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Independent component analysis (ICA) is a widely applied technique to derive functionally
connected brain networks from fMRI data. Group ICA (GICA) and Independent Vector
Analysis (IVA) are extensions of ICA that enable users to perform group fMRI analyses;
however a full comparison of the performance limits of GICA and IVA has not been
investigated. Recent interest in resting state fMRI data with potentially higher degree
of subject variability makes the evaluation of the above techniques important. In this
paper we compare component estimation accuracies of GICA and an improved version of
IVA using simulated fMRI datasets. We systematically change the degree of inter-subject
spatial variability of components and evaluate estimation accuracy over all spatial maps
(SMs) and time courses (TCs) of the decomposition. Our results indicate the following: (1)
at low levels of SM variability or when just one SM is varied, both GICA and IVA perform
well, (2) at higher levels of SM variability or when more than one SMs are varied, IVA
continues to perform well but GICA yields SM estimates that are composites of other SMs
with errors in TCs, (3) both GICA and IVA remove spatial correlations of overlapping SMs
and introduce artificial correlations in their TCs, (4) if number of SMs is over estimated, IVA
continues to perform well but GICA introduces artifacts in the varying and extra SMs with
artificial correlations in the TCs of extra components, and (5) in the absence or presence of
SMs unique to one subject, GICA produces errors in TCs and IVA estimates are accurate.
In summary, our simulation experiments (both simplistic and realistic) and our holistic
analyses approach indicate that IVA produces results that are closer to ground truth and
thereby better preserves subject variability. The improved version of IVA is now packaged
into the GIFT toolbox (http://mialab.mrn.org/software/gift).
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INTRODUCTION
Investigating macro-level brain circuitry using functional mag-
netic resonance imaging (fMRI) is of great interest to the neu-
roimaging community. Functional brain connectivity maps are
widely used to investigate healthy and diseased populations in
order to identify aberrant networks patterns (Garrity et al., 2007;
Greicius, 2008; Bassett and Bullmore, 2009). Recently there has
been increased interest to identify brain networks of resting state
fMRI (rsMRI); data acquired while a subject is not performing
a particular task. Approaches used to analyze resting state data
include seed-based correlation analyses (Cohen et al., 2008) and
data-driven approaches such as independent component analysis
(ICA) (McKeown et al., 1998). ICA can identify multiple coher-
ent networks without the need for an a priori seed voxel, region
of interest or model timecourse. Group ICA (GICA), a framework
that includes ICA, is widely applied to group fMRI data (Calhoun
et al., 2001; Calhoun and Adali, 2012). GICA provides a solution
to the problem of permutation ambiguity of ICA by matching
components across subjects; first estimating the group level com-
ponents and then estimating single subject spatial maps (SM)

and time courses (TC). GICA makes no assumption about the
temporal consistency across subjects but does assume spatial sta-
tionarity. It can capture inter-subject spatial variability, but there
are limits (Allen et al., 2012). Independent vector analysis (IVA),
a multivariate extension of ICA, was introduced by Lee et al. as
an alternate way of performing group fMRI analyses while avoid-
ing the permutation ambiguity of ICA (Lee et al., 2007, 2008).
Lee et al. indicated through their simplistic experiments that IVA
can better capture subject variability; however, a full compar-
ison of the limits of both GICA and IVA was not performed.
In this paper, we compare component estimation accuracies of
GICA and IVA using simulated fMRI data under varying types
and degrees of inter-subject spatial variability. In addition we find
several important characteristics of both methods and make rec-
ommendations to users. FMRI data were simulated using SimTB
(http://mialab.mrn.org/software/), a recently developed toolbox
that generates data under the spatio-temporal assumption of ICA
and IVA (Erhardt et al., 2012).

Changes in brain morphology between subjects and even
within the same subject over time are well reported (Giedd et al.,
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1999). Variability among subjects in functional brain network
patterns (distinct from anatomic patterns) was recently shown
in Khullar et al. (2011). Spatial and temporal differences across
subjects can exist in fMRI networks especially in resting state
studies where subjects do not follow an assigned task. Effectively
preserving subject specific activation patterns is critical to iden-
tify differences and potential biomarkers in patient populations.
Subject variability in functional activity can occur in the ampli-
tude of activation, spatial location/extent of activation and tem-
poral variations. In the ICA/IVA domain, subject variability can
be measured in terms of variations in the SMs and TCs.

ICA can be successfully applied to separate statistically inde-
pendent SMs from fMRI data. ICA is particularly useful since a
priori knowledge of these sources is not required. In the applica-
tion of ICA to fMRI data, ICA assumes that the fMRI data is a
linear mixture of SMs and TCs and decomposes the fMRI data
to find temporally coherent SMs that are spatially independent
(statistically). Application of ICA to individual subject fMRI data
is relatively straightforward. FMRI data is separated into a user
specified number of SMs and their corresponding TCs. When
ICA is applied separately to multiple subjects on an individual
basis, comparing SMs across subjects to make group level infer-
ences becomes challenging due to inter-subject spatial variability
of SMs. With such spatial variability, especially when the number
of SMs is high, it is not easy to cluster similar SMs across subjects
to perform statistical analyses at the group level. GICA provides a
way to address this problem by estimating a decomposition from
all subjects’ data (Calhoun et al., 2001). In GICA subject data
are first temporally concatenated, followed by a group level PCA
reduction, and then application of ICA yielding group level com-
ponents. Finally, a back-reconstruction step is applied to make
subject specific SMs and TCs (Erhardt et al., 2011). The GICA
framework has been applied extensively across many studies, in
both healthy and patient populations, to make inferences about
intrinsic networks (Sorg et al., 2007; Calhoun et al., 2009; Allen
et al., 2011).

IVA was first introduced as a blind source separation technique
to separate time delayed and convolved signals using higher order
frequency dependencies. IVA uses a multivariate extension of the
mutual information cost function used in ICA (Lee et al., 2007).
In the original IVA application the source signal was made inde-
pendent within each frequency bin while enforcing higher order
dependencies across frequency bins. In a previous study IVA was
applied to multi-subject fMRI data to construct individual SMs
and TCs (Lee et al., 2008). In GICA the input matrix is the PCA
reduced two dimensional group matrix, in contrast, in IVA sub-
ject data are not mixed together but kept separate along the 3rd
dimension of the input matrix. IVA maximizes an objective func-
tion that considers both the independence of within subject SMs
and the dependence of similar SMs across subjects. With this
strategy the back reconstruction step needed in GICA to esti-
mate subject specific SMs is avoided. Further, since IVA accounts
for the dependence of similar components, component ordering
across subjects is preserved making group analyses across subjects
straightforward.

Studies have investigated the performance of GICA (Allen
et al., 2012) and IVA (Lee et al., 2008). In Lee et al. (2008) a two

trial based simulated dataset was used to test the performance of
ICA and IVA under slight inter-subject variability and noise levels.
Results of their experiment showed that, compared to GICA,
IVA captured inter-subject variability better. Most of their results
compare estimations from real fMRI data using GLM, GICA, and
IVA. Although marginal variability to subject TCs and SMs were
added to the task-related data, they did not evaluate the perfor-
mance of IVA at high variability of SMs and TCs. Resting state
fMRI data do not follow a task like TC and its activation patterns
can have significant inter-subject variability.

Recent improvements (IVA-GL) have been made to the IVA
algorithm to achieve reliable source separation for linearly depen-
dent Gaussian and non-Gaussian sources and extend the applica-
tion of IVA to separate sources with linear dependence (Anderson
et al., 2010). In Dea et al. (2011) realistic fMRI datasets were
simulated using SimTB to investigate the performance of two dif-
ferent IVA approaches, IVA-GL and IVA-GJD (Li et al., 2011). In
Ma et al. (2013) it was shown that performance of IVA in cap-
turing group difference improved as group variability increased
and that GICA performed better at low variability. Using mutual
information as a metric, they showed that the IVA algorithm out-
performs GICA in capturing spatial inter-subject variability. The
initial results of the above studies provide evidence that IVA can
provide improved component estimations in datasets where there
is SM variability. However, these studies did not evaluate the per-
formance of GICA and IVA under different degrees of subject
variability and other estimation parameters.

In this paper, we compare SM and TC estimation accuracies of
GICA vs. IVA under spatial variation of SMs between subjects.
In addition to comparing estimation accuracies of the compo-
nent that is varied between subjects, we also inspect changes in
all other components of the decomposition. In other words, we
investigate all elements of the cross correlation matrices between
the ground truth components (GND) and reconstructed or esti-
mated components (EST) of all SMs and TCs. In our initial
experiments (Experiments 1–3), we select a lower number of
subjects and components to make result presentation easier. In
Experiment 4 we repeat with a larger number of subjects and
components. We simulate several scenarios of inter-subject vari-
ability; Experiment 1: SM amplitude at different noise levels,
Experiment 2: different types of spatial variability (translation,
rotation, and size) in one SM, Experiment 3: combinations of
different types of variability in two SMs, Experiment 4: all SMs
in all subjects have a combination of spatial variability. Under
each experiment, we perform several sub–experiments to address
effects of different degrees of variability, slight spatial overlap of
SMs, effects of overestimation of component, effects of presence
or absence of components, effects of different noise levels and
other variations.

METHODS
GICA vs. IVA
Main steps of GICA and IVA while applying these techniques to
perform group analysis of fMRI data are briefly presented in this
section.

Definitions of main notations used:
M: Total number of subjects in the group
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V : Total number of in-brain voxels, V is common to all M
subjects

T: Number of time points in the fMRI data, T is common to
all M subjects

C: Number of spatially independent components (user defined
parameter), C is common to all M subjects

Yi [T × V]: fMRI data matrix from the ith subject, i =
1 to M. Yi is formed after the three dimensional brain vox-
els are stacked along the columns of Yi and time points along
the rows

X: Input matrix to ICA/IVA algorithm. For ICA dimensions of
X are [C × V], for IVA dimensions of X are [C × V × M] .

Ṡi [C × V]: Contains the ith subject’s C independent spatial
maps (SMs) estimated by the algorithm

Ṙi [T × C]: Contains the ith subject’s C independent time-
courses (TCs) corresponding to the SMs

Main steps of Group GICA (see Figure 1).

(1) Subject level principal component analysis (PCA): Each sub-
ject’s data matrix (Yi) [T × V] is reduced along the time
domain to retain T1 principal components, where T1 < T.
Let Y∗

i [T1 × V] be the subject level PCA reduced matrix of

the ith subject.
(2) Temporal concatenation of subject data: PCA reduced sub-

ject matrices (Y∗
i ) are concatenated along the temporal

domain (rows) to form the group fMRI matrix Y∗ =
[
Y∗T

1 , Y∗T
2 , . . . Y∗T

M

]T
of size [MT1 × V].

(3) Group level PCA: Perform PCA reduction on the Y∗ matrix
and retain C principal components. Let X [C × V] be the
group level PCA reduced matrix.

(4) Independent Component Analysis (ICA): Perform spatial ICA
on the X matrix to decompose X into group level SMs given

by X = AS, where A [C × C] is related to component TCs
and S [C × V] contains group level SMs.

(5) Subject level back-reconstruction: There are several methods to
back-project group level maps to subject data to obtain sub-
ject specific SMs (Ṡi) and TCs (Ṙi), as described in Erhardt
et al. (2011) for a detailed explanation of the different tech-
niques. In this work we used the spatio-temporal regression
(STR) method to back-reconstruct subject specific SMs and
TCs. Ṙi is given by Ṙi = YiS−, and Ṡi = Ṙ−

i Yi where S− and

Ṙ−
i are the pseudo-inverses of S and Ṙi, respectively.

Main steps of IVA (see Figure 1).

(1) Subject level PCA: As in GICA, each subject’s data matrix
(Yi) [T × V] is reduced in the time domain to compute Y∗

i
[C × V], where C is the number of desired components.

(2) Concatenation of subject data: Unlike in GICA, in IVA subject
data are concatenated along the third dimension to form the
X matrix of dimension [C × V × M].

(3) Independent Vector Analysis (IVA): Perform IVA on the X
matrix. In IVA, the decomposition is performed on the three-
dimensional X matrix while keeping each subject’s SMs and
mixing matrices unmixed between subjects. The decompo-
sition yields three dimensional matrices given by Xi = AiSi,
where i = 1 to M and denotes the ith subject (in third
dimension).

(4) Subject Maps and time courses: In IVA reconstruction of sub-
ject level SMs and TCs are straightforward as each subject’s
data is in its own space stacked along the third dimension
of the matrices. Subject specific spatial map Ṡi is given by
Ṡi = A−1

i Xi and the subject specific timecourse is given by

Ṙi = YiṠ
−
i .

FIGURE 1 | Main Steps of GICA and IVA (see Section GICA vs. IVA for

more details). (A) GICA: (i) subject level principal component analysis
(PCA) on each subject’s fMRI data (Yi) of size time points (T ) by voxels
(V ) results in matrices (Y∗

i
) of size T1 by V, T1 is a user specified number,

(ii) concatenate Y∗
i

along the time domain, (iii) apply group PCA on the
concatenated group matrix to get matrix X of size C by V, where C is a

user specified number, (iv) apply independent component analysis (ICA) on
X to obtain group level spatial maps (SMs) and time courses (TCs) and (v)
apply a back reconstruction method to obtain subject specific SMs and
TCs. (B) IVA: (i) same as GICA, (ii) concatenate Y∗

i
along the 3rd

dimension keeping each subject’s data separate, (iii) apply IVA to obtain
subject specific SMs and TCs.
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SIMULATION SETUP
We used SimTB (Erhardt et al., 2012), a MATLAB toolbox
available at (http://mialab.mrn.org/software/simtb/index.html),
to simulate fMRI datasets. SimTB was designed to generate fMRI
datasets under the assumption of spatiotemporal separability of
the fMRI data. In other words it is assumed that the fMRI data
can be given as a product of spatial and temporal processes (prod-
uct of SMs and TCs). In SimTB the user defines the number of
SMs and selects them from a predesigned set. The TCs of SMs
were generated from a zero mean unit variance normal distribu-
tion. To create different types of fMRI datasets we changed the
following: SM amplitude (or percentage signal change), baseline
intensity, noise, spatial variability of SMs (translation, rotation,
size) and varied TCs for each component and subject. The SMs
were represented as 2D axial images of size 100 × 100 voxels.
We reduced the number of voxels in the SMs (compared to real
fMRI) to increase the speed of dataset generation, GICA/IVA
decomposition and to reduce the hard disk space needed as
a very large number of fMRI datasets were simulated in this
study.

In order to better grasp the functionalities of the algorithms,
for Experiments 1–3, we use a lower number of subjects and
components with the following simulation parameters and for
Experiment 4 we use a larger number of subjects and components
(Experiment 4 numbers are presented below within parenthesis).

Number of subjects in the group, M = 5 (20)

Size of image slice = 100 × 100 voxels, number of in-brain
voxels (V) = 7688

Number of time points, T = 150
Number of SMs in the data, C = 6 (15)

GND: Ground truth component
EST: Estimated or reconstructed component
Subi: ith Subject
SMj: jth SM
TCj: jth TC
Main Steps of data simulation, component estimation, and

result comparison:

(1) Simulate fMRI dataset: In addition to the above parameters
the following can be changed in SimTB: SM sources and their
presence in subjects, SM translation in voxels, SM rotation in
degrees, SM spread (size), baseline signal intensity, SM sig-
nal amplitude, and contrast to noise ratio (CNR). SimTB
simulates fMRI datasets with the following main steps, for
a detailed description of each of these steps refer to Erhardt
et al. (2012)

(i) TC generation: in our experiments, all TCs are generated
as a random time series with an additional constraint
of near zero correlation between the TCs of a subject.
With this constraint we allow maximum variability in
the time domain to make the evaluation of spatial
variability as the main focus of our project.

(ii) SM generation: SMs are generated as activation
blobs defined by 2D Gaussian distributions with
varying spatial characteristics (translations, rotations,
size etc).

(iii) Make baseline intensity: for each subject a variable base-
line intensity map is computed, voxels outside the brain
mask are set to zero.

(iv) Scale SMs: SMs are scaled according to the percentage
signal changes. Percentage signal changes are defined as
the peak-to-peak signal change relative to the baseline.
Varying percentage signal change values can be assigned
to each component and subject.

(v) Mix SMs with TCs: SMs and TCs are linearly combined
as the matrix product and then each subject’s baseline
frame is added.

(vi) Add noise: Rician noise is added to the data according to
the CNR values assigned to each subject.

(2) GICA/IVA Decomposition: Simulated fMRI datasets of the M
subjects are fed into the GICA and IVA algorithms separately
to reconstruct SMs and TCs. We briefly describe the steps
involved in the decomposition and the parameters used for
estimation.

(i) Subject level PCA: In this project, the actual number
of components in the dataset are known and since
the main focus is on analyzing the impact of subject
variability, we reduce each subject’s data to the actual
number of components in the simulated data set, that is
T1 = C.

(ii) Group level PCA for ICA: Here again we reduce the
temporally concatenated group dataset to C number of
principal components (except Experiments 2h and 4c
where we perform overestimation). In real applications
there are ways to estimate the number of components
using methods such as minimum description length
(Wax and Kailath, 1985; Li et al., 2007).

(iii) Component Estimation: For ICA we feed the two dimen-
sional X matrix (group level PCA reduced whitened
matrix) to the Infomax algorithm (Bell and Sejnowski,
1995). For IVA we first feed in the three dimensional
X matrix (subject level PCA reduced whitened matrix)
to the second order IVA-GL algorithm (Anderson et al.,
2010) to obtain a set of unmixing matrices. We re-run
the data with the original IVA algorithm (Lee et al.,
2007) where we initialize the unmixing matrix with
the results obtained from IVA-GL. Default values set
by the original GICA and IVA designers were used for
parameters such as learning rate, maximum number of
iterations and terminations threshold.

(3) Component Scaling and Sorting: In GICA and IVA decompo-
sitions have scaling and sign ambiguity (the amplitude and
sign of the SMs and TCs can be scaled provided that the
product of the scaling factors is unity). The amplitude or the
sign of the components do not convey useful information
by themselves. The signs of each SM and the correspond-
ing TC were flipped based on the skewness of the SM. If
the skewness of the SM was less than zero the signs of both
SM and TC were flipped (multiplied by negative one). In an
effort to display all recovered SMs in a consistent manner, we
scaled all the SMs to values between negative one and positive
one. TCs were z-scored, to have zero mean and unit variance.
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Reconstructed components were matched with GND, based
on the spatial cross correlation matrix between the GND and
estimated (EST) SMs. Component pairing is made based on
the descending order of the GND–EST correlations using
a greedy algorithm where once an EST SM is paired with
a GND SM, that SM is not selected again to pair up with
another GND. The component sorting scheme used is an
important step in the performance evaluation of the ICA/IVA
algorithms. At higher subject variability, the EST SMs can
be a mixture of GND SMs with significant correlations with
more than one GND SM.

SIMULATION EXPERIMENT SETUP
To isolate the effect of spatial overlap, in most of our experiments
SMs were chosen such that even after adding spatial variability
there was no spatial overlap between SMs. For Experiments 1–3 we
simulated data for 5 subjects with 6 components each (SMs and
TCs for Sub1 is shown in Figure 2). For Experiment 4 20 subjects
with 15 components each (SMs are presented in Supplementary
Figure 1) were simulated.

Experiment 1 (change in amplitude)
The spatial locations of the components are kept constant across
subjects, but the amplitude of the components is varied across
subjects. This experiment was designed to test whether subject
variability in component amplitude introduces errors in the esti-
mated SMs and TCs. We also checked if variability in component
amplitude (AmpGND) was preserved in the estimated compo-
nents. The component amplitude of the estimated components
(AmpEST) were calculated as the product of the standard devia-
tion of the TC (σTC) and the maximum intensity of SM (maxSM),
a metric introduced by Allen et al. (2012). AmpEST calcula-
tions were made before we scaled the SMs between negative and
positive one.

Experiment 2 (spatial change in one component)
In this experiment, we introduce different types of inter-subject
spatial variability in just one of the six SMs. We check how
estimation errors change as spatial variability increases.

Experiment 2a (vertical translation of SM1)
We translate SM1 (see Figure 2A) in the vertical direction
between zero and �dmax number of voxels. SM1 of Sub1 is shifted
by zero voxels (no translation), in Sub5 SM1 is shifted by �dmax
voxels and in Sub2–Sub4 SM1 is shifted by �d voxels relative to
the previous subject, where �d = �dmax/M, M = 5 (number of
subjects). We then repeat this test five times for incrementing
values of �dmax. The full width half max (FWHM) of SM1 is
approximately equal to 10 voxels and �dmax was incremented as
a multiple of the FWHM of SM1. In the first test �dmax was set to
5 voxels (or 0.5 FWHM) and for tests thereafter we incremented
�dmax by 5 voxels.

Experiment 2b (spatial extent or size of SM2)
The size of SM1 was set to 0.1 for Sub1, �smax for Sub5 and
at increments of �s = �smax/M for Sub2–Sub4. This test was
repeated five times at five different values of �smax, from 0.4 to
2.0 at intervals of 0.4. When �s is increased from 0.1 to 0.4 the
size of SM2 is approximately doubled.

Experiment 2c: (Rotation of SM3)
In this sub-experiment we set the orientation of SM3 for Sub1
at 0◦, Sub5 at �θmax and at increments of �θ = �θmax/M for
Sub2–4. This test was repeated five times for five different values
�θmax from 36 to 180◦ at intervals of 36◦.

Experiment 2d (horizontal separation of SM5)
The horizontal separation between the two blobs of SM5 is var-
ied. The FWHM of SM5 is approximately equal to 5 voxels and
�dmax was incremented as a multiple of the FWHM of SM5
(from FWHM = 1 to 5).

Experiment 2e (component overlap)
The goal of this experiment is to check the effects of slight spa-
tial overlap between SMs; this experiment is a continuation of
Experiment 2a. Here we vertically translate SM1 across subjects.
Here we set �dmax to 35 voxels. At this value of �dmax, SM1
marginally overlaps with SM4 for Sub5 as shown in Figure 4A.

Experiment 2f (over estimation of model order)
In experiments 2a–2h the model order of the estimation was
exactly matched with the actual number of components in the
ground truth data. In this experiment, we test the effect of sub-
ject variability if the model order is over estimated. We repeat
Experiment 2a (with �dmax = 25 voxels and C = 6 ground truth
components) with 9 estimated components.

Experiment 2g (missing components)
We perform this experiment in two parts: (i) all 5 subjects have all
6 components except Sub1 where SM1 is not present. (ii) SM1 is
present in Sub1 but absent in all other subjects.

Experiment 3 (spatial change in two components)
The purpose of this set of experiments was to check how spatial
variation in two components changed estimation accuracy.

Experiment 3a (vertical translation of SM1 and size change of SM2)
This experiment is essentially several experiments of Experiment
2b nested within Experiment 2a.

Experiment 3b (vertical translation of SM1 and rotation of SM3)
This experiment is essentially several experiments of Experiment
2c nested within Experiment 2a.

Experiment 3c (vertical translation of SM1 and horizontal
separation of SM5)
This experiment is essentially several experiments of Experiment
2d nested within Experiment 2a.

Experiment 4 (spatial variability in all components)
For this experiment we increased the number of subjects to M =
20 and the number of components to C = 15. We made this to
roughly replicate the application of GICA or IVA to a real fMRI
study. Here all components in all subjects undergo all forms of
spatial variations as introduced in Experiment 2.
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Experiment 4a (spatial variability with uniform distribution)
In this sub-experiment the degree of variability is picked from a
uniform distribution, U (a, b) , where a and b are varied depend-
ing on the type of spatial variability. For SM translations a = −2k
and b = 2k (in voxels), for component rotation a = −10k and
b = 10k (in degrees) and for component size a = 1 − 0.2k and
b = 1 + 2k, where k is an integer from 1 to 5. A higher k-value
corresponds to increased subject variability.

Experiment 4b (spatial variability with normal distribution)
Exact repetition of Experiment 4a, with degree of variability
drawn from a normal distribution, N (μ, σ ) where μ and σ are
the mean and standard deviation of the distribution. The mean
values in all variability distributions were kept at zero except
for size where the mean value was maintained at one. At each
value of k the standard deviation of the spatial variability for this
experiment and 4a were kept constant.

Experiment 4c (model order over estimation)
We repeat Experiment 4a applying spatial variability using k = 2
and at each iteration we increase the model order by 5 compo-
nents from C = 15 (actual number of components) to C = 35.

Experiment 4d (estimation at high noise level)
We repeat Experiment 4a for a range of CNRs; CNR = 0.5 to
CNR = 0.1 at k = 2.

DEFINITION OF RESULT EVALUATION PARAMETERS
We use correlation as the primary metric to compare similar-
ity between GND and EST. Let RG

i , RC
i , RV

i of size [C × C] be
the GND–GND, GND–GICA, and GND–IVA correlation matri-
ces respectively for the ith subject. There will be two types of
correlation matrices: one from SM and the other from TC. Let
rC

i,l,m be the correlation between the lth GND component and mth

GICA component for the ith subject. Let rV
i,l,m be the same for IVA.

We define the correlation error matrices as the absolute value of
the difference between the GND–GND correlations and GND–
EST correlations. For GICA let EC

i = abs
(

RG
i − RC

i

)
and for IVA

EV
i = abs

(
RG

i − RV
i

)
. We define E

C
as the mean of EC

i across

all subjects, similarly E
V

for IVA. To get a better handle on the
performance of the algorithms, we report the averages and stan-
dard deviations of the diagonal and the non-diagonal elements of

the error matrices separately. Let μ
d,C
i = mean

(
diagonal

(
EC

i

))

and μ
n,C
i = mean

(
nondiagonal

(
EC

i

))
be the ith subject’s mean

value of the diagonal and non-diagonal elements of EC
i and for

EV
i as μ

d,V
i and μ

n,V
i . Let the standard deviations of correlation

errors be σ
d,C
i , σ

n,C
i , σ

d,V
i , and σ

n,V
i . In experiments where we

check correlation errors across different degrees of spatial vari-
ability (Experiment 2–4), we report the overall mean correlation
error across all subjects and all components and this we denote

by μ
d,C
all and μ

n,C
all for mean diagonal and non-diagonal errors,

respectively, across all subjects for GICA similarly by μ
d,V
all and

μ
n,V
all for IVA. For standard deviations the following parameters

will be used: σ d,C
all , σ n,C

all , σ d,V
all , and σ

n,V
all .

RESULTS
EXPERIMENT 1: VARIATION IN COMPONENT AMPLITUDE
The simulation results of this experiment are presented in
Figure 2: where Sub1’s ground truth (GND) SMs is in 1st row,
GICA SMs in 2nd row and IVA SMs in 3rd row. Both GICA
and IVA performed near perfect reconstruction of all the SMs. In
Figure 2B, the GND TC is presented in black ink and the errors
between GND and GICA in blue and GND and IVA in red. TC
error for Sub1 was close to zero in both GICA and IVA. All other
subjects’ SMs and TCs were very similar to Sub1’s maps shown
in Figures 1A,B; due to space limitations we do not present them
here.

Correlation between GND SM and GICA SM were higher than
0.999 for all SMs and all subjects. TC correlations between GND
and GICA reconstructions were upwards of 0.999 for all com-
ponent TCs and subjects. Our results indicate that SMs (and
TCs) were very well estimated irrespective of variability in their
amplitude.

IVA estimates of SMs and TCs were also very close to GND,
but the components were less clean than the GICA estimates.
As seen in Figure 2A (3rd row) the IVA SMs had minor arti-
facts from other components. Correlations between the GND and
IVA SMs were upwards of 0.991 for all components and subjects.
Correlation between GND and IVA TCs were above 0.997.

In Figure 2E, we plot the product of the standard deviation
of the TC (σTC) and the maximum intensity of SM (maxSM) vs.
the component amplitude. Both methods’ estimates had gener-
ally a linear association between GND amplitudes (AmpGND) and
estimated amplitudes (AmpEST).

EXPERIMENT 2: SPATIAL VARIATION IN ONE COMPONENT
Results of this experiment are presented in Figure 3. The maxi-
mum degree of spatial variation (�dmax, �smax, and �θmax) are
along the x-axis and the mean correlation error across all subjects

and components (μd,C
all , μ

n,C
all , μ

d,V
all , and μ

n,V
all ), are along y-axis

The error bars correspond to the standard deviation of the errors

(σ d,C
all , σ

n,C
all , σ

d,V
all , and σ

n,V
all ). Only the lower bounds of the error

bars are presented to provide more resolution to smaller errors in
the plot.

Experiment 2a (vertical translation of SM1, see Figure 3A)
All mean errors were less than 4.5 × 10−3 for both GICA and IVA.
The mean error of the non-diagonal elements for both SM and
TC gradually increased in GICA (from ∼2 × 10−3 to ∼3 × 10−3)
with increase in �dmax. In IVA, although the errors were higher
than GICA, we did not observe this trend of gradual increase in
error with an increase in �dmax. The important observation from
this experiment was that in both algorithms there was no clear
break down of estimation accuracy as the amount of translation
increased.

Experiment 2b (size of SM2, see Figure 3B)
Estimates of both GICA and IVA were close to the GND (all mean
errors <5 × 10−3). Here again, GICA errors were marginally less
than IVA but there was a gradual increase in GICA non-diagonal
mean correlation errors with an increase in the size variability of
the component.
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FIGURE 2 | Results of Experiment 1: Estimation accuracy with variation in

only the Amplitude of SMs (no spatial variability of components). (A)

Spatial Maps (SM) of subject 1: 6 Ground SMs, GICA SM estimates, and IVA
SM estimates are respectively presented in different rows. All SMs are scaled
between −1 and +1. SMs of Subjects 2–5 are very similar to Subject 1. SMs
show that both GICA and IVA perform very good estimations (IVA estimations
had minor artifacts). (B) Time Courses (TC) of Subject 1. TCs are normalized to
zero mean unit variance. Under each TC the error (shifted for better
representation, but scale unchanged) between the estimates and ground are
presented in blue for GICA and red for IVA. Compared to ground TC, the relative
magnitudes of the errors are very small. (C) Mean correlation error matrix

between ground and estimates is calculated for all subjects and the mean and
standard deviation (mini-cell inside each cell) is presented for GICA and IVA and
SM and TC separately (see “Definition of Result Evaluation Parameters”
section for their definitions). All mean errors are less than 0.05. (D) Mean
correlation errors across all components, presented for each subject separately.
Mean errors are in blue for GICA and in red for IVA. Diagonal elements of the
correlation error matrix are in filled shapes and non-diagonal in unfilled shapes.
SMs are presented in circles and TCs in squares. All errors are in the order of
10−3 indicating that variability in SM amplitude does not affect component
reconstructions. (E) Ground truth vs. estimated amplitude. Changes in SM
amplitude can be recovered in a relative sense.
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FIGURE 3 | Results of Experiment 2: Estimation accuracy when one

spatial map (SM) is varied in subjects. Errors reported here are the
overall mean correlation errors (across all components and subjects); see
“Definition of Result Evaluation Parameters” section for definitions. Mean
errors are in blue for GICA and in red for IVA. Diagonal elements of the
correlation error matrix are in filled shapes and non-diagonal elements in
unfilled shapes. SMs are presented in circles and TCs in squares. X -axis
represents the maximum level of a single SM’s variability between

Subjects 1 and 5; other subjects’ SMs are varied uniformly between
Subjects 1 and 5 as illustrated by the SM maps presented within each
plot. Minimal correlation errors (<10−3) observed in both GICA and IVA,
non-diagonal elements of GICA show an increasing trend at higher levels
of variability. (A) Intersubject variability in the vertical translation of SM1,
(B) Intersubject variability in the size of SM2; (C) Intersubject variability in
the orientation (rotation) of SM3; (D) Intersubject variability in the
horizontal translation of SM5.

Experiment 2c (rotation of SM3, see Figure 3C)
All mean correlation errors across subjects and components were
less than <5 × 10−3, with GICA marginally outperforming IVA.
There was no increase in error with higher maximum rotation.

Experiment 2d (horizontal separation of SM5, see Figure 3D)
All mean errors were less than 4.5 × 10−3 for both GICA and IVA.

Experiment 2e (component overlap, see Figure 4)
In Figure 4A, we see that GND SM2 to SM5 are at the same
location for all subjects and that SM1 was varied in all sub-
jects. In addition, we see that in Sub5 SM1 slightly overlaps with

SM4. In Figure 4B, we present the mean correlation error for all
five subjects calculated across all the components. For subjects

1–4, for both SM and TC, μ
d,C
i , and μ

d,V
i were near zero. In

Sub5, where SM1 slightly overlapped with SM4, mean correla-
tion errors were higher. The errors of Sub5 have higher standard
deviation indicating that it may be as a result of just a few ele-
ments of the correlation error matrix. Upon closer inspection
of the correlation error matrix of Sub5 (Figure 4C) we see that
most of the elements have lower correlation errors except errors
between GND SM4 and EST SM1 and GND TC1 and EST TC4.
The correlation between GND SM1 and GND SM4 in Sub5 was
equal to 0.13, and this was due to their slight spatial overlap. In
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FIGURE 4 | Results of Experiment 2e: Estimation when components

overlap spatially. (A) Ground truth SMs: SM2 to SM6 for all subjects are at the
same location, SM1 of Subjects 1 and 5 are presented, SM1 for Subjects 2–4
are equally distributed between locations of Subjects 1 and 5. In Subject 5, SM1
slightly overlaps with SM4. (B) Mean correlation errors across all components,
presented for each subject separately. Mean errors are in blue for GICA and in
red for IVA. Diagonal elements of the correlation error matrix are in filled shapes
and non-diagonal in unfilled shapes. SMs are presented in circles and TCs in
squares (see “Definition of Result Evaluation Parameters” section for their
definitions): correlation errors are small in Subjects 1–4, large errors in Subject 5

where SM1 and SM4 were overlapping. (C) Correlation error matrix for Subject
5 indicates that both GICA and IVA have removed the spatial correlation that
existed (due to overlap) between SM1 and SM4 (diagonal element) and have
introduced non-diagonal correlations between SM1 and SM4 and TC4 and TC1
that did not exist in the ground truth. Applying GICA/IVA can remove spatial
correlations but will introduce artificial correlations in the temporal domain. (D)

In both GICA and IVA estimates, we observe that SM1 has negative lobes in
regions of overlap with SM4 and these negative lobes are causing the zero
correlations between SM1 and SM4. SM4 is well reconstructed by both
methods, but TC4 has high errors and has correlations with TC1.

the estimated components correlation between SM1 and SM4 in
GICA and IVA was −0.003 and 0.05, respectively. In the time
domain, the correlation between GND TC1 and GND TC4 in
Sub5 was near zero (= −0.002). In the estimated TCs, correlation

between TC1 and TC4 was equal to 0.2 in GICA and 0.26 in
IVA. In Figure 4D, we see that the near zero correlation between
the EST SM1 and EST SM4 is created by SM1 having nega-
tive lobes in the overlapping region with SM4 and due to this
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same reason there is higher correlation between GND SM4 and
EST SM1.

Experiment 2f (over estimation of number of components, see
Figure 5)
Figure 5A shows that all SMs except SM1 has subject variabil-

ity. In Figure 5B, μ
d,C
i , μ

d,V
i , μ

n,C
i , and μ

n,V
i are presented for

all five subjects. In all five subjects μ
d,C
i was between 0.03 − 0.14

and μ
d,V
i < 10−3. GICA errors had a high standard deviation,

indicating that outliers may be causing the error (again, only the
lower bounds of the error bars are shown in the figure to illus-
trate higher resolution at lower error level). The non-diagonal
elements of the SM correlation matrix show marginal error in
both techniques with small standard deviation. The diagonal ele-
ments of the TC correlation error matrix show very low errors in
both GICA (<10−3) and IVA (<10−2). In Figure 5C, we present
the mean correlation error matrices and this time the averages
are computed across subjects with standard errors represented
by the mini-cell within each cell. The GND-GND matrix was
of size [6 × 6] and due to overestimation the GND-EST corre-
lation matrix was of size [9 × 6]. The correlation error matrix
indicates that the mean correlation error across subjects between
GND SM1 and EST SM1 was equal to 0.4 in GICA and 0.001
in IVA. This was due to the poor reconstruction of SM1 by
GICA. The worst performance of GICA was observed in Sub3
and in Figure 5D we present GICA and IVA SM1 and SM7 of
Sub3. GICA SM1 and GND SM1 of Sub3 had a correlation of
0.16 and the same in IVA was 0.99. In both GICA and IVA the
correlations between the extra components (SM7 to SM9), after
the best pairs were matched, were all less than 0.006, except the
correlation between GICA SM7 and GND SM1. In Sub3, GICA
SM7 had a correlation of 0.16 with GND SM1. Overestimation
in GICA essentially splits SM1, the component that was varied
across subjects, into more than one estimate of SM1. The TCs of
the extra GICA components showed significant correlation errors
with GND TC1. The mean correlation between GICA TC7, TC8,
and TC9 and GND TC1 were 0.999, 0.76, and 0.34 respectively.
In IVA the same values were 0.103, 0.109, and 0.07. In Figure 5E
we present a scatter plot of GND TC1 with GICA and IVA TC7,
TC8, and TC9. It is clear that in GICA all TCs of the extra com-
ponents have much higher correlation with GND TC1 than the
extra components of IVA.

Experiment 2g (missing components)
In the first part of this experiment, where one SM was missing in
just one subject, IVA reconstructed the SMs and TCs very close
to the ground truth (correlation errors less than 0.06). In GICA
SMs were closer to the ground truth but the TCs showed large
errors. The TC of the component corresponding to the compo-
nent that was not present in Sub1 showed high correlations errors
(0.2–0.8). This was observed only in Sub1 and all other subject
TCs were more accurately reconstructed in GICA. In the second
part of the experiment where SM1 was present in Sub1 and miss-
ing in all other subjects, IVA continued to accurately estimate
both SMs and TCs. GICA SM estimates were close to ground
truth, but TC estimates of the missing component had high
correlation errors with other components in some of the subjects.

EXPERIMENT 3: SPATIAL VARIATION IN TWO COMPONENTS
Experiment 3a (vertical translation of SM1 and size change of SM2,
see Figure 6A)
In Figure 6A, we present the mean correlation errors across all

subjects and components (μd,C
all , μ

d,V
all , μ

n,C
all , and μ

n,V
all ) as images

for each value of �dmax and �smax. The rows in Figure 6A, from
top to bottom, represent increasing degrees of vertical transla-
tion of SM1 and columns, from left to right, represent increasing
degrees of size change in SM2. Both GICA and IVA do an excel-
lent job in component estimation. In Figure 6A, we present mean
errors in diagonal SM, diagonal TC, non-diagonal SM, and non-
diagonal TC. All mean correlation errors were less than 10−3 for
both GICA and IVA. GICA errors were slightly less that ICA but
the errors marginally increased in the diagonal direction, that is,
errors were higher at higher variability.

Experiment 3b (vertical translation of SM1 and rotation of SM3, see
Figure 6B)
Results were similar to that of the Experiment 3a.

Experiment 3c (vertical translation of SM1 and horizontal
separation of SM5, see Figures 6C, 7)
Results indicate much better estimation accuracy in IVA. The
mean values of the diagonal elements of the SM error correla-
tion matrix indicate that up to �dmax translation of 1.5 FWHM
of SM1 and 3 FWHM of SM5 GICA estimates are accurate. After
this threshold there is a sudden increase in correlation error in the
range of 0.1–0.2. For IVA, μ

d,V
all for both SM and TC correlation

errors were less than 10−3, and there was no clear jump in error
with increasing level of variability.

In Figure 7B, we display the mean errors for each subject sep-
arately at SM1 �dmax = 20 voxels and SM5 �dmax = 20 voxels.
This level of variability was selected as a representative example
to further examine the nature of errors. The mean errors in SM
and TC were much higher in GICA than IVA for diagonal and
non-diagonal elements of the correlation error matrix.

Motivated by the large error bars, we further investigated
the mean correlation error matrices (mean values were calcu-
lated across subjects). The mean correlation error images across
subjects are presented in Figure 7C. In GICA there are large
errors in the components that varied across subjects (Component
1 and 5) in both SM and TC. In IVA, all correlation errors
across all subjects were less than 0.04. Mean correlation errors
in TCs were high in GICA between GND TC5 and GICA TC5.
Correlation error was also high in GICA between GND TC1
and GICA TC5. All TC correlation errors in IVA were less
than 0.05.

In Figures 7D,E, we present the SMs and scatter plots of the
TCs of components 1 and 5. Our first observation is that IVA
SMs were well reconstructed with only minor artifacts. GICA SMs
show extreme errors in SM1. In all Subjects the main lobe of SM1
appears less prominently than the artifact from SM5. In Sub3
the main blob of SM1 is hardly visible. SM5 in GICA was well
estimated for all subjects with minor artifacts, but TC5 in GICA
shows large errors. In Figure 7E (i), we present Sub3 scatter plots
of the GND TC1 vs. GICA TC1 in blue filled circles, GND TC5 vs.
GICA TC5 in blue unfilled circles and GND TC1 vs. GICA TC5
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FIGURE 5 | Results of Experiment 2f: Over estimation of components

(6 components are estimated with 9). (A) All SMs, except SM1, spatially
overlap across subjects. SM1 is spatially varied for all subjects. Locations of
SM1 for Subjects 1 and 5 are shown and SM1 for other subjects are equally
spaced between those locations. (B) Mean correlation errors across all
components, presented for each subject separately. Mean errors are in blue
for GICA and in red for IVA. Diagonal elements of the correlation error matrix

are in filled shapes and non-diagonal in unfilled shapes. SMs are presented in
circles and TCs in squares (see “Definition of Result Evaluation Parameters”
section for their definitions). GICA diagonal SM correlation error is high with a
high error bar; Subject 3 has the largest mean error. (C) Mean correlation
error matrix between ground and estimates is calculated for all subjects and
the mean and standard deviation (mini-cell inside each cell) is presented for

(Continued)
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FIGURE 5 | Continued

GICA and IVA for SM and TC separately. GICA produces errors in SM1 and
SM7 and large errors in TC7, TC8, and TC9. (D) In Subject 3, SM1 shows
noisy lobes (both positive and negative) at locations where SM1 was
varied between subjects. The extra component (SM7) showed similar lobe

patterns. In IVA SM1 is well reconstructed and the extra component (SM7)
appears as a noisy frame. (E) Scatter plots of the Ground TC1 vs. GICA
estimates of the extra components (TC7, TC8, and TC9) show significant
correlation between them. In IVA TCs of extra components are not
correlated with Ground TC1.

in black un-filled circles. Similar plots are presented for IVA in
Figure 7E (ii). It is evident that GND TC1 and GICA TC1 have
near perfect correlation, but GND TC5 and GICA TC5 have very
weaker correlation. GICA TC5 has a much higher correlation with
GND TC1. Sub3 had the poorest estimation of SM1 (correlation
error = 0.96) and the poorest estimation of TC5 (correlation error
= 0.96). In addition in Sub3 GICA SM1 had a high correlation
with GND SM5 (correlation error = 0.98) and GICA TC5 had a
high correlation with GND TC1 (correlation error = 0.98). IVA
TCs were well reconstructed with appropriate correlations.

EXPERIMENT 4: SPATIAL VARIABILITY IN ALL COMPONENTS
Experiment 4a (uniform distribution of variability, see Figure 8A)
Mean errors across all subjects and components at increasing lev-
els of variability (along x-axis). At k = 1, all mean correlation
errors in both GICA and IVA were less than 0.02. At k = 2, GICA
errors begin to become marginally higher than IVA. At k = 3,
GICA diagonal errors begin to show much higher errors than IVA
in both SM and TC components. Non-diagonal elements of the
correlation error matrices are also higher in GICA than in IVA.
At k = 4 and 5 GICA diagonal correlation errors increase rapidly
compared to errors in IVA. In Figure 8A (ii), we present the SM
with the highest correlation error of GICA along with the cor-
responding GND and IVA SMs. Similarly, in Figure 8A (iii) we
present the SM with the highest correlation error of IVA along
with the corresponding GND and GICA SMs. Correlations of
these SMs between the GND and estimates are presented below
the SMs.

Experiment 4b (normal distribution of variability, see Figure 8B)
Results of this experiment were very similar to results of
Experiment 4a.

Experiment 4c (model order over estimation, see Figure 8C)
Mean correlation errors are presented in the y-axis and the num-
ber of estimated components are in the x-axis while the amount
of spatial variability was kept at k = 2. At C = 15, the case where
the number of components in the GND and the number of esti-
mated components are equal, the performance of both methods
were very similar. At C = 20 GICA SM diagonal errors begin
to increase with. GICA SM correlation errors in the diagonal
element continue to increase with higher number of estimated

components. At C = 25, 30, and 35 μ
d,C
all increased to 0.42, 0.52,

and 0.57 respectively.

Experiment 4d (estimation at high noise level, see Figure 8D)
For this experiment we kept the degree of spatial variability at k =
2 and gradually increased the noise level. μd,C

all and μ
d,V
all increased

with decrease in CNR.

DISCUSSION
In this simulation study, we evaluated the accuracy of component
estimations of group independent component analysis (GICA)
and independent vector analysis (IVA) under varying degrees of
inter-subject spatial variability of components. By using a sim-
ulation toolbox (SimTB) to create sample fMRI data sets and a
thorough set of experiments we were able to identify several inter-
esting properties of GICA and IVA. We systematically changed
the degree of subject variability and evaluated the performance
of component estimation not only by measuring the changes in
components that underwent spatial variability but also how this
variability affected all other components’ spatial maps (SMs) and
time courses (TCs).

GICA vs. IVA: METHODOLOGICAL DIFFERENCES
As both GICA and IVA are extensions of ICA, inherent assump-
tions and limitations of ICA are common to both methods, but
there are several methodological differences between GICA and
IVA. The initial input data (Y) for both approaches are identi-
cal, but the X matrix in GICA and IVA algorithms is not the
same. In GICA there are two levels of PCA reductions before
arriving at X; first the subject level PCA and then the group
level PCA. In IVA only a subject level PCA is performed. In
GICA the group level PCA ensures that the common variances
at the group level are well captured. Simulations from this study
provide evidence that GICA can reconstruct individual subject
variability but only up to a certain limit of subject variability.
GICA maximizes the spatial independence of the components
at the group level as it is applied on the two dimensional group
level X matrix. IVA jointly maximizes two objectives on the three
dimensional X matrix: (1) The spatial independence of within
subject components and (2) dependence of “similar” components
across subjects, by modeling the dependence structure of similar
components.

IVA results are not limited or dependent upon the back-
reconstruction methodology as back-reconstruction is not
needed in IVA. In IVA, subject specific mixing coefficient matri-
ces are kept separate from each other and the subject specific SMs
and TCs are obtained by directly projecting them to their respec-
tive data. The initial SM outputs of GICA are representative of the
whole group and extra steps are needed to construct the subject
specific SMs and TCs using one of the back reconstruction meth-
ods. Based on the back-reconstruction methodology applied, the
SMs and TCs can vary slightly, see Erhardt et al. (2011) for
details.

In general, IVA seeks a decomposition of the multi-subject
fMRI data to estimate sources that are independent within
each dataset while also aligning the estimated sources (SMs)
across subjects to maximize the dependency between the aligned
sources. Thus, we can imagine an overlay of the same source

Frontiers in Systems Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 106 | 12

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Michael et al. GICA vs. IVA

FIGURE 6 | Results of Experiment 3: Estimation when two components

are varied across subjects. Overall mean correlation errors (across all
subjects and components) are presented as images for diagonal and
non-diagonal elements of for SM and TC separately. Increase in variability is
from left to right of the image and from top to bottom. For details on the
degree of variability at each step refer to the “Simulation Experiment Setup,
Experiment 3” section. The errors are in log10 scale as indicated by the
colorbar. (A) Translation of SM1 and size change of SM2. Both GICA and IVA

errors are small, In GICA, errors are marginally increasing in the diagonal
direction of the image. (B) Translation of SM1 and Rotation of SM3. Both
GICA and IVA errors are small. In GICA errors are marginally increasing in the
diagonal direction of the image. (C) Translation of SM1 and Translation of
SM5. In IVA, errors still remain small across all levels of variability. In GICA,
errors are small up to the third step, but thereafter give large errors. Note the
change of colorbar values for this result, indicating higher levels of correlation
errors.
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FIGURE 7 | Estimation when SM1 and SM5 are varied across subjects. (A)

SM1 and SM5 are spatially varied for all subjects. Locations of SM1 for Subjects
1 and 5 are shown and SM1 for other subjects are equally spaced between
those locations. (B) Mean correlation errors across all components, presented
for each subject separately. Mean errors are in blue for GICA and in red for IVA.
Diagonal elements of the correlation error matrix are in filled shapes and
non-diagonal in unfilled shapes. SMs are presented in circles and TCs in
squares (see “Definition of Result Evaluation Parameters” section for their
definitions). All IVA mean correlation errors are less than 0.02. All GICA errors
are much higher with large error bars. For clarity of lower error values, only the
lower bounds of the error bar are presented. (C) Mean correlation error matrix
between ground and estimates is calculated for all subjects and the mean and

standard deviation (mini-cell inside each cell) is presented for SM and TC
separately. GICA produces large errors in the components (SM1 and SM5) that
were varied across subjects. (D) SM1 and SM5 across all subjects. IVA
produces estimates SMs with little artifact. GICA SM1 has large artifacts from
SM4 and the blob of SM1 appears weak; in Subject 3 it is hardly visible. GICA
estimates of SM5 are close to ground truth. (E) Scatter plots of the Ground TC1
vs. GICA TC1 is in filled blue circle, Ground TC5 vs. GICA TC5 is in unfilled blue
square and Ground TC1 vs. GICA TC5 in filled black circles; same for IVA are in
red in the next plot. GICA TC1 is highly correlated with Ground TC1, but GICA
TC5 is not correlated with Ground TC5 but has high correlation with ground TC1.
GICA incorrectly assigns the TC of one spatially varying SM to another spatially
varying SM. In IVA TC correlations are correctly estimated.
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FIGURE 8 | Results of Experiment 4: Results from a larger dataset with

higher number of subjects and components and with variability in all

components. In this experiment all components of all subjects undergo a
combination of variability. Correlation errors reported here are mean values

across all subjects and components. Mean errors are in blue for GICA and in
red for IVA. Diagonal elements of the correlation error matrix are in filled
shapes and non-diagonal elements in unfilled shapes. SMs are presented in

(Continued)
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FIGURE 8 | Continued

circles and TCs in squares (see “Definition of Result Evaluation Parameters”
section for their definitions). Next to each error plot, are SMs with least
correlation with ground, for GICA in (i), and IVA in (ii). These SMs are
presented along with the corresponding SM from the other technique. (A)

When variability is drawn from a uniform distribution. GICA and IVA errors are
comparable at lower variability, but GICA errors increase with increase in the

level of variability. (B) When variability is drawn from a Gaussian distribution;
results are similar to that of uniform distribution. (C) When variability is drawn
from mid-level variability, but the number of components is overestimated. At
15 components (actual number of components as in ground truth) GICA and
IVA errors are comparable. With increase in number of estimated
components, GICA SM diagonal errors increase, whereas IVA errors continue
to be constant. (D) Performance with increase in noise level.

(SM) for multiple subjects, where the activation regions within
each form a chain of slightly overlapped regions. For GICA,
recovering such a source will be difficult because the averaging
power will be diminished, while IVA can exploit the overlapping
regions by maximizing dependency while preserving the subject
variability.

INTERPRETATION OF RESULTS AND IMPLICATIONS
In order to better understand how inter-subject component spa-
tial variability affected estimation accuracy, our study was broken
into experiments with increasing complexity.

Estimations under variability in amplitude
Results indicate that both GICA and IVA approaches do an excel-
lent estimation of both SM and TC components. Near zero
elements in the cross-correlation error matrices (in both EC

i and
EV

i , for i = 1 to 5) indicate that correlations between both corre-
sponding and other components were well estimated. Results of
this experiment indicate that GICA estimates are marginally bet-
ter than IVA, max

[
diag

((
EC

i − EV
i

))]
< 10−3 (see Figure 2E).

From a visual inspection of GICA and IVA SMs (see Figure 2A) it
is evident that GICA SMs are slightly cleaner than IVA.

Spatial variability in one component
We investigated the effect of inter-subject variability of three types
of spatial variability: component translation, component size and
component rotation. One contrasting difference between GICA
and IVA estimates is that, in IVA there was no clear indication
of correlation errors increasing with the increase of variability.
Whereas in GICA, increase in the degree of vertical and horizontal
translations and size of the component resulted in an increase in
correlation errors, as indicated by the positively sloped blue line
in Figure 3.

Spatial overlap of components
We investigated the estimation accuracy while GND SMs were
slightly overlapped. Our results indicate that both GICA and IVA
spatially separate the overlapped components. By “spatially sep-
arate” we mean that the spatial correlation that existed between
overlapping components was not present (zero correlation) in the
estimated components. The estimated maps show negative lobes
in the overlapping regions. There was no correlation between the
ground TCs of the overlapping components, but the estimated
TCs have higher correlation. In other words, both GICA and IVA
remove or nullify the spatial correlation between SMs but intro-
duce artificial correlation in the TCs of the same components (see
Figure 4C). This fault in both algorithms needs to be carefully
taken into consideration when the estimated components have
high spatial overlap. Experiment 2e was a simple experiment that

showed how slight spatial overlap of just two SMs in just one sub-
ject can cause errors in both SMs and TCs of that subject. In a
real fMRI data application there may be multiple spatial intersec-
tions between the estimated SMs. Careful attention is needed in
such cases, especially when performing functional network con-
nectivity (FNC) analyses, as our simulation results indicate that
spatial overlap between SMs can introduce non-existent artificial
correlations in TCs.

Model order overestimation
One of the inherent issues of blind source separation techniques
such as ICA and IVA is the absence of a priori knowledge of the
actual number of independent sources (or SMs) present in the
data. An approach that has gained popularity in the recent past
is to estimate a large number of components. In Experiment 2f
we estimated nine components on a dataset that had six original
components. IVA produced SMs and TCs with very low correla-
tion errors and the extra estimates (SM7 to SM9) were noise-like
and were not correlated with the original GND components.
GICA SM of the component with inter-subject variability had
poorer correlation with the GND SM and had artifacts (neg-
ative lobes) at spatial locations of the SM in other subjects
(see Figure 5D). Further the extra SMs in the estimates showed
correlations with the original GND SM that had inter-subject
variability. The extra TC estimates (TC7 to TC9) had signifi-
cant correlations with the TC of the component that had spatial
variability across subjects. The introduction of artificial TC corre-
lations by GICA can pose potential inaccuracies in studies where
FNCs are evaluated. Our results indicate that this problem is not
present in IVA as the extra SMs look noise like, meaning no clear
lobes of activation and the extra TCs do not have correlations with
the varying component.

Spatial variability in two components
Our results of Experiment 3 indicate that GICA performs well
under combinations of translational, spatial and size variability.
GICA performs well when both components undergo transla-
tional variability up to approximately around 1.5–3 FWHM of
the component, but GICA fails beyond that maximum spatial
variability. IVA performs significantly better than GICA at higher
variability. GICA SM estimates resulted as a mixture of varying
components (Figure 7D). GICA also incorrectly assigned the TC
of one of the spatially varying SM to the other spatially varying
SM (Figure 7E).

Missing Components: We checked the performance of GICA
and IVA when components were completely missing from one or
many subjects. Here again IVA continued perform well in both
spatial and time domains of the estimations. GICA did well in
estimating the SMs but the TCs of the missing components were
not estimated accurately.
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Spatial variability in all components
Both GICA and IVA performed well up to variability of k =
2 (component translations between −4 and +4 voxels, rota-
tions between −20◦ and +20◦ and size between 0.6 and 1.4).
At inter-subject variability greater than this simulated threshold
GICA begins to show large errors for both uniform and Gaussian
distributions. We expected that the errors of the Gaussian distri-
bution would be less than that for uniform distribution as more
subjects are centered at zero variability in a Gaussian distribu-
tion. Results indicate that GICA errors in both cases were similar
(Figures 8A,B). In Figure 8A, we present the GICA SM with the
largest error. The small activation or blob (indicated by green
circle) appears very noisy with many other similar size artifacts
from other components in GICA. IVA identifies this component
distinctly in spite of its minute size. In general, at higher levels of
spatial variability, GICA SMs were a combination of many GND
components. In Experiment 4c we performed component overes-
timation and results show that when the number of components
is higher than the number of components in the GND, GICA pro-
duces large errors in SMs. This experiment also showed that GICA
components were noisy (see Figure 8C) and the extra compo-
nents had remnants of activation from other GND components.
IVA recovered the SMs and TCs well and the extra components
appeared noisy (an ideal result).

GICA OR IVA
Both methods yield accurate component estimations at low lev-
els of subject variability. Prior knowledge of the degree of subject
variability in the fMRI data can help to decide which method to
choose. A possible approach to find the degree of component
variability is to apply individual ICA on real fMRI data for a
few subjects, reconstruct the components, and evaluate the spa-
tial dissimilarities. Spatial variability across subjects may be fMRI
task dependent and possibly higher in resting state data. In this
study, we showed that at low levels of subject variability, GICA
SMs and TCs are much cleaner than IVA. IVA does very good esti-
mations at low levels but there were minor artifacts from other
components. At higher levels of subject spatial variability of com-
ponents, GICA reconstructs the components that did not have
inter-subject variability well, but performs poorly on the com-
ponents with subject variability. In some cases GICA estimated
the SMs well but introduced errors in the TC of the component.
When the number of components was overestimated in the pres-
ence of subject variability, GICA estimates of varying components
and the extra components had weak activations with high levels of
noise; further the TCs of the varying and extra components were
correlated.

If the goal of a certain project is to obtain group level maps,
then GICA is preferred to IVA. GICA components are constructed
after a second level PCA reduction across the whole group. This
step identifies the common patterns of activation present in the
data and the constructed components represent the components
corresponding to the strongest variances across the whole group.
As such variances due to noise or due to minor variability in one
subject are minimized in GICA. If subject specific SMs are the
main interest then GICA users need to select one of the many
back-reconstruction techniques available and slight differences in

the SMs and TCs can be present dependent on the technique
chosen.

A few impediments do exist while applying IVA as currently
implemented. One constraint is the need for large memory. In
our simulations we used a 64 bit laptop with 4 GB RAM and clock
speed of 2.67 GHz. To estimate 5 components with 8 k voxels from
5 subjects IVA takes 1.75 s and GICA 1.3 s. To estimate data from
25 subjects with 25 components IVA took more than 16 min while
GICA performed the same in less than a minute. With real fMRI
brain volumes usually of size 50–100 k voxels, computer memory
needed for IVA is higher than GICA by a factor of number of sub-
jects present in the data. As such applying IVA at its current state
may not be feasible with typical desktop capacities if the number
of subjects, number of components and number of voxels are very
large. Additional optimizations to the IVA algorithm are needed
to decrease computational burden.

LIMITATIONS AND FUTURE WORK
Verification with real fMRI data
Application of IVA to real fMRI data and its performance in
terms of component fidelity, implication, and robustness were not
checked in this study, but through a systematic simulation frame-
work and thorough analyses of results we provide evidence that
IVA may be a better approach to capture inter-subject variabil-
ity. GICA is a well-tested and widely applied technique that has
provided consistent results across many different types of fMRI
data (different types of task related and resting state) and across
many different studies. The level of inter-subject spatial variabil-
ity of components present in real fMRI data is uncertain. Further
studies are needed to evaluate the performance of GICA and IVA
with respect to results from individual ICA. We intend to do that
in our next project.

Limitations of our simulation setup
The simulated datasets used possess many realistic properties but
unavoidably have many limitations. It should be noted that our
simulations model the fMRI data as a weighted linear mixture
of spatial SMs, where the weighting is determined by TCs, in
other words that the fMRI data can be given as product of SMs
and TCs and adheres to the assumptions of ICA. We assigned
one single TC to represent the activation changes of all the vox-
els of a SM. This again is an extension of ICA assumptions.
Further, the TCs in our simulations were randomly generated
with close to zero correlation between different components of
the same subject and similar components across different sub-
jects. The ability of both IVA and GICA to construct good SM
estimates when inter-subject TC correlations for similar com-
ponents are near zero is encouraging and bodes well for the
algorithms. Functional network studies have indicated that higher
correlations can exist between components of the same subject.
In this study we did not investigate how reconstruction accuracy
may change at higher correlations between TCs or the correlation
limit at which ICA would begin to cluster correlated compo-
nents. In addition, our datasets did not include effects of subject
motion and spatial smoothing. In summary, it should be noted
that real fMRI datasets are much more complex than our sim-
ple datasets. There are several back reconstruction techniques
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available to estimate subject specific components from group
components and in our experiments we used spatio-temporal
regression. We did not test other techniques for all our experi-
ments, but in cases where there was high subject variability we
checked the results with other back reconstruction techniques.
Our preliminary results indicate that the errors in GICA were
higher irrespective of the technique applied, but the nature of
errors was different.

Future improvements
IVA has a high computation and memory burden compared to
GICA. It should be noted that GICA has been highly optimized
over many versions of the GIFT toolbox. In future work, we
intend to improve these limitations of IVA. Further studies are
also needed to examine if a joint framework of GICA and IVA can
be developed to capture the advantages of both schemes.
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