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Although there has been great progress in the treatment
of human cancers, especially leukemias, many remain
resistant to treatment. A major current focus is the
development of so-called epigenetic drugs. Epigenetic states
are stable enough to persist through multiple cell divisions,
but by their very nature are reversible and thus are amenable
to therapeutic manipulation. Exciting work in this area has
produced a new breed of highly specific small molecules
designed to inhibit epigenetic proteins, some of which have
entered clinical trials. The current and future development of
epigenetic drugs is greatly aided by highly detailed
information about normal and aberrant epigenetic changes
at the molecular level. In this review we focus on a class of
aggressive acute leukemias caused by mutations in the Mixed
Lineage Leukemia (MLL) gene. We provide an overview of
how detailed molecular analysis of MLL leukemias has
provided several early-stage epigenetic drugs and propose
that further study of MLL leukemogenesis may continue to
provide molecular details that potentially have a wider range
of applications in human cancers.

The Importance of Epigenetics in Human Disease

Genome-wide sequencing data have revealed mutations in a
large number of proteins that control epigenetic states, suggesting
that epigenetic changes are a key driving force in human disease.1

Epigenetics is generally defined as heritable changes in gene
expression that do not alter the underlying DNA sequence. Epi-
genetic states are stable enough to persist through the cell cycle,
but are also reversible and can respond to changes in the cellular
environment. On the molecular level, epigenetic information is
controlled by DNA cytosine modifications (e.g., methylation,
hydroxylation, formylation, and carboxylation), the expression of
noncoding RNAs, and by the covalent modification of histone
proteins and their variants.1,2

Histone proteins are the core constituents of the protein/DNA
complex termed chromatin. The basic subunit of chromatin is
the nucleosome consisting of DNA wrapped around a core of
4 canonical histones (H2A, H2B, H3, and H4).2 A fifth histone,
H1, binds to the linker DNA between nucleosomes and is
thought to contribute to higher order chromatin structure.2 Fur-
ther adding to the complexity of this basic structure is the exis-
tence of multiple histone variants, many of which control
different aspects of gene regulation and are occasionally mutated
in some human diseases.1,2

Histone proteins can be covalently modified at specific amino
acid residues with “marks” such as phosphorylation (P), acetyla-
tion (Ac), methylation (Me, which can be added as mono [1], di
[2], or tri [3] methylation), ubiquitination (Ub), and many
others.3 Many of these histone marks function as docking sites
for specific effector proteins and can be used to demarcate differ-
ent functional regions of the genome.3 For example, H3 lysine 4
monomethylation (H3K4Me1) is generally considered to be a
mark of enhancers whereas H3K4Me3 is found at promoters
that are either “poised” or active, and H3K79Me2/3 and
H3K36Me3 are both found in actively elongating genes.3 Many
proteins that control gene expression and are implicated in
human disease are involved in “writing” (i.e., adding modifica-
tions), “erasing” (i.e., removing modifications), or “reading” (i.e.,
binding to) histone modifications.4

The wide range of possible epigenetic states makes analysis of
epigenetic changes in human patients challenging, as there may
be a great deal of variation from patient to patient or even
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between different cancer cells within the same patient.5 In this
review, we argue that leukemias caused by mutations in the
Mixed Lineage Leukemia (MLL) gene provide a good model sys-
tem for analyzing epigenetic mechanisms in cancer. Work on
MLL has not only provided novel epigenetic drugs for MLL leu-
kemias, but we believe that it also has the capability of providing
insight into epigenetic disease mechanisms in general. In this
review, we start with an overview of wild-type MLL activity
because this is an essential component of understanding MLL
leukemogenesis. As we will discuss, the function of the wild-type
protein also has very specific implications for therapy.

Wild-Type MLL in Development and Hematopoiesis

Chromosome 11q23 is a long-recognized common break-
point site for chromosome translocations in a subset of highly
aggressive acute leukemias. Cloning of the breakpoint revealed
the presence of the Mixed Lineage Leukemia (MLL or MLL1)
gene, a homolog of the Drosophila gene trithorax (trx).6,7 The trx
protein is a member of the trithorax group (TrxG) of proteins,
important regulators that are required to maintain gene activa-
tion throughout development.8 TrxG protein activity is balanced
by the maintenance of gene repression as mediated by the poly-
comb group (PcG) of proteins.8 These early results provided key
insight into potential mechanisms of MLL leukemogenesis
because it was known that TrxG and PcG proteins control gene
expression through epigenetic mechanisms.

Similar to trx in Drosophila, the MLL protein is required for
the proper anterior-posterior axis patterning of the developing
embryo.9,10 MLL is also required for the maintenance of stem
cells and their progenitors during neurogenesis11 and hematopoi-
esis.12,13 The role of MLL in normal hematopoiesis has been
most clearly studied using 2 different inducible knockout systems
in which loss of MLL causes a failure of haematopoietic stem cell
(HSC) self renewal.12,13 One possible complicating factor in
interpreting these phenotypes is that although each model targets
different exons of theMll gene, they all have the potential of pro-
ducing either long13 or short10,12 MLL peptides that contain the
N-terminal high-affinity binding sites for the MENIN and
LEDGF proteins (see below and Fig. 1). The MLL N terminus
can act as a dominant negative in zebrafish development,14

potentially as a result of sequestration of MENIN and/or
LEDGF. If the MLL N terminus can also function as a dominant
negative in mammalian systems, this could complicate interpreta-
tion of the phenotypes of the aboveMll knockout models.

The Molecular Activity of Wild Type MLL

The MLL gene encodes a large protein that contains many
important functional domains (Fig. 1A). Taspase1 proteolytically
cleaves the full-length MLL protein into MLL-N (»300 kDa) and
MLL-C (»180 kDa) fragments (Fig. 1A), and this cleavage is
essential for in vivo activity of MLL.15 Although the MLL-N and
MLL-C portions of the MLL complex are in theory independent

from each other, biochemical purifications suggest that they tightly
associate through FYRN and FYRC domain interactions.16,17

MLL binds directly to important gene targets during develop-
ment and is required for their activation.9,11,16,18,19 The best-
studied MLL and trx gene targets are the clustered Homeobox (or
HOX) genes. Similar to mice with trx mutations, Mll mutant
mice initially display normal Hox gene expression patterns and it
is only as development proceeds that gene activation patterns
break down.9 This suggests that MLL is not required for the initi-
ation of gene expression, but is instead necessary for the mainte-
nance of gene expression patterns through cell division. This
observation is supported by the demonstration that MLL binds
directly to gene promoters throughout mitosis and is required for
the rapid induction of transcriptional activation at specific gene
targets after mitotic exit.20

How Does MLL Mediate Transcriptional Activation?

MLL interacts with a large and varied range of proteins (see
Fig. 1A for an overview). Not all of these protein interactions
have been equally well characterized, but one is left with the
impression that the major function of the MLL protein is to act
as a scaffold for the assembly of different protein complexes, per-
haps in a highly gene-specific or context-dependent manner.

Starting at the N terminus of MLL, the MENIN and LEDGF
proteins interact with MLL in a trimeric complex.21,22 It was ini-
tially suggested that the MENIN/LEDGF interaction functions
to stabilize binding of MLL to chromatin.21,23 Some support for
this idea came from the fact that MENIN knockouts show
reduced binding of MLL to gene targets,23,24 but more recent
work suggests that a minimal MLL recruitment domain that
lacks the MENIN and LEDGF interaction domains can still
bind to some MLL target genes.25 Importantly, wild-type MLL
and MENIN appear to have both overlapping and distinct func-
tions in hematopoiesis, but MENIN is not absolutely required
for HSC maintenance or normal hematopoiesis.26 Although the
molecular function of MENIN and LEDGF in the context of
MLL activity remains to be fully elucidated, these proteins are
generally implicated in gene activation.

The CXXC domain of MLL binds to unmethylated CG-rich
DNA.27 This does not appear to stabilize binding of the wild
type MLL protein,25 but it may instead prevent gene repression
by protecting loci from DNA methylation.28 The region contain-
ing the CXXC domain also interacts with the polymerase associ-
ated factor 1 complex (PAF1C).25,29 PAF1C can promote
transcription elongation through chromatin templates30 and may
function in part by specifically recruiting wild-type MLL to some
active genes.25

MLL is thought to keep genes active primarily through the
H3K4 methyltransferase (KMT) activity of its C-terminal SET
domain18,19 and by recruiting the histone lysine acetyltransferases
Males absent On the First (MOF) and Creb Binding Protein
(CBP).16,31 The KMT and lysine acetyltransferase (KAT) activi-
ties of MLL both have important therapeutic implications and it
is worth discussing them in greater detail.
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MLL and H3K4
Methylation

Based on SET domain homol-
ogy, MLL belongs to a family of
6 mammalian H3K4 methyl-
transferases that includes MLL,
MLL2, MLL3, MLL4, and SET
domain containing protein
(SET1) A and B.32 The overall
protein architecture of MLL2 is
the most highly similar to MLL
and it likely that these 2 proteins
are related through a gene dupli-
cation event.32 As an aside, we
would like to note that there is
often confusion about the
nomenclature of MLL2 versus
MLL4 (which is also referred to
as MLL2, and was originally
called ALR) and we discuss this in
some detail in a previous
review.33 In the current review we
will be using MLL2 to refer to the
gene on human chromosome 19
(gene ID 9757) as this is the most
common usage in the MLL
literature.33

The MLL SET domain
requires the activity of a core
complex of proteins (WRAD,
Fig. 1A) that includes WDR5
(WD repeat-containing protein
5), RBBP5 (retinoblastoma bind-
ing protein 5), ASH2L (absent,
small, or homeotic-like (Dro-
sophila) ash2), and DPY30 for
full H3K4Me3 activity,34,35 and
can also be further stimulated by
the component AKAP95.36

RBBP5 may also interact directly
with SENP3 and its activity is
modulated by de-SUMOyla-
tion.37 Despite their similar SET
domain structure, MLL family
members are important for the regulation of both overlapping
and unique sets of genes32,38 and display different intrinsic
H3K4Me activity. For example, MLL is able to mono-, di-, and
tri- methylate K4, whereas MLL3 appears to be primarily a
monomethylase in vitro.39 Also, although WRAD interactions
are common to the entire MLL family, the MLL-WDR5 interac-
tion is critical for MLL SET domain activity but appears to be
dispensable for the in vitro activity of other MLL family
members.40

In mammals, H3K4Me3 can function as a docking site for
different reader molecules, including the TAF3 protein.32 TAF3

directly binds to H3K4Me3 and can promote increased tran-
scription by stabilizing formation of the RNA polymerase II
(RNA pol II) pre-initiation complex.41 Interestingly, the third
plant homeodomain (PHD) finger of MLL binds directly to
H3K4Me3 (Fig. 1A) and there is some evidence that this interac-
tion functions to stabilize binding of MLL to its gene targets.25

The actual importance of MLL SET domain H3K4me activ-
ity varies with the system under study. In Drosophila, a trx SET
domain point mutation (trxZ11) displays a similar Hox gene
mutant phenotype as trx gene knockouts.42 This suggests that trx
SET domain function is an essential component of trx-mediated

Figure 1. Structure of the MLL protein. (A) Important protein domains and interactions. MLL possesses 3 AT
hooks for binding to AT-rich DNA, a CXXC domain for binding to unmethylated CpG islands, 4 plant homeo-
domain (PHD) fingers (the third PHD binds to H3K4Me2/3 and CYP33 on the opposite surface), an atypical
bromodomain (Bromo), FYRN and FYRC domains, and a C-terminal SET domain that methylates histone H3
on lysine 4. Wild-type MLL is cleaved by Taspase 1 to yield 2 fragments: MLL-N and MLL-C. MLL-N can directly
interact with different proteins/complexes, including MENIN, LEDGF, the PAF1 complex (PAF1C), CYP33, PC2,
HDAC1, HCF1, and HCF2, and can indirectly bind to BMI-1 and CtBP. The PHD fingers may also interact
directly with the ECSASB complex. MLL-N is directly phosphorylated by the ATR protein at serine 516. MLL-C
can interact with CBP and MOF. The SET domain interacts directly with WDR5 and RBBP5. Interactions with
SENP3, DPY30, and AKAP95 are all indirect or partially characterized. (B) Representation of MLL fusion pro-
teins. MLL-FPs retain the N terminus of the wild type protein and lose the C terminus. The breakpoint lies in
the region between the CXXC domain and the PHD fingers. (C) Representation of MLL partial tandem duplica-
tion. MLL-PTDs duplicate the N terminus of the wild-type protein, which contains the MENIN/LEDGF interac-
tion region, the AT hooks, and the CXXC domain.
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Hox gene regulation in vivo. Early work using cell culture systems
suggested that MLL SET domain H3K4Me3 activity was not
required for global H3K4me3 levels,18 but was essential for
MLL-mediated activation of HOX genes.18,19 Consistent with
this, knockdown of different core components of WRAD disrupt
HOX gene activation as well as H3K4Me3 levels.34 However,
mice with an MLL SET domain deletion generally develop nor-
mally and display only a slight defect in H3K4Me1 levels with
no alteration in H3K4Me3.43 This could partly be due to redun-
dancy with other mammalian MLL family members such as
MLL2,38 but this result contrasts rather strongly with the more
drastic phenotype observed inMll¡/- knockout mice.9,10

There are several other lines of evidence indicating that MLL
H3K4Me activity may not be essential for many aspects of MLL-
mediated gene regulation. First, in neural development, MLL is
required for activation of the Dlx2 gene but the main effect
(likely indirect) is through demethylation of H3K27Me3 rather
than through H3K4Me3.11 Second, loss of MLL disrupts reacti-
vation of target genes after mitotic exit without an associated loss
of H3K4Me3.20 Finally, in a more recent analysis of the role of
MLL in hematopoiesis, Mishra and others have shown that MLL
SET domain knockouts have no effect on normal hematopoiesis
and there is no change in gene expression or any change in
H3K4 methylation at any target genes.44 Interestingly, they also
report that, even in MLL knockout models, although there is a
reduction in gene expression of MLL targets there is no associated
change in H3K4Me1 or H3K4Me3.44 Together, these results
suggest that in several biologic systems there is redundancy for
maintaining H3K4Me at many MLL target genes, but MLL may
have other important functions in maintaining gene activation.
This has important therapeutic implications as discussed below.

Histone Acetylation

Both MOF and CBP are lysine acetyltransferases, an activity
that is generally associated with gene activation. CBP can acety-
late H3 at lysine 27, but is also capable of acetylating a wide
range of other histone residues,45 whereas MOF activity is more
specific and appears to focus on the H4 lysine 16 (H4K16) resi-
due.46 Both MOF and CBP interact directly with the MLL pro-
tein (Fig. 1A).16,31 MLL-mediated gene activation strongly
correlates with increases in H4K16Ac and histone acetylation in
general.16,44,47 Interestingly, although Mishra et al. saw no
changes in H3K4Me3 in MLL knockouts in hematopoiesis they
did notice a decrease in gene expression that was strongly associ-
ated with loss of MOF binding and H4K16 acetylation.44 This
led them to suggest that the major function of MLL is to recruit
MOF to gene targets where it can acetylate H4K16 and promote
gene activation.44

MLL and Gene Repression

Other known activities of MLL include a possible role in gene
repression as mediated by an interaction with cyclophilin 33

(CyP33), and a repression complex containing the histone deace-
tylase HDAC1 and the PcG proteins CtBP, HPC2, and BMI-
1.48,49 There is not sufficient space here for a detailed discussion
of the possible implications of these interactions, but structural
studies have raised the interesting possibility that CyP33 could
function as a regulatory switch by altering the structure of MLL
and enabling recruitment of the repressive complex.50 Thus it is
possible that this interaction functions as a way of mediating
MLL activity and changing it from an activator to a repressor.
The PHD fingers have also been shown to interact with the
ECSASB E3 ubiquitin ligase complex, which is thought to con-
trol MLL activity through ubiquitin-mediated degradation of
MLL.51

MLL and the S Phase Cell Cycle Checkpoint

Work from Liu and colleagues has also shown that MLL
H3K4Me3 activity has a role in delaying S-phase progression.52

ATR phosphorylates MLL at serine 516 (Fig. 1A), preventing
the SCFSkp2- and APCCdc20-mediated degradation of MLL. This
results in increased H3K4Me3 at replication origins and inhibits
CDC45 binding, which results in a delay of DNA replication
and productive DNA checkpoint repair. Interestingly, MLL
mutations in leukemia inhibit this pathway, potentially causing
increased genome instability in MLL leukemias.52

Other MLL Functional Interactions

A region proximal to the bromodomain contains a high-affin-
ity interaction site for the host cell factor C1 and C2 (HCF1 and
HCF2) proteins.53 HCF1 and 2 have been implicated in the
recruitment of MLL family complexes to some gene targets,54

but knockdown of HCF1 or HCF2 does not appear to have any
effect on MLL activation of HOX genes.53

MLL Mutations in Leukemia

MLL gene mutations are associated with acute myeloid leuke-
mia (AML) and acute lymphoid leukemia (ALL) in both children
and adults.55 In AML, MLL mutations can be found in as many
as 10% of adult and 18% of childhood cases,56,57 whereas MLL
mutations are responsible for 8% of childhood and 10% of adult
ALL cases.57,58 Common MLL mutations include chromosome
translocations that fuse the MLL gene with partner genes to cre-
ate novel fusion proteins (MLL-FPs, Fig. 1B). Partial tandem
duplications (MLL-PTDs, Fig. 1C) of the N terminal portion of
the MLL gene are also fairly common mutations in adult
AML.55 For the MLL-FPs, over 79 different fusion partner genes
have been identified, but 4 partners (AF9, ELL, AF10, and AF6)
account for most MLL rearrangements in AML and 3 partners
(AF4, AF9, and ENL) account for the majority of ALL
rearrangements.55
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In most cases, the reciprocal fusion (FP-MLL) is not
expressed, but t(4;11)(q21;q23) translocations, referred to as t
(4;11), represent a special case in that 50–80% of patients express
the AF4-MLL fusion as well as the MLL-AF4 fusion.59,60 Impor-
tant work in mouse model systems suggests that AF4-MLL, but
not MLL-AF4, is sufficient to initiate leukemogenesis.61 Mouse
models and molecular data also suggest that these 2 protein com-
plexes may cooperate,61,62 but a complete understanding of this
interplay has yet to be fully elucidated.

In general, the prognosis of patients carrying MLL mutations
is quite poor.63 However, a more detailed analysis of patients
with MLL-FP has suggested that they actually display a range of
different prognostic outcomes. For example, MLL-AF9 produces
an intermediate prognosis in AML63 but a poor prognosis in
infant ALL.64 MLL-ENL is associated with a good prognosis in
t-ALL,57 whereas t(4;11) and MLL-AF6 are both associated with
very poor prognoses.57,63,65 This review will focus primarily on
the activity of MLL-FPs.

Cooperating Mutations in MLL-FP Leukemias

MLL-FP leukemias in humans have very few cooperating
mutations56,60,66 and retroviral transduction models produce
rapid leukemias in mice.67 This suggests that MLL-FPs alone
might be sufficient to drive leukemogenesis. However, knock-in
mouse models have a much longer latency68 and it has also been
shown that 30–50% of MLL-FP patients harbor a RAS muta-
tion.69 Other more rare events such as Fms-like tyrosine kinase 3
(FLT-3) mutations are present in approximately 3% of MLL
cases.70 Recent data have also shown that, although rare at diag-
nosis, copy number abnormalities associated with infant MLL-
AF4 are present at relapse.71 It is thus possible that MLL-FPs
alone are sufficient for initiating leukemogenesis, but that the
presence of additional mutations such as RAS or FLT3 might
contribute to tumor development and to the rise of more aggres-
sive clones. That said, relative to other acute leukemias, MLL-FP
leukemias present a somewhat simple genetic landscape,56,60,66

probably because most changes are on the epigenetic level.

The Molecular Activity of MLL Fusion Proteins
(MLL-FPs)

We provide a comprehensive discussion of MLL-FP com-
plexes in a recent review33 and will only give a brief overview of
their proposed function here (for a summary see Fig. 2). MLL-
FPs are thought to function by binding to and inappropriately
activating a small set of key target genes.33,62 Okuda and col-
leagues have shown that only 3 domains are necessary for MLL-
FP–mediated transformation: the MEN/LEDGF interaction
domain(s), the CXXC domain, and the fusion partner itself.72 It
was initially suggested that PAF1C, MENIN, and LEDGF are
important for the recruitment and stable binding of MLL-FPs at
target genes,21,25,29 but this model needs to be more rigorously
tested. Irrespective of the specific functional mechanism, it has

been shown that disruption of these interactions is sufficient for
disrupting MLL-FP–mediated leukemogenesis.21,25,29

The most common MLL fusion partners (AF4, AF9, ENL,
AF10, and ELL) are all members of a large transcription elonga-
tion complex that has been alternatively called the
ENL-associated protein complex (or EAP),73 the AF4 family/
ENL/P-TEFb complex (or AEP),74 and the super elongation com-
plex (or SEC).75 This complex also contains the H3K79 methyl-
transferase Disruptor of Telomeric Silencing 1-Like (DOT1L)
protein.76 A high level of H3K79Me2/3 at gene targets is depen-
dent on MLL-FP binding77 and DOT1L activity is necessary for
MLL-FP leukemia growth.78 The functional model that has been
proposed is that MLL-FPs recruit components of these complexes
and then activate RNA polymerase II that is paused at the proxi-
mal promoter to promote productive transcription elongation.

Interestingly, a link between the bromodomain containing
protein 4 (BRD4, an acetylated histone mark reader), MLL-FPs,
PAF1C, and the SEC complex has also been identified.79,80 Dis-
ruption of BRD4 through RNAi or treatment with specific
inhibitors disrupts MLL-FP leukemic growth both in vivo and in
vitro.79,80 According to one model, BRD4 recognizes and binds
acetylated histones and then recruits PAF1C, MLL-FPs, and the
remaining transcription elongation components to a subset of
important target genes such as BCL2 and MYC.79 Treatment
with BRD4 inhibitors prevents BRD4 binding to acetyl residues
on H3 and H4, leading to displacement of the other complexes
from chromatin and transcriptional inhibition.79 However, this
model cannot be completely correct as many MLL-FP target
genes are unaffected by the loss of BRD4 binding.

MLL-AF6, another common MLL fusion protein, does not
interact with any of these transcription elongation complexes74

but instead appears to function through dimerization81 and the
aberrant activation of RAS signaling.82 Interestingly, MLL-AF6
is still dependent on DOT1L H3K79Me2/3 activity,83 poten-
tially because of indirect mechanisms of gene activation. Dimer-
ization of the N terminus of MLL appears to be a sufficient
mechanism for transformation,84,85 and thus could potentially
be a common mechanism among the approximately 70 MLL-
FPs that are not part of the above complexes.

Taken together, a simple unifying model does not seem to
explain how all of these MLL-FPs cause leukemia. A more
detailed analysis of normal transcription elongation and the role
of H3K79me2/3 will provide a better understanding of the leu-
kemogenic process. However, the discovery that most MLL leu-
kemias require the activity of specific proteins that includes
MENIN, LEDGF, PAF1, BRD4, and DOT1L has been an
important step in the rational design of therapeutic inhibitors.

Targeting the Activity of the MLL-FP Complex

Although MLL-FPs combine the activity of 2 separate com-
plexes, from a biochemical perspective the functional activity
may not have changed. That is, MLL-FPs may inappropriately
activate gene expression through recruitment of a transcription
elongation complex, but transcription elongation is required for
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normal gene activation. Thus, one of the initial concerns was that
anything that inhibited MLL-FP complex activity could also be
toxic to normal cells. Recent work has suggested that inhibiting
transcription elongation in MLL leukemias with improved inhi-
bition of CDK9 (a component of the P-TEFb complex) shows
promise in disrupting the growth of MLL as well as potentially
other acute leukemias.86 The toxicity of these inhibitors needs to
be established, but clinical trials with the CDK9 inhibitor flavo-
piridol suggest that they may be well tolerated by patients.86

MLL-FP leukemias are also dependent on H3K79 methyla-
tion mediated by DOT1L.78 DOT1L is the only known H3K79
methyltransferase and experiments with Dot1L knockout mice
have already shown that its inhibition mainly affects MLL-AF9
target genes.78 Recently, 3 different compounds against DOT1L
have been developed.78 All 3 compete with S-adenosyl methio-
nine, which is needed for the methyltransferase activity. Treat-
ment of leukemia cells with these inhibitors decreases H3K79Me
and downregulates important MLL-FP target genes, such as
HOXA9 and MEIS1, leading to cellular apoptosis.78 It has
been shown that at least one of these compounds (EPZ-
5676) causes tumor regression in a rat xenograft model with
no signs of toxicity.87 On the basis of these promising results,
DOT1L inhibitors are now currently undergoing early stage
clinical trials.78

As already discussed above,
MENIN apparently does not
contribute to normal MLL activ-
ity in hematopoiesis26 but is
essential for MLL-FP–mediated
leukemogenesis.88 This makes
disruption of the MENIN-MLL
interaction an appealing target
for therapy. Exciting work per-
formed over a long period of
time has produced the first of
what may potentially be a new
breed of MLL-FP inhibitors: a
small molecule that disrupts the
MLL–MENIN protein–protein
interaction and disrupts the
growth of MLL leukemias.89

Along a similar line, domi-
nant negative peptides designed
to disrupt the MLL-FP–PAF190

and the ML-FP–LEDGF interac-
tions91 have allowed proof-of-
principal studies showing that
targeting other MLL-FP complex
components could provide addi-
tional therapeutic avenues.

A completely different way of
targeting MLL-FP activity has
been recently revealed by work
showing thatMLL-AF4 leukemias
are highly sensitive to proteasome
inhibitors.92 The suggested mech-

anism is that proteasome inhibition increases MLL-AF4 protein
levels, causing increased expression of cell cycle inhibitors and
increased sensitivity to apoptosis.92 Although the molecular under-
pinnings of this mechanism appear to be less precise than targeting
a specific activity of theMLL-FP complex, this is still a very interest-
ing observation that is potentially very promising.

Cooperation Between Wild-Type MLL
and MLL-FP Activity

It was originally observed that wild-type MLL and MLL-FPs
co-localize at important gene targets.77 This led to the suggestion
that both wild-type MLL and MLL-FPs cooperate somehow in
the promotion of leukemogenesis.77 Although there are rare
patient samples that have a deletion of MLL and only express the
MLL-FP, in the large majority of patients the wild-type MLL
gene is retained. The possibility that wild-type MLL contributes
to leukemogenesis was formally tested by Thiel et al., who ele-
gantly showed that loss of the wild-type MLL protein disrupts
the growth of MLL-AF9 leukemias in vivo.24

A possible mechanism for this cooperation comes from the
observation that binding of MLL-AF9 to target genes such as
HOXA9 is partially dependent on MLL-mediated gene

Figure 2. MLL and MLL-FP complexes bound to a gene target. The most common MLL-FPs, such as MLL-AF9,
are members of a large super-elongation complex (SEC) that includes the most common MLL fusion partners
(AF4, AF9, AF10, ENL), as well as the H3K79 methyltransferase DOT1L, the RNA pol II pause release complex P-
TEFb, the elongation factors ELL and EAF, and the PAF1 complex (PAF1C). BRD4 also interacts with this com-
plex. The wild-type MLL complex promotes both H3K4Me and H4K16Ac. The current model proposes that
MLL-FPs recruit components of these complexes and then activate RNA polymerase II that is paused at the
proximal promoter to promote productive transcription elongation.
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activation.25 This has led to the suggestion that gene activation
itself provides an “open” chromatin conformation that allows an
MLL-FP to bind to a gene target (Fig. 2). The important ques-
tion then becomes: what aspect of MLL mediated gene activation
is the most important for MLL-FP activity and can it be targeted?

Targeting Wild-Type MLL in MLL-FP Leukemias

Mishra et al. have shown that the wild-type MLL SET
domain is dispensable for MLL-AF9–mediated leukemogenesis
in vivo,44 although it is important to note that they used a ret-
roviral transduction system that can be prone to overexpression
artifacts. Conversely, work by Cao et al. suggests that an inhib-
itor that specifically blocks the methyltransferase activity of
MLL leads to growth inhibition of MLL-AF9 blasts as a result
of cell cycle arrest, apoptosis, and differentiation.40 RNA-seq
analysis indicates that cells treated with the inhibitor exhibit
the same changes in gene expression as those carrying an MLL
deletion.40 Despite this apparent overlap between the inhibitor
and wild-type MLL function, the inhibitor itself actually tar-
gets the WRAD component WDR5. WDR5 is more globally
required for H3K4Me3 than MLL alone18,34 therefore it
remains formally possible that the inhibitor is disrupting some
non-MLL function of WDR5. However, another possibility
could simply be that MLL-FP leukemias are sensitive to slight
changes in H3K4Me3 levels. It is also possible that leukemia
cells are more sensitive to slight variations in the stable binding
of transcription promoting complexes. A slight decrease in
H3K4Me3 at important gene targets could result in reduced
binding of wild-type MLL and/or reduced binding of TAF3
that could result in destabilized protein complex formation
and reduced transcription initiation in addition to elongation.
Since MLL H3K4Me3 activity may be dispensable for MLL
function in hematopoiesis,44 this raises the exciting possibility
that an MLL H3K4Me3 inhibitor might disrupt leukemogene-
sis without having a strong effect on normal cells.

Common Epigenetic Pathways in Cancer

Although all the work described in this review is specific to
MLL leukemias, BRD4 in particular has been found to have a
much wider role in promoting leukemogenesis, and BRD4
inhibitors are now in Phase I clinical trials as potential inhibi-
tors of all cancers that overexpress MYC.4 BRD4 is not com-
monly mutated or overexpressed in acute leukemias and would
not have been identified as a potential therapeutic target in
conventional genomic studies. This underscores the impor-
tance of studying rare leukemias such as MLL because these
studies may reveal information about more general key path-
ways. It remains to be seen whether inhibitors of DOT1L,
MLL-WDR5, or MENIN have the same potential for a
broader scope of efficacy.

MLL family proteins are also mutated in other hematologic
malignancies and some solid tumors.1 As the ability to develop
inhibitors to a wider range of different proteins increases, the
range of potential therapeutic targets could expand to include
important downstream target genes or other components of
these protein complexes. Understanding more about how
MLL and associated proteins function may highlight impor-
tant regulatory interactions that could be exploited in the con-
text of different cancers. Thus, MLL leukemias may continue
to be an important source of new information about epige-
netic pathways in cancer.
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