables. Then, we use the measured variable to build a data-driven model to reconstruct the recon-
structed variables of chaotic systems and compare the efficiency of reconstruction under different conditions. 
The solution’s specific content is as follows: use all variables that have been recorded in a short period to train the 
reservoir, and then use the measured variables to “calibrate” the input for reconstructing the reconstructed vari-
ables. Generally, calculation of the model is divided into a training phase and a reconstruction phase, as shown 
in Fig. 1. Here, the time series data is taken from different three-dimensional systems by numerical calculation.

Training phase.  Compared with other artificial neural network models such as RNN, LSTM, and deep 
learning28–30, the reservoir has far fewer adjustable parameters during the training phase. In our work, we select 
a standard discrete-time leaky tanh network, so the states of each node of the reservoir update themselves. This 
obeys the following function:

where Win is the weight matrix between the input layer and the reservoir layer, the dimension is N × (M + 1) . A 
is the weighted adjacency matrix of the reservoir layer, the dimension is N × N . r(t) is the state of each node in 
the reservoir layer, r ∈ R

N and u(t) is the M-dimensional input vector. tanh is the hyperbolic tangent function, 
which mainly makes nonlinear changes to the input. α is the update speed of each node in the reservoir layer, 
and ξ is the bias parameter.

In the training phase, the matrix A and the matrix Win are randomly selected, and only the output weight 
Wout needs to be adjusted. Once the input weight Win and reservoir layer A are determined, they remain the same 
throughout the entire process. Therefore, all parameters which are based on them are hyperparameters31. Some 
approaches move the nonlinearity from the reservoir to the output layer32, the output layer is chosen to have a 
linear function to a matrix R(t) in this paper. Here, we build the matrix R(t) = [r(t);u(t); ξ ] which consists of 
the reservoir states r(t) , the input u(t) and bias parameter ξ . The output s(t) at time t is described by

(1)r(t +�t) = (1− α)r(t)+ α tanh(Ar(t)+Win(u(t +�t)+ ξ)),

(2)s(t) = WoutR(t),

Figure 1.   The calculation of the “calibrated” reservoir computing consists of the training phase and the 
reconstruction phase. (a) In the training phase, the input u(t) and the output s(t) are known, then the Wout is 
calculated. (b) In the reconstruction phase, the biggest difference between our model and the classical reservoir 
computing is that the output s(t) is calibrated by the partial actual variables to reconstruct the unmeasured 
variables accurately.
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where Wout is the output weight, the dimension is M × (M + N + 1) . During the training phase, the system is 
open as it requires the output s(t) from the actual values. The output weight Wout is obtained by matching the 
output to the actual values in a least-square sense using ridge regression33 so that Wout resembles

where, η = 1× 10−8 is the deviation parameter to prevent overfitting of Wout . After the training is completed, 
we can obtain the output weight matrix Wout.

Reconstruction phase.  In classic reservoir computing, after inputting the initial value u(t) , the output 
s(t) is used as the input to the closed system. During this phase, the classic method is prone to exponential 
divergence between the predicted and the actual trajectories, resulting in a short prediction length for chaotic 
systems. To avoid the divergence, we directly adopt partial actual values to replace the corresponding dimension 
values of output s(t) , which is different from the synchronization principle27. Specifically, we “calibrate” the input 
in the loop: from the output layer to the input layer, as shown in Fig. 1b. In our “calibrated” reservoir comput-
ing, the corresponding dimension of s(t) is replaced by the measured variables that have been continuously 
recorded over a long time to obtain a new s′(t) . Taking the Lorenz system as an example, the input variable u(t) 
is composed of [x(t), y(t), z(t)]. If x(t), y(t) are used as the measured variables, then the new s′(t) is supposed 
to be s′(t) = [x′(t +�t), y′(t +�t), z(t +�t)] after “calibration”. (Here, x′(t +�t), y′(t +�t) represent the 
actual value at time t +�t .) Then we use u(t +�t) = s

′(t) as the input to reconstruct z(t + 2�t) . Next, we use 
s
′(t +�t) to “calibrate” the input and reconstruct. Finally, we repeat the above processes iteratively. Our method 

can greatly reduce the exponential divergence of the state variables and improve the reconstruction accuracy. In 
the calculation process, the number of reservoir network nodes N is 95, which is much lower than the reservoir 
network with N = 40018 and N = 500027. Below, we use the Lorenz system as a example to test the “calibrated” 
reservoir computing.

To evaluate the reconstruction capability with the reservoir for each mode, the reconstruction accuracy of 
each task in the reconstruction phase is calculated with the root mean square error34 (RMSE)

where xre is the reconstructed value of the system variable, xture is the actual value of the system variable, and m 
is the total number of the reconstructed value xre.

Results
Model reliability.  We now investigate the reliability of the “calibrated” reservoir computing to reconstruct 
a chaotic system from a time series without a dynamical model. For this purpose, the simulated data from the 
Lorenz equation35 with (x, y, z) variables are used here.

where A = 10.0, B = 28.0, C = 8/3. We use the fourth-order Runge–Kutta to calculate Eq. (5). The iteration step 
is set as 0.02, and the maximum Lyapunov exponent36 is approximately 0.89 (57 steps correspond to a Lyapunov 
time). Setting the initial values as (1.01, 1.01, 0.0), the total iteration step is 105 , and then a 3× 105 data set is 
obtained.

We use two different modes to perform our experiments. In case 1 (marked as the xy − z mode), we choose 
two variables (x, y) as the measured variables to “calibrate” the input, so the other system variable (z) is the 
reconstructed variable. In case 2 ( x − yz mode), we choose one system variable (x) as the measured variable, 
and two system variables (y, z) as the reconstructed variables. All variables of the system are known during the 
entire training phase (0 < t < Ttrain) . The results demonstrate that the trained “calibrated” reservoir computing 
can accurately reconstruct the evolution of the reconstructed variables using any two measured state variables.

In Fig. 2, the x and y variables of the system are continuously recorded, as shown in (a) and (b), respectively, 
and the z variable is unmeasured which is reconstructed in (c) and (d) by the red dotted line. During the training 
phase, the parameters of the “calibrated” reservoir computing are as follows

Number of reservoir nodes: N = 95,

Average degree: D = 9.5,

Bias constant: ξ  = 0.1,

Spectral radius: ρ = 9.7,

Reconstruction length: Ttest = 104

.

The root mean square error (RMSE) of the system reconstructed variable z is 9.998e−2, indicating a very small 
deviation between the reconstructed values and the actual values. Similarly, we calculated the shortest training 
length ( Ttest = 104 , RMSE < 0.1 ) of the Lorenz system when the reconstructed variable is x or y, and the results 
are shown in Fig. 3 and Table 1. It should be noted, the shortest training length is used as an index of the the 
efficiency of reconstruction when the reconstruction length is fixed and RMSE < 0.1 . The results indicate that 

(3)Wout = sR
T (RRT + ηI),

(4)RMSE =

√

∑

(xre − xture)2

m
,

(5)

{

ẋ = A(y − x)
ẏ = x(B− z)− y
ż = xy − Cz

,
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the proposed “calibrated” reservoir computing method can give a reliable reconstruction as the variables have a 
long reconstruction length and small RMSE.

Relationship between reconstruction and training length.  In this section, we study the relationship 
between the error of the reconstructed variables and the training length. We give different lengths of the train-
ing data and observe the changes in reconstruction errors under the modes of yz − x , xz − y , and xy − z . The 
results are shown on the right side of Fig. 3. The blue dots represent the average values of the absolute differences 
between the reconstructed values and the actual values ( |�x| = abs(xre − xture) ) at different training lengths 
with Ttest = 104 . The red error bars indicate the standard deviation values of |�x| , |�y| , and |�z| . As shown in 
Fig. 3, the reconstruction error drops sharply when the training length reaches a certain value. After that, the 
reconstruction error is maintained. This means that the “calibrated” reservoir computing has a limit of accuracy, 
and it is not necessary to pursue a longer training length.

Then, the relationship between training length and reconstructable length is studied. If Ttest reaches 104 , then 
RMSE is still less than 0.1, the reconstruction length is cut off as it is equivalent to approximately 200 Lyapunov 
time in the Lorenz system, and the “reconstructable length” is set as 104 . However, if RMSE is over 0.1 before 
Ttest reaches 104 , then the “reconstructable length” is set as the longest reconstruction length when RMSE < 0.1 . 
In Fig. 4, we can see that the reconstructable lengths of the three modes ( yz − x , xz − y and xy − z ) are basi-
cally below 5000 steps before the training length reaches a certain value. Once the threshold is reached, the 
system generates a jump mutation, and Ttest ascends to the maximum value 104 . These results are identical to 
those obtained from the study of the reconstruction error and training length. These models’ various thresholds 
confirm that the quantity of information carried by different system variables is diverse.

We consider reducing the measured variables based on the preceding experimental results: the number of 
measured variables is decreased to one. After constructing x − yz , y − xz , and z − xy modes, the same method 
as above is performed. The results are shown in Fig. 5 and Table 2.

The results show that “calibrated” reservoir computing can still reconstruct well when the measured variables 
are reduced. Meanwhile, the shortest training length is the fewest in the y − xz mode when the reconstruction 

Figure 2.   Reconstruction of the Lorenz system (Eq. 4). (a–c) The sequence diagram of variables x, y, z in the 
xy − z mode, the blue solid line is the training length ( Ttrain = 205). For the reconstruction phase, the green 
and orange solid lines represent the trajectories of measured variables x and y, respectively, and the bright green 
solid line represents the actual value of variable z. The red dotted line represents the trajectories of reconstructed 
variable z calculated by reservoir computing, for Ttest = 5000. Apparently, using very little data to train the 
“calibrated” model, then the reconstructed variable can be reconstructed for a fairly long term. (d) A partial 
enlargement of (c) for t between 4000 and 5000, the dotted lines (reconstructed values) almost coincide with the 
solid lines (actual values), demonstrating the model’s ability to accurately reconstruct.

Table 1.   Shortest training length of the Lorenz system in the case 1(Ttest = 104 , RMSE < 0.1).

Mode style Min(Ttrain) Ttest

Lorenz: yz − x 125 10,000

Lorenz: xz − y 1205 10,000

Lorenz: xy − z 205 10,000
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length is the same. However, Fig. 5i shows that there is no certain threshold in the z − xy mode for the reservoir 
to make a stable reconstruction. It implies that variable z may contain less information than other variables. 
Overall, although the shortest training length for the reconstructable length varies in six modes, its training 
length is much shorter than the reconstructable length.

Relationship between reconstruction and underlying dynamical features.  In this section, we 
study the the efficiency of reconstruction under different data sets taken from many classical chaotic systems, 
and compare the results in detail. For comparison, we also select the shortest training length as the index of 
reconstruction for each system. The fewer the shortest training length we need, the better the reconstruction.

In case 1(xy − z ), we found that the variables that coupled most with others (nonlinear terms) in dynamical 
terms can be best reconstructed, as shown in Table 1 of the Lorenz model. In Lorenz system Eq. (5), the nonlinear 
terms are xy and xz, x is coupled with the other two variables. Therefore, the yz − x mode has the best recon-
struction, as x is set as the reconstructed variable. This rule is robust, and we demonstrated for other models as 
shown in the Supplementary Materials.

In case 2(x − yz ), we found that the more frequently variables appear in other equations, the better recon-
struction when it is used as the measured variable to reconstruct other variables. Take the Rössler system37 as 
an example:

Here, variable x takes part in the dynamical revolutions of both ẏ and ż , so variable x has the best reconstruc-
tion results when it is used as the measured variable. The results is shown in Table 3. To further support the 

(6)

{

ẋ = −y − z
ẏ = x + 0.15y
ż = 0.2+ z(x − 10).

Figure 3.   (a–c) The sequence diagram in the yz − x mode, xz − y mode and xy − z mode, the blue solid line 
is the training length ( Ttrain ). The red dotted line represents the trajectories of reconstructed variables which 
are calculated by the “calibrated” reservoir, for Ttest = 104 . (d–f) Reconstruction errors of the Lorenz system 
variables x, y, and z in the three modes: yz − x mode, xz − y mode and xy − z mode, respectively. The blue 
dots represent the corresponding average values of the absolute difference between the reconstructed and 
actual value. The red error bars are the standard deviation values of |�x| , |�y| , |�z| . The subgraphs are partially 
enlarged views of (d–f). All modes’ reconstruction error falls dramatically at initially, then it reaches a stable 
value as training length increases. (Without special instructions, the blue dots and red error bars remain the 
same definition.).
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rule, we tested many systems and verified that these systems also follow this rule. These results are shown in the 
Supplementary Materials.

In addition, the reconstruction can reveal dynamical structures when the data are measurable while the 
equation is unknown. For example, if the x − yz mode has the best reconstruction, we can conversely speculate 
that there may be x related terms in ẏ and ż . If the xy − z mode has the best reconstruction, then z may have 
nonlinear terms in the evolutive equations of x and y.

Feasibility of “calibrated” reservoir computing under interval “calibration”.  In this section, we 
consider that the variables may be spare sampling instead of continuously as continuous measuring may cost too 
much or cause damage to systems. We select “calibrating” the input at intervals for the sake of information utili-
zation. We first set the interval length as �t = 5, 10, . . . , 95, 100 . The distribution of �t and the reconstruction 
error corresponding to different modes under the Lorenz system are shown in Fig. 6. The reconstruction error 
increases slightly but the distribution of error becomes wider.

For a precise overview, the reconstruction results of the “calibrated” reservoir computing when �t = 50 and 
�t = 100 are shown in Fig. 7a–d. When the interval step is 50 or 100, the reconstructed values are nearly coin-
cident with the actual value, and RMSE are both less than 0.1. However, the reconstruction error at �t = 100 
is obviously larger than �t = 50 , and the maximum error �x reaches 2.35 (within Ttest = 104 ). It means that 
the “calibrated” reservoir computing with interval sampling works well but the reconstruction accuracy trends 
decrease when �t is too large.

Figure 7e shows the time sequence diagram of the reconstructed value by the “calibrated” reservoir comput-
ing (green dashed line) and the actual value by numerical calculation (red solid line) in the y − xz mode. These 
results demonstrate that the two datasets are essentially in agreement and the RMSE value is 2.26e−2. In Fig. 7f, 
the difference �x is approximately �x = 0 , the “calibrated” reservoir reservoir computing can still accurately 
work in the y − xz mode. It implies that the calibrating variables can be simplified to intervals instead of con-
tinuous while the reconstruction can be maintained at most times.

Figure 4.   (a–c) Tendency of the longest Ttest of variable x, y, z versus Ttrain in each mode, when the RMSE of the 
Lorenz system < 0.1 . The Max(Ttest ) has been set at 104 . The blue star dots are the longest reconstructable length. 
The further proof of the relationship between Ttrain and Ttest is proved shows that these three modes all have a 
threshold.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16318  | https://doi.org/10.1038/s41598-022-20331-3

www.nature.com/scientificreports/

Conclusion
We proposed “calibrated” reservoir computing by calibrating the input to reconstruct the evolution of recon-
structed variables under advanced conditions (“reservoir observers”18). Then, we discussed the efficiency of 
reconstruction in the absence of a mathematical model for dynamic systems when the variables are partially 
measured. Our results can be summarized as follows. 

Figure 5.   Reconstruction results of the Lorenz system in the corresponding x − yz mode, y − xz mode and 
z − xy mode. (a–c) The sequence diagram, the reconstruction error, and the longest reconstructable length 
about the x − yz mode, respectively. (d–f) The same results obtained in the y − xz mode. Similarly, (e–i) The 
outcomes under the z − xy mode. In (a,d,g), the dotted lines are the reconstruction results of the “calibrated” 
reservoir computing, the real lines are the actual values of system variables (the blue real lines represent the 
training length). All results represent the “calibrate” model can work well with different modes. (b,e,h) The 
reconstruction error of three modes in the Lorenz system, the front two modes have a sharply declining trend 
with increasing Ttrain , the reconstruction error of the last mode decreases after reaching a certain training 
length, but there is some fluctuation. (c,f,i) The tendency of longest Ttest versus Ttrain when RMSE < 0.1. In (i), 
the longest Ttest does not have a certain threshold, the variables x, y can only be reconstructed accurately by 
some Ttrain values. The basic reservoir parameters we use here are the same for Figs. 2, 3 and 4.

Table 2.   Shortest training length of the Lorenz system in the case 2(Ttest = 104 , RMSE < 0.1).

Model style Min(Ttrain) Ttest

Lorenz: x − yz 1520 10,000

Lorenz: y − xz 208 10,000

Lorenz: z − xy 2618 10,000

Table 3.   Shortest training length of the Rössler system in the case 1 ( Ttest = 104 , RMSE < 0.1).

Model style Min(Ttrain) Ttest

Rössler: x − yz 1671 10,000

Rössler: y − xz 1705 10,000

Rössler: z − xy 2225 10,000
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1.	 The reconstruction length can be extended to 104 or even longer in our “calibrated” method, as shown 
in Fig. 2. Compared to 5-6 Lyapunov times of the classical model25 and 12 Lyapunov times of the hybrid 
model26, it is significantly promoted, and the training length can be obviously reduced. The more measured 
variables we use, the better reconstruction results (Tables 1, 2). Moreover, the results are robust in differ-
ent chaotic dynamical systems such as the high dimension coupled system, the Rössler system, the Lorenz 
system, and so on as shown in the Supplementary Materials.

2.	 There is a threshold between the training length and the reconstructable length in most modes. The recon-
struction has a limit in accuracy, as its error (or reconstructable length) is maintained when the training 
length increases to a certain value.

3.	 The activities in other’s dynamical terms and the types of interaction affect the reconstruction. The more 
it interacts with others in dynamical equations, the better reconstruction it makes when it is chosen as the 
measured variable. The nonlinear terms can reveal more information than linear terms once the interacting 
terms are equal.

4.	 When the measured variables are sparse, our methods are still valid (see Fig. 7).

Overall, when all system variables can be recorded for a short period and partial variables can be continually or 
discretely measured for a long period, the “calibrated” reservoir computing we proposed and investigated here 
can effectively reconstruct the remaining reconstructed variables by using the measured data. The reconstruction 
is maintained in different chaotic systems. Moreover, if all the data are measured, then the reconstruction varies 
via different input measured variables, which can reveal the underlying dynamical features.

Figure 6.   The reconstruction error of the Lorenz system versus the interval �t (5–100) in the six modes. (a–e) 
The tendency of the reconstruction error and the interval �t in the five modes (i.e., yz − x mode, xz − y mode, 
xy − z mode, x − yz mode, and y − xz mode) when Ttrain = 1500. All the five modes can reconstruct well when 
�t = 5, and the reconstruction of yz − x mode is the best. Unfortunately, the reconstruction of some modes 
(i.e., xz − y , x − yz ) become worse when �t >5. In (f), the reconstruction error (RMSE) for the z − xy mode 
is always much greater than 0.1 even when Ttrain = 3000. It signifies that z − xy mode cannot work well under 
interval calibrating.
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Code availability
All data generated and analysed in the manuscript are reproducible based on the algorithms detailed in the article 
(see  “Model” and the “Results” sections).
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