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Simple Summary: The databases of mRNA and non-coding-RNAs (miRNA, circRNA, lncRNA) in
the ovary of Xinong Sannen goat were reported in this study. The differential expression of mRNA
and non-coding RNAs were analyzed, and the comprehensive analysis of the four databases provided
RNA networks that regulate estrous cycle, which is essential to improve reproduction.

Abstract: Estrous cycle is one of the placental mammal characteristics after sexual maturity, including
estrus stage (ES) and diestrus stage (DS). Estrous cycle is important in female physiology and its
disorder may lead to diseases, such as polycystic ovary syndrome, ovarian carcinoma, anxiety, and
epilepsy. In the latest years, effects of non-coding RNAs and messenger RNA (mRNA) on estrous
cycle have started to arouse much concern, however, a whole transcriptome analysis among non-
coding RNAs and mRNA has not been reported. Here, we report a whole transcriptome analysis of
goat ovary in estrus and diestrus periods. Estrus synchronization was conducted to induce the estrus
phase and on day 32, the goats shifted into the diestrus stage. The ovary RNA of estrus and diestrus
stages was respectively collected to perform RNA-sequencing. Then, the circular RNA (circRNA),
microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA databases of goat ovary were
acquired, and the differential expressions between estrus and diestrus stages were screened to
construct circRNA-miRNA-mRNA/lncRNA and lncRNA-miRNA/mRNA networks, thus providing
potential pathways that are involved in the regulation of estrous cycle. Differentially expressed
mRNAs, such as MMP9, TIMP1, 3BHSD, and PTGIS, and differentially expressed miRNAs that
play key roles in the regulation of estrous cycle, such as miR-21-3p, miR-202-3p, and miR-223-3p,
were extracted from the network. Our data provided the miRNA, circRNA, lncRNA, and mRNA
databases of goat ovary and each differentially expressed profile between ES and DS. Networks
among differentially expressed miRNAs, circRNAs, lncRNAs, and mRNAs were constructed to
provide valuable resources for the study of estrous cycle and related diseases.

Keywords: circular RNA; microRNA; long non-coding RNA; messenger RNA; estrous cycle

1. Introduction

Estrous cycle is one of the physiological characteristics of placental mammals induced
by sex hormones after sexual maturity, including estrus stage (ES) and diestrus stage (DS).
The length of time between two consecutive ovulation periods is defined as an estrous
cycle. The same phenomenon in humans is called menstrual cycle, which is differentiated
by the pattern of the endometrium being removed when the mammals are not pregnant
after the cycle. In humans, the endometrium would be eliminated from the body at the
menstrual period, while it would be absorbed in non-primate mammals [1]. Both menstrual
and estrous cycles are closely related to complex hormonal intercommunications of the
hypothalamic-pituitary-ovarian axis [2–4].
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In goat, the reproduction is spontaneously ovulating and seasonally polyestrous, with
the length of estrous cycle being from 18 to 24 days [5]. Goats are sexually active only in
the ES, and humans can keep sexually active at any time, even not in the ovulatory period.
The onset and duration of estrus in goat is related to various factors, such as hormone,
photoperiod, age, climate, and food supply. Generally, in temperate areas, goats are found
to breed in the fall and winter due to the annual variations of photoperiods. In tropical
areas, however, goats are considered to be in regular estrous cycles throughout the year [5].
Nevertheless, the structure of the reproductive system and the release of sex hormones
are similar between human and goat. Studies in rodents show that disorder of estrous
cycle participates in disease progression, such as ovarian carcinoma [6], anxiety [7,8], and
epilepsy [9]. Recently, it was reported that neuronal chromatin organization fluctuates
with the estrous cycle in the brain [10], and rats in diestrus stage are easier to display
memory impairment than those in estrus stage when they undergo restraint and social
isolation stress [11], indicating an importance of estrous cycle in physiological regulation.
Disorder of estrous cycle is a dramatic symptom of polycystic ovary syndrome (PCOS),
which disturbs adolescent females in reproductive ages [12]. The regulation of estrous cycle
in goat breeding is also important for milk and meat industries to meet the year-round
demands of consumers [1]. In the latest years, effects of non-coding RNAs and messenger
RNA (mRNA) on estrous cycle have started to arouse much concern [13–17], however, joint
transcriptome analysis among non-coding RNAs and mRNA has not been reported.

Non-coding RNAs consist of microRNA (miRNA), circular RNA (circRNA), and long
non-coding RNA (lncRNA). MiRNAs are a class of endogenous non-coding RNAs at a
length of about 20 nucleotides, regulating gene expression by promoting mRNA degra-
dation or preventing translation [18,19]; CircRNAs, derived by non-classical alternative
splicing, are another class of endogenous non-coding RNAs that can expropriate miRNAs
as a sponge to block miRNAs from binding to target genes [20–22]. LncRNAs are a category
of transcripts longer than 200 nucleotides without open reading frames that achieve func-
tions through interacting with DNA, other RNAs, and proteins by base complementation
or secondary structure generated by RNA folding [23]. The mRNA expression profile of
ovary between uniparous and multiparous Anhui white goats [24], the miRNA expression
in Chuanzhong black goat ovarian stroma and follicles [25], circRNA expression differ-
ence in pre-ovulatory ovarian follicles between Boer goat and Macheng black goat [26],
and lncRNA expression difference in ovary of Anhui white goat at different estrous cycle
periods [14], have been investigated by sequencing in previous studies, which provide
resources for studies on goat fertility. Moreover, the mRNA and lncRNA databases of goat
ovary in Chuanzhong black goat between high- and low-fecundity goats have also been
analyzed [27]. However, the coalition analysis between each database is not reported in
goat. An integrated analysis of lncRNA, miRNA, and mRNA in ovary at different phases of
estrous cycle has been reported to explore the regulation networks in large white sows, and
it reveals a novel insight in the regulation of pig fertility [28]. In this study, the databases
of miRNA, circRNA, lncRNA, and mRNA in the ovary of Xinong Sannen goat in ES and
DS were acquired and analyzed in combination. The differentially expressed ones were
extracted to construct circRNA-miRNA-mRNA/lncRNA and lncRNA-miRNA/mRNA
networks that participated in estrous cycle, therefore contributing to further investigation
in the comprehensive regulation of estrous cycle.

2. Methods
2.1. Animal and Ethics

Two-year-old female Xinong Sannen goats were kept in a breeding basement of
Northwest A&F University with enough space. Feed and water consumption was ad
libitum. Female multiparous healthy goats weighing around 60 kg were selected for this
experiment. This experiment was conducted in summer, and the goats were in the anestrus
stage. Estrus synchronization was conducted with PGF2α, medroxyprogesterone, FSH,
and PMSG to induce the estrus stage of goats. At the first day, 0.2 mg of PGF2α was given
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by intramuscular injection and a vaginal medroxyprogesterone suppository was applied.
On day 10, 20 IU of FSH was dosed twice in an 11 h interval by intramuscular injections.
On day 11, the vaginal sponge was removed, and 200 IU of PMSG and 0.1 mg of PGF2α
were injected intramuscularly. On day 12, male goats were used to differentiate estrus from
diestrus animals (to avoid breeding, the abdomen of the ram is tied with a white cotton
cloth that has ropes on the four corners during the test), and females that accepted males
to climb across were regarded as in ES. On day 32, the female goats were reluctant to the
climb of males, which shows them to be in DS. Three random goats in estrus or diestrus
were slaughtered respectively after anesthetization, and ovary tissues were frozen in liquid
nitrogen immediately. RNAiso Plus (Takara, Tokyo, Japan) was applied to isolate total
RNA of tissues in accordance with manufacturer’s protocol. All of the procedures were
approved by the Animal Care and Use Committee of the Northwest A&F University and
conformed to national guidelines (ethic code: #0726/2018).

2.2. miRNA Sequencing

Total RNA was separated by size using agarose gel electrophoresis for segments of
18–30 nucleotides to be linked with 3′adaptors. The products were purified further to get
segments of 36–44 nucleotides by Urea-PAGE gel, and linked with 5′adaptors to get miRNA
samples. Then, reverse-transcription PCR was conducted, whose products went through a
separation by 3.5% agarose gel to get segments of 140–160 base pairs. The gel extraction
product was prepared as miRNA library for miRNA sequencing. After sequencing, the
reads of low quality were filtered, and adapters were removed to obtain tag sequences
of small RNA. The tags were then annotated, and miRNAs that existed in the miRBase
database (http://www.mirbase.org/ (10 March 2021)) were identified. Novel miRNAs
were identified by the prediction of hairpin structure. The expression profile of miRNA
in Xinong Sannen goat ovary was obtained and differentially expressed miRNAs were
screened. The target genes of differentially expressed miRNAs were predicted, and gene
ontology enrichment (http://geneontology.org/ (10 March 2021)) and KEGG pathway
enrichment (https://www.genome.jp/kegg/ (10 March 2021)) of predicted target genes
were performed to analyze the possible function of differentially expressed miRNAs.

2.3. circRNA Sequencing

The ribosomal RNA was removed from total RNA and linear RNA was degraded by
Rnase R. Then, fragmentation buffer was applied to obtain short fragments of circRNAs,
which were used as templates for first-strand cDNA synthesis by random hexamers.
Second-strand cDNA was synthesized by dNTPs, RNase H, and DNA polymerase I. A
QiaQuick PCR kit was used to purify the products with EB buffer. After end repair, base-
A addition, and sequencing adaptor addition, the products were purified again by size
with an agarose gel. PCR amplification was conducted to establish a circRNA library
for circRNA sequencing by Illumina HiSeq 2500. The raw data acquired by sequencing
(three animals from each category) were filtered to get the high-quality clean reads, which
were compared with the reference genome. Both ends of the unmapped reads were
intercepted as anchors reads. The circRNAs were identified by Find_circ software, and
the information, such as type, distribution, expression, and predicted target relation, was
analyzed and summarized.

2.4. mRNA and lncRNA Sequencing

The ribosome RNA of total RNA was removed with the remaining mRNA to reserve
all non-coding RNAs as much as possible. The obtained mRNA was broken into short seg-
ments at the length of 200–500 nucleotides as templates for cDNA synthesis after ribosomal
RNA. First-strand cDNA was synthesized by random hexamers and then dNTPs, RNase H,
and DNA polymerase I were applied to acquire the second strand. PCR amplification was
performed after ligate adapter and Uracil-N-glycosylase treatment to establish the library
for sequencing. The quality of the data was assessed to remove the reads with adapter and
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N content greater than 10% and the low-quality reads (the number of bases with Q ≤ 20 ac-
counts for more than 50% of the entire read), and then the data of high quality was used for
analysis. To improve the efficiency of sequencing, the high-quality clean reads that mapped
to the ribosome database were removed since ribosome RNA makes up >80% of cellular
RNA and could obstruct the detection of other RNAs [29]. The filtered reads were mapped
to the reference genome database to build the mRNA library and calculate the expression of
mRNAs. The reads per kilobase transcriptome per million mapped reads (RPKM = entire
exon reads/mapped reads in millions × exon length in kb) method was used to normalize
the gene expression levels. RPKM > 1 was used as the threshold to judge gene expression.
The significance limitation of the p-value in numerous tests was fixed on the basis of false
discovery rate (FDR). Standardized gene expression levels of groups were measured using
the fold changes (log2 |Fold Change|) by DESeq (version 1.18.0). Finally, the standards of
(i) |log2 (Fold Change)| > 1 and (ii) p < 0.05 were utilized to determine the significance
of gene expression differences. Enrichments of gene ontology (http://geneontology.org/
(10 March 2021)) and KEGG pathway (https://www.genome.jp/kegg/ (10 March 2021))
were performed to analyze the processes that differentially expressed mRNAs participated
in. LncRNAs were differentiated from mRNA using CNCI and CPC software by the
evaluation of coding ability.

3. Results
3.1. Overview of circRNA Sequencing

An average of 84,629,465 (DS) and 80,303,146 (ES) clean reads were obtained in two
libraries. After the data were quality-controlled and filtered, 99.28% (DS) and 98.95%
(ES) of high-quality (HQ) clean reads were generated. The mapped rRNA reads were
removed from HQ clean reads, and then 20 base pairs at both ends of the unmapped reads
were picked as Anchors Reads, which were later aligned to the caprine genome. In this
experiment, 22,333 novel circRNAs were found from the mapped reads and no existing
circRNAs were detected. The information of circRNAs is shown in Supplementary Table S1,
including source gene ID, chromosome and genomic location, length, and annotation
type. The distribution of the identified circRNAs on caprine chromosomes is presented
in Figure 1A, which showed that most circRNAs were on chromosomes 1, 2, 3, 8, 10, and
11. In general, most circRNAs were 400 nucleotides in length (Figure 1B) and six types of
circRNAs were identified, with annot_exon being the most common type (Figure 1C).

3.2. CircRNA Source Gene Analysis and Differentially Expressed circRNAs Analysis

GO terms of circRNA source genes were enriched in three aspects (Supplementary
Table S2): Biological Process (9566 genes), Cellular Component (3274 genes), and Molecular
Function (8786 genes). It was found that circRNA source genes are mainly involved in
cellular process (GO:0009987), single-organism process (GO:0044699), biological regulation
(GO:0065007), cell (GO:0005623), cell part (GO:0044464), organelle (GO:0043226), binding
(GO:0005488), and catalytic activity (GO:0003824) terms (Figure 2A). The KEGG pathway
database was applied to analyze metabolic processes that the source gene participated
in, and 287 KEGG pathways were found (Supplementary Table S3). The top 20 enriched
pathways are shown in Figure 2B, including Oocyte meiosis (ko04114), Thyroid hormone
signaling pathway (ko04919), Oxytocin signaling pathway (ko04921), and Progesterone-
mediated oocyte maturation (ko04914), which are closely related to reproduction traits.

http://geneontology.org/
https://www.genome.jp/kegg/
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Figure 1. The location, length, and type of identified circRNAs. (A) The chromosome distribution of identified circRNAs,
(B) the length distribution of identified circRNAs, and (C) the number of the six types of circRNA.
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Figure 2. The analysis of circRNA source genes. (A) The enriched GO terms of circRNA source genes.
GO enrichment of circRNA source genes was conducted to annotate the genes that were potentially
spliced to circRNAs in goat ovary. Overall, 9566 of the source genes played roles in biological process,
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3274 genes participated in cellular component, and 8786 genes were in molecular function. (B) The
enriched KEGG pathways of circRNA source genes. CircRNA source genes were analyzed by the
KEGG database, and 287 KEGG pathways that the source genes participated in were enriched. The
top 20 pathways were selected to show in the figure. (C) The number of differentially expressed
circRNAs between ES and DS groups. There were 347 circRNAs upregulated and 329 circRNAs
downregulated in the ES group compared to the DS group (p < 0.05). (D) The heatmap of differentially
expressed circRNAs.

When |log2 (Fold Change)| > 1 and p < 0.05, the circRNA would be regarded as
differentially expressed circRNA. Overall, 676 differentially expressed circRNAs were
discovered in the ES group compared to the DS group, including 347 upregulated and 329
downregulated ones (Figure 2C). The heatmap of cluster analysis is shown in Figure 2D.
Besides, all acquired circRNAs were analyzed to predict the targeted relationship with
existing miRNAs, and 22,207 circRNAs were found to be combined with 433 miRNAs, cre-
ating 447,870 combination opportunities between circRNAs and miRNAs (Supplementary
Table S4).

3.3. Sequencing and Analysis of miRNA

Low-quality reads (quality value less than 20 or containing N bases) were removed
to obtain tag sequences, which were aligned with miRNAs in the miRBase database
(http://www.mirbase.org (10 March 2021)) to identify existing or known miRNAs. Novel
miRNAs were identified with hairpin motif prediction referring to reference sequences.
The expression of miRNAs is listed in Supplementary Table S5. There were 168 differ-
entially expressed miRNAs found between ES and DS groups, and 165 of them in the
ES group had lower expressions than in the DS group (Supplementary Table S6). Target
genes of differentially expressed miRNAs were predicted and subjected to GO and KEGG
enrichments analyses, and the results indicate that predicted target genes were involved in
54 GO terms (Supplementary Table S7) and 295 pathways (Supplementary Table S8). The
enriched GO terms and top 20 enriched pathways are shown in Figure 3A,B, respectively.

3.4. Sequencing and Analysis of mRNA and lncRNA

Groups DS and ES acquired 87,594,681 and 84,720,001 clean reads respectively, with
99.88% and 99.89% HQ clean reads, respectively. Reads unmapped to rRNA were selected
and aligned to the caprine genome. In total, there were 30,688 reference isoforms, to which
80.14% (24,593) of isoforms were mapped, and 12,470 new isoforms were found.

Coding transcripts of the isoforms were defined as mRNA. A total of 182 differentially
expressed mRNAs were identified, of which 117 mRNAs were less expressed. TIMP1 [30],
MMP9 [31,32], 3BHSD [33,34], and PTGIS [35], which are essential for follicular and ovarian
developments, were included. Enrichments were performed, and differentially expressed
mRNAs were found to function in 43 GO terms and 193 pathways. The result of GO
enrichment is shown in Figure 4A, and the top 20 enriched pathways are displayed in
Figure 4B.

CNCI and CPC were applied to screen lncRNAs from the isoforms by coding ability. In
this study, 4384 lncRNAs were found, among which 39 lncRNAs were downregulated and 2
lncRNAs were upregulated in the ES group. To explore the functions of identified lncRNAs,
target genes of all lncRNAs in cis (Supplementary Table S9) and trans (Supplementary
Table S10) were predicted. However, no potential target relationship between differentially
expressed lncRNAs and mRNAs was found. We then analyzed all lncRNAs to predict
lncRNAs that might be precursors of miRNAs (Supplementary Table S11), where one of the
lncRNAs differentially expressed between the ES and DS groups, TCONS_00080902, was
found to be a possible precursor of one of the differentially expressed miRNAs, miR-223.
The three predicted secondary structures of TCONS_00080902 are shown in Figure 4C.

http://www.mirbase.org
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Figure 3. GO and KEGG enrichments of predicted target genes of differentially expressed miRNA. (A)
The enriched GO terms of differentially expressed miRNA target genes, and (B) the enriched KEGG
pathways of differentially expressed miRNA target genes. To assess the function of differentially
expressed miRNA in different stages of estrous cycle, the target genes of the miRNAs were predicted,
and GO enrichment (A) and KEGG enrichment (B) were conducted.
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Figure 4. The analysis of mRNA and lncRNA. (A) The GO enrichment of differentially expressed
mRNAs, (B) the KEGG pathway enrichment of differentially expressed mRNAs, and (C) the three
predicted secondary structures of TCONS_00080902. The differentially expressed mRNAs were
screened to explore the mRNA regulation in goat estrous cycle. GO enrichment (A) and KEGG
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enrichment (B) were performed, and 43 GO terms and 193 KEGG pathways that the 182 differentially
expressed mRNAs participated in were enriched. Differentially expressed lncRNAs that could be the
precursor of differentially expressed miRNAs were screened, and TCONS_00080902 was identified
to be the precursor of miR-223. The secondary structures of TCONS_00080902 were predicted and
displayed (C).

3.5. Prediction of circRNA-miRNA-mRNA and miRNA-lncRNA Functional Regulatory Networks

This study provides information of all predicted binding possibilities of differentially
expressed miRNAs to differentially expressed circRNAs/mRNAs/lncRNAs (Supplemen-
tary Table S12). The circRNA-miRNA-mRNA network involving TIMP1, 3BHSD, and
PTGIS was explored (Supplementary Table S13). We searched for their upstream miRNAs
in the differentially expressed miRNA library; besides, differentially expressed circRNAs
that have potential to be the miRNAs sponges were filtered. Then, the network centering
on TIMP1, 3BHSD, and PTGIS was constructed (Figure 5A). It can be seen that TIMP1
participates in the HIF-1 signaling pathway (ko04066), 3BHSD participates in Aldosterone
synthesis and secretion (ko04925), Ovarian Steroidogenesis (ko04913), and Steroid hormone
biosynthesis (ko00140), and PTGIS participates in Arachidonic acid metabolism (ko00590),
which are important in follicular and ovarian developments [36–39]. It is gratifying that
differentially expressed miRNAs potentially targeting TIMP1, 3BHSD, and PTGIS were
screened, while these miRNAs were potentially sponged by lots of circRNAs; for clear
presentation, only parts of prominent circRNAs were selected and shown in Figure 5A.
This network provides the possible pathways that TIMP1, 3BHSD, and PTGIS are involved
in when DS turns to ES.

Moreover, miR-21b-3p, miR-202-5p, and miR-223-3p were selected due to their essen-
tial roles in follicular and ovarian developments [40–42] to analyze their target relationship
with differentially expressed mRNAs/lncRNAs and sponge relationship with differentially
expressed circRNAs (Supplementary Table S14). CircRNAs that potentially sponge two or
more of miR-21b-3p, miR-202-5p, and miR-223-3p are shown in Figure 5B.
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Figure 5. Predicted competing endogenous RNA (ceRNA) networks. (A) Predicted interaction
between TIMP1, 3BHSD, or PTGIS and differentially expressed miRNAs as well as circRNAs. The
differentially expressed miRNAs that were predicted to target TIMP1, 3BHSD, or PTGIS and dif-
ferentially expressed circRNAs that could be miRNA sponges were screened to build a circRNA-
miRNA-mRNA network.TTIMP1, 3BHSD and PTGIS were involved in the network. (B) Predicted
target mRNAs/lncRNAs and circRNA sponges of miR-21-3p, miR-202-3p, and miR-223-3p. The
circRNAs that could potentially sponge more than two of miR-21-3p, miR-202-3p, and miR-223-3p
were screened to display. The predicted target mRNAs/lncRNAs were screened, and the most
prominent 25 mRNAs/lncRNAs were shown in the network.

4. Discussion

In this study, databases of goat ovary mRNA and non-coding RNAs, including miRNA,
circRNA, and lncRNA, were acquired, and their expressions were compared between estrus
stage (ES) and diestrus stage (DS) groups. Then, differentially expressed miRNAs, circR-
NAs, lncRNAs, and mRNAs were screened. Abundant expression of non-coding RNAs
and mRNA illustrates the subtle regulation in ovary to keep homeostasis. The circRNA-
miRNA-mRNA/lncRNA and lncRNA-miRNA/mRNA networks that might be involved
in the regulation of estrous cycle were predicted based on the differential expressions be-
tween ES and DS groups. Among them, the circRNA-miRNA-mRNA network that matrix
metallopeptidase 9 (MMP9), tissue inhibitors of metalloproteinases (TIMP1), 3β-Hydroxysteroid
dehydrogenase (3BHSD), and Prostaglandin I2 Synthase (PTGIS) are involved in, and the
circRNA-miRNA-mRNA/lncRNA network that miR-21-3p, miR-202-3p, and miR-223-3p
participated in, were extracted and displayed in Figure 5. The significant regulatory role of
MMP9 [30–32], TIMP1 [30–32], 3BHSD [33], PTGIS [43,44], miR-21-3p [45], miR-202-3p [46],
and miR-223-3p [47,48] had been described in previous studies, therefore, we extracted the
networks that center on them to show key potential regulation pathways of estrous cycle.
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Our study established miRNA, circRNA, lncRNA, and mRNA databases of goat
ovaries in ES and DS groups and analyzed the differentially expressed ones for circRNA-
miRNA-mRNA/lncRNA and lncRNA-miRNA/mRNA networks that participate in estrous
cycle. To make the networks concise, on the one hand, among the differentially expressed
mRNAs, MMP9, TIMP1, 3BHSD, and PTGIS were selected to screen the differentially
expressed miRNAs and circRNAs that potentially regulated their expressions, constructing
circRNA-miRNA-mRNA networks. MMP9 is one of the matrix metalloproteinases par-
ticipating in extracellular matrix deconstruction, while TIMP1 is one of their endogenous
tissue inhibitors [31]. The equilibrium between MMPs and TIMPs is required for extra-
cellular matrix remodeling during ovarian folliculogenesis [30–32]. 3BHSD is an enzyme
involved in the synthesis of progesterone and testosterone [33], which plays an essential
role in estrous cycle. PTGIS is a monooxygenase that catalyzes steroids synthesis and
converts prostaglandin precursor into prostaglandin I2, taking a critical role in reproduc-
tive processes [43,44]. Among differentially expressed miRNAs, we found seven miRNAs
that might target TIMP1, 3BHSD, or PTGIS, but no miRNA potentially targeted MMP9.
Additionally, differentially expressed circRNAs that might bind with the seven miRNAs
were screened. Finally, the circRNA-miRNA-mRNA network centered on TIMP1, 3BHSD,
and PTGIS was constructed.

On the other hand, miR-21-3p, miR-202-3p, and miR-223-3p were picked out to extract
their circRNA sponges and target mRNAs/lncRNAs for their intense relation to women’s
reproduction: miR-21-3p is associated with poor ovarian response to fertilization [45], miR-
202-3p controls female fertility and regulates oogenesis [46], and miR-223-3p is involved in
ovarian cancer invasion [47] and PCOS [48]. The predicted target mRNAs/lncRNAs and
circRNA sponges of miR-21-3p, miR-202-3p, and miR-223-3p in the differentially expressed
database were screened in this study to build the circRNA-miRNA-mRNA/lncRNA net-
work focused on miR-21-3p, miR-202-3p, and miR-223-3p, laying a foundation for further
exploration on pathways regulating estrous cycle. Furthermore, the structure of lncRNAs
was analyzed and the lncRNAs that might be miRNA precursors were screened, which is
helpful to figure out the possible path of miRNA formation. The databases and the two con-
structed networks would be a comprehensive reference for the regulation of estrous cycle in
goat reproduction. For seasonally polyestrous domestic animals, it is important to manipu-
late the estrous cycle as the demand of consumers for goat products is all throughout the
year. It would be helpful to study the regulation of estrous cycle to break the limitation of
environmental factors such as photoperiod, season, and climate. In humans, the abnormal
estrous cycle is related to various diseases, like ovarian carcinoma [6], anxiety [7,8], and
epilepsy [9], which pose a threat to reproduction and the quality of life as well.

Collectively, our data provided the miRNA, circRNA, lncRNA, and mRNA database
of goat ovary and each differentially expressed profile between ES and DS, and constructed
networks among differentially expressed miRNAs, circRNAs, lncRNAs, and mRNAs,
shedding light on the regulation of goat estrous cycle and the treatment of estrous cycle-
related diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10060464/s1, Table S1: The information of identified circRNAs, including their
source gene ID, chromosome and genomic location, length, and annotation type. Table S2: Enriched
GO terms of circRNA source genes. Table S3: Enriched KEGG pathways of circRNA source genes.
Table S4: The predicted interaction between all acquired circRNAs and existed miRNAs. Table S5: The
sequence and expression of identified miRNAs. Table S6: The list of differentially expressed miRNA
between ES and DS groups. Table S7: GO enrichment of predicted target genes of differentially
expressed miRNAs. Table S8: KEGG pathway enrichment of predicted target genes of differentially
expressed miRNAs. Table S9: Predicted target genes of all identified lncRNAs in cis. Table S10:
Predicted target genes of all identified lncRNAs in trans. Table S11: Predicted lncRNAs that might be
precursors of miRNAs. Table S12: All binding possibilities of differentially expressed miRNAs to
differentially expressed circRNAs/mRNAs/lncRNAs. Table S13: The circRNA-miRNA-mRNA net-
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works involving TIMP1, 3BHSD, and PTGIS. Table S14: Predicted interaction between differentially
expressed mRNAs/lncRNAs/circRNAs and miR-21b-3p, miR-202-5p, and miR-223-3p.
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ES estrus stage
DS diestrus stage
PCOS polycystic ovary syndrome
miRNA microRNA
circRNA circular RNA
lncRNA long non-coding RNA
mRNA messenger RNA
MMP9 matrix metallopeptidase 9
TIMP1 tissue inhibitors of metalloproteinases
3BHSD 3β-Hydroxysteroid dehydrogenase
PTGIS Prostaglandin I2 Synthase
HQ high quality
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