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Alzheimer’s disease (AD) is the most common form of dementia, with no means of
cure or prevention. The presence of abnormal disease-related proteins in the population
is, in turn, much more common than the incidence of dementia. In this context,
the cognitive reserve (CR) hypothesis has been proposed to explain the discontinuity
between pathophysiological and clinical expression of AD, suggesting that CR mitigates
the effects of pathology on clinical expression and cognition. fMRI studies of the human
connectome have recently reported that AD patients present diminished functional
efficiency in resting-state networks, leading to a loss in information flow and cognitive
processing. No study has investigated, however, whether CR modifies the effects
of the pathology in functional network efficiency in AD patients. We analyzed the
relationship between CR, pathophysiology and network efficiency, and whether CR
modifies the relationship between them. Fourteen mild AD, 28 amnestic mild cognitive
impairment (aMCI) due to AD, and 28 controls were enrolled. We used education to
measure CR, cerebrospinal fluid (CSF) biomarkers to evaluate pathophysiology, and
graph metrics to measure network efficiency. We found no relationship between CR
and CSF biomarkers; CR was related to higher network efficiency in all groups; and
abnormal levels of CSF protein biomarkers were related to more efficient networks in
the AD group. Education modified the effects of tau-related pathology in the aMCI and
mild AD groups. Although higher CR might not protect individuals from developing AD
pathophysiology, AD patients with higher CR are better able to cope with the effects of
pathology—presenting more efficient networks despite pathology burden. The present
study highlights that interventions focusing on cognitive stimulation might be useful to
slow age-related cognitive decline or dementia and lengthen healthy aging.
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INTRODUCTION

In 2014, the movie ‘‘Still Alice,’’ interpreted by the actress
Julianne Moore, brought to the public the dramatic experience
of someone living with Alzheimer’s disease (AD), the most
common form of dementia worldwide (and yet with no means
of cure or even prevention). More interesting, however, was
the fact that the onset of the disease’s clinical expression was
delayed by modifiable factors, such as her high intellectual
level. The cognitive reserve (CR) hypothesis, in this context, has
been proposed to account for the discontinuity between
pathophysiological and clinical expression of AD. This
hypothesis claims that individuals with higher CR can better
maintain cognitive functions despite AD pathology (Stern,
2012), thus consisting in an important factor in the fight against
the disease. In fact, innumerable epidemiological studies report
that greater CR may postpone the clinical expression of AD
(Amieva et al., 2014; Osone et al., 2015), yet accelerate the
cognitive decline after its onset (Scarmeas et al., 2006; Bruandet
et al., 2008).

Neuroimaging studies (Scarmeas et al., 2003; Perneczky
et al., 2006; Serra et al., 2011; Liu et al., 2012; Boots et al.,
2015) have consistently shown a positive relationship between
brain structure/metabolism/perfusion and CR in the healthy
elderly, whereas in AD patients there is an inverse relationship
between them. These findings suggest that patients with higher
CR are better able to cope with the brain pathology than
patients with lower CR, and more pathology is needed in the
former group to reach the dementia level (thus mitigating
the clinical impact of the disease). Studies involving fMRI
analysis (Solé-Padullés et al., 2009; Bosch et al., 2010; Arenaza-
Urquijo et al., 2013a; Bozzali et al., 2015; Marques et al.,
2015; Serra et al., 2017), in turn, found that healthy elders,
mild cognitive impairment (MCI) and AD patients with higher
CR present more activation/connectivity in brain regions than
the individuals with lower CR. These interesting results have
shed some light onto the issue, proposing that the healthy
elderly with higher education level present increased brain
efficiency, while AD patients are able to recruit compensatory
mechanisms to maintain cognitive function. Because of the
lack of pathophysiological data for the subjects, however, these
results only support the CR hypothesis, and preclude any further
assumptions on it.

The role of CR in attenuating the prejudicial effects of AD
pathology in cognition has been explored in several studies
involving both healthy controls (Bennett et al., 2003; Yaffe et al.,
2011; Almeida et al., 2015) and patients (Roe et al., 2008; Rentz
et al., 2010). Individuals with higher CR who are still cognitively
normal have less chance to develop dementia, despite presenting
abnormal pathological protein levels such as amyloid β (Aβ)
and phospho-tau (p-tau; Soldan et al., 2013). Although the
neurobiological mechanism behind this process is not known,
some studies posit that a greater exposure to a cognitively
stimulating environment is associated with reduced levels of the
pathological proteins, protecting the individuals from developing
AD-related pathology (Lazarov et al., 2005; Landau et al., 2012;
Harris et al., 2015).

Among the negative impacts of the disease in a subject’s brain,
is the disruption in the topological organization of the functional
connectome, leading to a loss of global information integration
in disease due to the randomization of the brain functional
networks (Sanz-Arigita et al., 2010). Although disruption in
resting-state networks has already been related to abnormal
levels of cerebrospinal fluid (CSF) proteins (Aβ and 181Thr-
phosphorylated tau, p-tau) in older adults (Jiang et al., 2016),
amnestic mild cognitive impairment (aMCI) subjects (Canuet
et al., 2015) and mild AD patients (Li et al., 2013; Celebi et al.,
2016), no study has investigated whether CR is able to mitigate
the effects of the pathology in network efficiency through
graph theory analysis. Thus, in the present study we mainly
sought to investigate the moderator effect of CR (if any) on
the association between pathophysiology and functional network
efficiency in aMCI and mild AD patients (i.e., can CR modify
the effects of pathology on network topology?) as a primary
outcome. As secondary outcomes, we analyzed the relationship
between CR proxies and functional network efficiency (resting-
state fMRI graph metrics) in healthy controls, aMCI and mild
AD patients; the relationship between pathophysiology (CSF
Aβ, total tau (t-tau) and p-tau levels) and functional network
efficiency in aMCI and mild AD patients; and the relationship
between pathophysiology and CR proxies in aMCI and mild AD
patients.

MATERIALS AND METHODS

Participants
This study included 70 participants: 14 mild AD patients,
28 aMCI subjects, and 28 healthy controls. To indicate
dementia severity, we used ratings on the Clinical Dementia
Rating (Morris, 1993) scale and a semi-structured interview
about the patients’ functional level in their daily activities
(Pfeffer et al., 1982). The diagnosis of probable AD patients
fulfilled the standards of the National Institute of Aging
and Alzheimer’s Association (NIA/AA; McKhann, 2011),
and patients had a Clinical Dementia Rating score of 1.
aMCI patients were diagnosed using the core criteria of
the NIA/AA for MCI (Albert et al., 2011) and had a
Clinical Dementia Rating score of 0.5 (with an obligatory
memory score of 0.5). All aMCI subjects had memory
complaints confirmed by a full range of neuropsychological
testing, absence of dementia, and pathophysiological evidence
of AD, characterized by low CSF Aβ1–42 (<416 pg/mL)
and/or low Aβ1–42/p-tau (<9.53 pg/mL; Forlenza et al.,
2015).

Controls were identified as cognitively normal: they did not
exhibit any neurological or psychiatric disorders or require
psychoactive medication; they demonstrated Mini Mental
State Examination (MMSE) scores within the normal limits,
considering scores corrected for educational level (Brucki
et al., 2003); and their structural images were without any
abnormalities. The control group had no memory complaints
nor neurological deficits, and they also had a Clinical Dementia
Rating score of zero. Exclusion criteria for all participants
included: history of other neurological or psychiatric diseases
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or head injury with loss of consciousness, use of sedative drugs
in the last 24 h before the neuropsychological assessment,
drug or alcohol addiction, prior chronic exposure to neurotoxic
substances, Hachinski ischemeic score (Hachinski et al.,
1975)>4, and Fazekas Scale (Fazekas et al., 1987)>1.

Pre-diagnostic procedures also comprised laboratory tests
including Vitamin B12, folate and thyroid hormones. The
Medical Research Ethics Committee of University of Campinas
(UNICAMP) approved this study and written informed consent
(either from the subjects or from their responsible guardians,
if incapable) was obtained from all participants before study
initiation, according to the Declaration of Helsinki.

Neuropsychological Assessment
Experienced neuropsychologists, blinded to the
magnetic resonance imaging (MRI) data, performed the
neuropsychological evaluations. These evaluations helped with
the clinical assessment and diagnosis of patients. Detailed
information for the neuropsychological testing can be found at
Supplementary Materials.

Cognitive Reserve
In the present study, we used years of education as a measure of
CR (measured as the total number of years of schooling). Our
study used a wide education range for all three groups, extending
its low end to include no years of formal schooling (range of
education in controls: 0–19 years; in aMCI: 0–23 years; in mild
AD: 0–16 years). We did not dichotomize the subjects into high
or low CR groups and treated the data as continuous variables in
all analyses.

Cerebrospinal Fluid Assessment
CSF samples from aMCI and AD patients were collected by
lumbar puncture and stored in a polypropylene tube of 1 ml.
Then the samples were centrifuged at 800 rpm for 10 min
and stored at −80◦C until analysis. Aβ1–42, t-tau protein and
p-tau protein were measured using Luminex xMAP plataform
(Inno-Bia Alzbio3 immunoassay reagents, Innogenetics, Ghent,
Belgium).

MRI Acquisition
All MR images were acquired on a 3.0 T MRI Philips
Achievar scanner. The following acquisition protocol was
applied to each subject: (a) sagittal high-resolution T1-weighted
(isotropic voxels of 1 × 1 × 1 mm3, TR/TE = 7/3.2 ms,
FOV = 240 × 240 mm, 180 slices); (b) functional acquisitions
(EPI) with TR/TE = 2000/30 ms, FOV = 240 × 240, isotropic
voxels set to 3 × 3 × 3 mm3, and no gap with a total
scan time of 6 min, resulting in 180 full brain volumes
with 40 axial slices each. All participants were instructed
to keep their eyes closed, to relax, to move as little as
possible, and to not fall asleep. The total scan time was
30 min.

Image Processing and Statistical Analysis
We performed the resting-state functional connectivity
preprocessing and analysis using an in-house toolbox

(UF2C1; de Campos et al., 2016) that runs in the MATLAB
platform (2014b, The MathWorks Inc., Natick, MA, USA) with
SPM122. We performed the T1-weighted image coregistration
with the fMRI mean image, tissue segmentation, and
normalization. We preprocessed the functional images based on
volumes realignment, normalization (unified segmentation
method—MNI152), and smoothing (6 × 6 × 6 mm3

FWHM). Additionally, we performed regressions for head
motion, white matter, and CSF global signals and band-pass
filtering (0.008–0.1 Hz). No subjects in the present study
exceeded the mean framewise displacement threshold
(0.5 mm), and there were no significant differences in head
movement among the groups (analysis of variance, ANOVA,
p = 0.187).

We used the UF2C toolbox to construct functional
connectivity matrices (i.e., the input for graph analysis), based
on 70 functional regions-of-interest (ROIs)—corresponding
to the 12 resting-state networks established elsewhere (Shirer
et al., 2012; regions available at http://findlab.stanford.edu/
functional_ROIs.html (Supplementary Table S1). Functional
connectivities of all ROI pairs were estimated as Pearson’s
correlation coefficients and then transformed to Fisher’s Z
estimates using Fisher’s r-to-z transformation. Due to local
atrophy present in aMCI and mild AD patients, the local
average of time-series per ROI could include signal derived
from non-gray matter voxels, thereby introducing artificial
differences between patients and controls. To overcome this
issue, time-series were extracted only from voxels that were
included in the subject’s gray matter mask; furthermore, UF2C
correlates each single ROI voxel time series with the average
ROI time series (gray matter-masked). The voxel was included
(into the average) if its correlation value was within the average
+ standard deviation (SD) of all correlations between the
ROI-masked voxels.

Because the arbitrary thresholding and binarization processes
in graph theoretical analysis often lead to loss of information
(Rubinov and Sporns, 2011), we chose weighted correlation
matrices (in which the links contain information about the
connection strength). Negative weights were considered zero.
The following 10 graph metrics were obtained for each subject to
estimate network efficiency: local betweenness centrality (Bc) and
local eigenvector centrality (v) as measures of centrality; global
and local clustering coefficient (Cglob and Cloc, respectively)
and global transitivity (T) as measures of segregation; global
(λ) and local (λ(v)) characteristic path length, and global
and local efficiency (Eglob and Eloc, respectively) as measures
of integration. In addition to all these metrics, we also
calculated small-worldness (σ), a global measure that combines
path length and clustering coefficient. To give a brief idea,
higher betweenness centrality, eigenvector centrality, clustering
coefficient, transitivity, efficiency and small-worldness values
are features of more efficient networks. On the other hand,
lower values of characteristic path length represent more efficient
networks.

1https://www.lniunicamp.com/uf2c
2http://www.fil.ion.ucl.ac.uk/spm/
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To see the relationship between CSF values and graph metrics
(secondary outcome), for each group separately (i.e., controlling
for clinical dementia severity), we added CSF values as
independent variables and graph metrics as dependent variables
in the GraphVar toolbox (version 1.023; Kruschwitz et al.,
2015). We then did the same for education and graph metrics.
In the next step, to test whether education modifies the
relationship between CSF biomarker levels and the topological
organization of the functional connectome (primary outcome),
we used regression models in which we included an interaction
term between education and the CSF biomarker levels. We
then verified whether including this interaction term added
significantly to the model.

For each graph parameter analyzed, we created a random
distribution of the parameter value (5,000 permutations). We
then employed a network-based statistic—NBS (Zalesky et al.,
2010a), a process that tests whether a set of multiple pairwise
connections forms ROI–ROI pairs that would be highly unlikely
to occur randomly. Finally, as we used the same general linear
models to test the relationships between CR, pathophysiological
levels (CSF proteins) and network topology (graph metrics)
for all three groups (MCI, AD and controls), we employed a
Bonferroni correction to further account for the multiplicity of
tests.

Non-imaging Statistical Analysis
We first tested the normal distribution with Kolmogorov-
Smirnov test for all non-imaging variables. The chi-square
test was used for categorical variables comparison, such as
sex. Differences between groups for demographic and years of
educationwere tested with ANOVAs, Bonferroni post hoc. Group
comparison for CSF variables was performed with t-tests (aMCI
vs. mild AD group). Pearson’s correlation analyses were used
to investigate the associations among demographic data (age
and sex) with education. To investigate the relationship between
CR and CSF biomarker levels in both aMCI and mild AD
patients (secondary outcome), we used linear regression models,
including the CSF data as dependent variables, and sex, age and
education as independent variables. All statistical analyses were
carried out using the Statistical Package for the Social Sciences
(SPSS) program, version 22. The level of significance accepted
was α = 0.05.

RESULTS

Participants Characteristics
There was no difference in sex (p = 0.871) and educational level
among the groups; and aMCI and mild AD groups did not
statistically differ in CSF biomarker levels (Table 1). Controls
were younger than AD patients (p = 0.009), and this variable was
included as a confounding factor throughout the analysis. There
was no statistically significant relationship between education
and age or sex in controls, aMCI nor mild AD patients (data not
shown). Neuropsychological performance results can be found at
Supplementary Table S2.

3http://www.nitrc.org/projects/graphvar/

Primary Outcome: The Interplay Between
CR and Pathophysiology in Network
Efficiency
At this level, an interaction term between CSF proteins and
education was added to the models, and when significant,
the interaction term indicated an interplay between
pathophysiological level and CR on network topology. As
shown in Table 2, Figure 1 the interaction term between years
of education and CSF p-tau level was a statistically significant
predictor of graph metrics for the aMCI group. Similarly,
interaction terms between education and both CSF t-tau and
p-tau added significantly to models in the mild AD group,
indicating that these interactions affect network topology. No
results were observed for interaction terms involving CSF
Aβ1–42.

Secondary Outcomes
Group Comparison for Network Efficiency
Compared to controls, the aMCI group presented increased
betweenness centrality (Bc), local clustering coefficient (Cloc),
local efficiency (Eloc) and eigenvector centrality (v) in several
regions belonging to the Default Mode Network (DMN),
Executive Control Network (ECN), Auditory Network (AN),
Salience Network (SN), Visuospatial Network (VSN) and
Sensorimotor Network (SMN); whereas diminished betweenness
centrality (Bc) and eigenvector centrality (v) were observed in
regions belonging to the DMN, ECN and AN. Interestingly,
although belonging to a variety of different networks, the regions
that presented features of increased network efficiency in the
aMCI were predominantly located in the frontal region. These
findings suggest that predementia subjects present frontal nodes
that work more efficiently than the cognitively healthy.

Compared to controls, mild AD patients presented increased
local characteristic path length (λ(v)) in three regions belonging
to the SN, DMN and language network (LN), indicating a
possible disruption in these network’s information processing.
aMCI subjects presented increased centrality values (Bc and v)
in regions of the DMN, SN, basal ganglia network (BGN) and
VSN compared to mild AD patients; whereas decreased local
characteristic path length (λ(v)) and centrality metrics (Bc and v)
were present in regions of the ECN, DMN, SMN and VSN
(Supplementary Table S3).

Relationship Between Education and
Pathophysiology
Multiple linear regression models failed to detect any statistically
significant relationship between CSF biomarker levels and
education in aMCI or mild AD groups, suggesting that the level
of CR has no influence on brain AD-related pathology levels
(Supplementary Table S4).

Relationship Between Education and Network
Efficiency
In the control group, years of education had a positive correlation
with local clustering coefficient (Cloc) and local efficiency (Eloc)
in areas belonging to the SN, DMN, AN, VSN, LN and AN
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TABLE 1 | Group comparison for demographic and cerebrospinal fluid (CSF) proteins data.

Controls aMCI Mild
Alzheimer’s
disease

Controls
vs. aMCI

Controls vs. mild
Alzheimer’s

disease

aMCI vs. mild
Alzheimer’s

disease

N (female) 28 (19) 28 (17) 14 (9)
Age 66.36 (5.6) 70.38 (6.9) 72.67 (6.8) 0.097 0.019 0.93
MMSE 28 (1.3) 25.34 (2.9) 19.8 (5.1) 0.013 <0.001 <0.001
Education 10.37 (5.2) 7.59 (5.5) 8.93 (5.2) 0.242 1 1
t-tau NA 101.73 (66.1) 132.07 (76.2) NA NA 0.465
p-tau NA 50.15 (32.3) 54.9 (32.2) NA NA 1
Aβ1–42 NA 428.83 (151.9) 355.89 (121.1) NA NA 0.316

Notes: mean (sd). aMCI, amnestic mild cognitively impaired subjects; MMSE, Mini mental state examination; NA, not available.

(the higher the education, the higher the Cloc and Eloc in
these areas); whereas, there was negative correlation with local
characteristic path length (λ(v)) in regions belonging to the
DMN, AN, LN and VSN (the higher the education, the lower the
λ(v)). In the aMCI group, the level of education had a positive
relationship with the betweenness centrality (Bc), local clustering
coefficient (Cloc) and local efficiency (Eloc) of regions belonging
to the SN, ECN, VSN and DMN. A negative relationship was
observed between education and betweenness centrality (Bc) at
a region belonging to the VSN. In the mild AD group, years of
education positively correlated with betweenness centrality (Bc),
local clustering coefficient (Cloc), eigenvector centrality (v) and
local efficiency (Eloc) of regions belonging to the ECN, LN and
DMN (Table 3). These findings indicate that healthy controls,
aMCI and mild AD patients with higher level of CR present
characteristics of more efficient networks.

Relationship Between Pathophysiology and Network
Efficiency
Before hand, we think it is helpful to describe the expected
concentration of t-tau, p-tau and Aβ1–42 extracted from the CSF
of patients. Because molecules of Aβ1–42 are composing amyloid
plaques in the brain, low quantities diffuse to the CSF in AD
(Blennow and Zetterberg, 2009), in which CSF Aβ1–42 correlates
inversely with total Aβ load in the brain (Tapiola et al., 2009). In
contrast, high levels of CSF t-tau and p-tau are correlated with
the presence of neocortical neurofibrillary tangles (Tapiola et al.,
2009). Hence, AD patients are expected to present lower levels of
CSF Aβ1–42, but higher levels of both CSF t-tau and p-tau than
cognitively healthy elderlies.

Overall, the relationship between CSF biomarkers and graph
metrics did not follow an expected pattern for the aMCI
group, in which both positive and negative correlations were
observed for t-tau, p-tau and Aβ1–42 levels. Interestingly, the
relationship between CSF protein levels and graph metrics
in the mild AD group was mostly unexpected: with few
exceptions, the brain pathological features (high levels of t-tau
and p-tau, and low levels of Aβ1–42) were related to features
of more efficient networks. For example, higher levels of
both t-tau and p-tau were related to increased betweenness
(Bc), clustering coefficient (Cloc), local efficiency (Eloc) and
eigenvector centrality (v) and decreased characteristic path
length (λ(v)) in several regions. Likewise, lower levels of Aβ1–42
were related to increased betweenness (Bc) and eigenvector

centrality (v) in some regions belonging to the SMN and VSN
(Table 4).

DISCUSSION

Previous studies have suggested that CR could explain why
nearly one third of the cognitively healthy population met
criteria for AD at necropsies without clinically expressing it
(Bennett et al., 2006; Morris et al., 2010). In this context,
we aimed to analyze the relationship between a CR proxy,
CSF biomarker levels (pathology burden) and graph metrics
(network topology), as well as whether CR could modify the
relationship between pathology burden and network topology
(i.e., the CR hypothesis). According to our findings, although
higher levels of CR did not seem to protect individuals from
developing the pathophysiological features of AD, cognitively
healthy controls, aMCI and mild AD patients with higher level
of CR presented features of more efficient networks. Altered
pathological levels of CSF protein biomarkers were related to
a dual pattern of network efficiency in aMCI, whereas they
were related to more efficient networks in the mild AD group.
We suppose that educational level could modify the effects
of p-tau in network topology for the aMCI group, and the
effects of t-tau and p-tau in network topology for the mild
AD group. In what follows, we will discuss these points in
turn.

The Interplay Between CR and
Pathophysiology in Network Efficiency
The analysis undertaken in the present work demonstrated
that educational level—a proxy for CR—, has modifying effects
on the relationship between evidence of AD pathophysiology
and network topology in both aMCI and mild AD groups.
While CR did not seem to protect individuals from developing
the pathophysiological features of AD, it did seem to modify
the association between pathology and resting-state network
topology for both groups. A previous study claimed that CR
can only compensate for pathology up to an initial phase and
does not act in a certain stage of dementia (Serra et al., 2017).
To test this hypothesis, however, the authors analyzed differences
in graph metrics between high/low CR aMCI and mild AD
patients and could only find differences for the aMCI subjects.
In the present work, we have directly tested whether CR has
any modifying effect in network topology, and we extend

Frontiers in Aging Neuroscience | www.frontiersin.org 5 August 2018 | Volume 10 | Article 255

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Weiler et al. Cognitive Reserve as a Modifier in Alzheimer’s Disease

TABLE 2 | Statistically significant linear contents regression models examining interaction terms in network topology measures.

Interaction term Graph metric Anatomical region (network) p value

aMCI
Education∗p-tau Characteristic path length NA 0.023

Betweenness centrality Left middle frontal gyrus (pSN) 0.003
Right hippocampus (dDMN) 0.011
Left middle occipital gyrus (vDMN) 0.006
Right retrosplenial cortex, posterior cingulate cortex (vDMN) 0.004

Clustering coefficient Right thalamus (pSN) 0.008
Left thalamus (pSN) 0.002
Right brainstem/midbrain (BGN) 0.004
Left inferior frontal gyrus, orbitofrontal gyrus (lECN) 0.011
Left superior temporal gyrus (AN) 0.009
Right middle occipital gyrus (VN) 0.019
Right inferior parietal gyrus (VSN) 0.018

Local efficiency Right thalamus (pSN) 0.010
Left thalamus (pSN) 0.004
Right brainstem/midbrain (BGN) 0.001
Left superior temporal gyrus (AN) 0.024
Right middle occipital gyrus (VN) 0.005
Right inferior parietal gyrus (VSN) 0.017

Eigenvector centrality Right insula (aSN) 0.002
Left precuneus (pSN) 0.006
Right brainstem/midbrain (BGN) 0.023
Right hippocampus (dDMN) <0.001
Left middle frontal gyrus (vDMN) 0.010
Left middle frontal gyrus, superior frontal gyrus (lECN) <0.001

Characteristic path length Right insula (aSN) 0.022
Right posterior insula (pSN) 0.008
Left thalamus (pSN) 0.006
Right brainstem/midbrain (BGN) <0.001
Left and right thalamus (dDMN) 0.016
Left hippocampus (dDMN) <0.001
Right hippocampus (dDMN) <0.001
Left parahipocampal gyrus (vDMN) 0.011
Left thalamus (lECN) <0.001
Right caudate (rECN) 0.002
Left middle occipital gyrus (VN) <0.001
Right middle occipital gyrus (VN) <0.001
Left middle temporal gyrus (LN) 0.002
Cerebellum (SMN) 0.004
Left inferior temporal gyrus (VSN) <0.001

Mild Alzheimer’s disease
Education∗t-tau Betweenness centrality Right retrosplenial cortex, posterior cingulate cortex (vDMN) 0.004

Right middle frontal gyrus, superior frontal gyrus (rECN) 0.002
Right inferior parietal gyrus (VSN) 0.014

Clustering coefficient Right posterior insula (pSN) 0.007
Cerebellum (SMN) 0.015

Local efficiency Left insula (aSN) 0.024
Right posterior insula (pSN) 0.006
Right middle frontal gyrus, superior frontal gyrus (rECN) 0.022
Cerebellum (SMN) 0.013

Eigenvector centrality Left inferior frontal gyrus (BGN) 0.002
Left retrosplenial cortex, posterior cingulate cortex (vDMN) 0.004
Left precentral gyrus (SMN) 0.003

Education∗p-tau Betweenness centrality Left middle frontal gyrus, superior frontal gyrus (lECN) <0.001
Right middle frontal gyrus (rECN) 0.001

Eigenvector centrality Left retrosplenial cortex, posterior cingulate cortex (vDMN) 0.013
Right middle frontal gyrus, superior frontal gyrus (rECN) 0.002
Cerebellum (SMN) 0.015
Right frontal operculum, inferior frontal gyrus (VSN) 0.024

Characteristic path length Right middle cingulate cortex (pSN) 0.007
Right inferior parietal gyrus, supramarginal gyrus, angular gyrus (rECN) 0.021

Notes: aMCI, amnestic mild cognitively impaired subjects; CSF, cerebrospinal fluid; dDMN, dorsal Default Mode Network; vDMN, ventral Default Mode Network; lECN, left
Executive Control Network; AN, Auditory Network; VSN, Visuospatial Network; aSN, anterior Salience Network; rECN, right Executive Control Network; SMN, Sensorimotor
Network; pSN, posterior Salience Network; LN, Language Network; BGN, Basal Ganglia Network.
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FIGURE 1 | Statistically significant regions-of-interest (ROIs) for the interplay between educational level and pathophysiology in the network topology in amnestic mild
cognitive impairment (aMCI) and mild Alzheimer’s disease (AD) groups. p values and anatomical brain regions in Table 2.

previous findings claiming that CR acts as a modifying factor
even in the dementia phase. The relationship between higher
burden of abnormal proteins and graph metrics for AD has
been interpreted previously in the light of a compensatory
mechanism. We could extend these results hypothesizing
that at the dementia stage, this compensatory mechanism
(i.e., enhanced network efficiency) is further increased by
a high CR level. The findings with interaction terms give
supplementary evidence for that, pointing that educational
level can, indeed, modify the effect of pathology on network
topology.

Individuals with higher educational level might use brain
networks more efficiently. The biological underpinnings behind
this association are yet to be further elucidated. In vivo studies
have shown that animals living in an enriched environment
restored neurogenesis (Ihunwo et al., 2016) and increased
the number of surviving newborn progenitor-derived cells in

the hippocampal dentate gyrus (Nilsson et al., 1999). The
human brain also retains its ability to generate neurons
throughout life (Johansson et al., 1999) and engagement in more
cognitively stimulating activities might increase neurogenesis,
synaptogenesis, levels of brain derived neurotrophic factor and
related neurotrophins (van Praag et al., 2000), as well as
change astroglial morphology and volume (Beauquis et al.,
2013). CR may also involve upregulation of the noradrenergic
system—which is depleted with age and AD (Robertson,
2013).

Group Comparison for Network Efficiency
In the present study, we found that mild AD patients presented
longer characteristic path length (λ(v)) than healthy controls,
aligning with previous research (Stam et al., 2007; Sanz-
Arigita et al., 2010; Supplementary Table S3). Some other
studies have also found a decrease in the eigenvector centrality
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TABLE 3 | Statistically significant linear contents regression models examining relation of educational level and graph metrics in controls, aMCI and mild Alzheimer’s
disease groups.

CR proxy Graph metric Anatomical region (network) p value β

Controls
Education Clustering

coefficient
Right posterior insula (pSN) 0.016 0.414

Left and right thalamus (dDMN) 0.002 0.564
Left superior temporal gyrus (AN) 0.004 0.469
Right inferior temporal gyrus (VSN) 0.011 0.363

Local efficiency Left and right thalamus (dDMN) 0.001 0.580
Left superior temporal gyrus (AN) 0.001 0.516
Left middle temporal gyrus, angular gyrus (LN) 0.010 0.409
Right inferior temporal gyrus (VSN) 0.013 0.363

Characteristic
path length

Left and right thalamus (dDMN) 0.004 −0.382

Left superior temporal gyrus (AN) 0.014 −0.404
Left middle temporal gyrus, angular gyrus (LN) 0.007 −0.448
Right inferior temporal gyrus (VSN) 0.005 −0.354

aMCI
Education Betweenness

centrality
Anterior cingulate cortex, medial prefrontal cortex, supplementary motor area (aSN) 0.011 0.433

Right inferior parietal gyrus, supramarginal gyrus, angular gyrus (rECN) 0.004 0.481
Left inferior parietal gyrus (VSN) 0.007 −0.323

Clustering
coefficient

Right middle frontal gyrus (rECN) 0.014 0.410

Local efficiency Posterior cingulate cortex, precuneus (dDMN) 0.011 0.467
Right middle frontal gyrus (rECN) 0.012 0.442

Mild Alzheimer’s disease
Education Betweenness

centrality
Left middle frontal gyrus, superior frontal gyrus (lECN) <0.001 0.675

Left superior parietal gyrus, inferior parietal gyrus, precuneus, angular gyrus (lECN) 0.001 0.501
Left middle temporal gyrus (LN) 0.001 0.728

Clustering
coefficient

Medial prefrontal cortex, anterior cingulate cortex, orbitofrontal cortex (dDMN) 0.008 0.685

Eigenvector
centrality

Right superior frontal gyrus (dDMN) 0.001 0.565

Local efficiency Medial prefrontal cortex, anterior cingulate cortex, orbitofrontal cortex (dDMN) 0.002 0.715

Notes: aMCI, amnestic mild cognitively impaired subjects; dDMN, dorsal Default Mode Network; vDMN, ventral Default Mode Network; lECN, left Executive Control
Network; AN, Auditory Network; VSN, Visuospatial Network; aSN, anterior Salience Network; rECN, right Executive Control Network; SMN, Sensorimotor Network; pSN,
posterior Salience Network; LN, Language Network; BGN, Basal Ganglia Network; β, linear regression coefficient. In bold, expected direction for the relationship.

(v; Binnewijzend et al., 2014) and clustering coefficient (Cloc;
Supekar et al., 2008), and a diminished number of hubs (Khazaee
et al., 2017) in patients, suggesting a randomization of the brain
networks and a loss of information flow and integration. In the
present work, the regions that presented longer characteristic
path length (λ(v)) in mild AD (the right middle cingulate cortex,
the left hippocampus and the left middle temporal gyrus) are the
ones more commonly hit by the pathophysiological alterations,
markedly presenting metabolic dysfunctions and atrophy. Thus,
it is not surprising that these regions presented longer local path
lengths (λ(v)) and lower capacity to combine information from
their neighbors.

Studies involving aMCI subjects, in turn, are much less
frequent. Some authors have reported a loss in ‘‘small-worldness’’
features in the aMCI group, such as an increased path length
(λ(v); Wang J. et al., 2013) and decreased eigenvector centrality
(v; Qiu et al., 2016) when compared to controls. Our aMCI
subjects presented diminished measures of centrality in some
regions, whereas other regions showed increased measurements
of centrality, segregation and integration when compared to
controls (Supplementary Table S3). Although unexpected,

previous results (Qiu et al., 2016) can shed some light onto
this issue regarding increases in ‘‘small-worldness’’ properties
predominantly in frontal regions in our predementia subjects.
The authors performed a longitudinal analysis in a MCI group
and, interestingly, the ones that converted to dementia presented
increased eigenvector centrality (v) in frontal regions when
compared to the stable ones. The authors interpreted that the
frontal regions became more important facing the alterations
within the hippocampal network, with increased eigenvector
centrality in those regions consisting of a mechanism of
functional compensation.

Relationship Between Education and
Pathophysiology
Consistent to previous studies (Brayne et al., 2010), we did not
find any associations between pathophysiological measurements
and CR proxies (Supplementary Table S4). Our results suggest
that educational level does not protect individuals from
developing pathology. The divergence between our results and
others could be explained by other factors associated to higher
CR proxies, which could act as confounding factors (Del Ser
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TABLE 4 | Statistically significant linear contents regression models examining the relationship of CSF biomarkers and graph metrics in aMCI and mild Alzheimer’s
disease groups.

CSF protein Graph metric Anatomical region (network) p value β

aMCI
t-tau Betweenness centrality Right inferior frontal gyrus (BGN) 0.023 −0.460

Eigenvector centrality Right brainstem/midbrain (BGN) 0.008 0.407
Right frontal operculum, inferior frontal gyrus (VSN) 0.006 0.493

p-tau Betweenness centrality Left superior parietal gyrus, inferior parietal gyrus, precuneus, angular
gyrus (lECN)

0.015 0.519

Left middle temporal gyrus, angular gyrus (LN) 0.022 0.615
Local efficiency Left superior temporal gyrus (AN) 0.013 −0.387
Eigenvector centrality Left parahipocampal gyrus (vDMN) 0.014 −0.413

Right angular gyrus, middle occipital gyrus (vDMN) 0.023 0.483
Right middle frontal gyrus, superior frontal gyrus (rECN) 0.002 0.443
Right frontal operculum, inferior frontal gyrus (VSN) 0.011 0.459

Characteristic path length Left superior temporal gyrus (AN) 0.016 0.510
Aβ1–42 Betweenness centrality Left thalamus (lECN) 0.021 0.406

Right frontal operculum, inferior frontal gyrus (VSN) 0.009 0.340
Clustering coefficient Right angular gyrus (dDMN) 0.008 −0.511
Local efficiency Posterior cingulate cortex, precuneus (dDMN) 0.021 −0.428

Right angular gyrus (dDMN) 0.008 −0.513
Eigenvector centrality Left precuneus (pSN) 0.005 −0.480

Left inferior frontal gyrus (BGN) 0.009 0.514
Right superior frontal gyrus, middle frontal gyrus (vDMN) 0.020 0.431
Right supplementary motor area (SMN) 0.020 −0.388

Mild Alzheimer’s disease
t-tau Global efficiency NA 0.024 0.605

Smallworldness NA 0.005 −0.697
Betweenness centrality Posterior cingulate cortex, precuneus (dDMN) 0.008 0.582

Right middle frontal gyrus (rECN) 0.004 0.609
Left inferior parietal gyrus (VSN) 0.002 −0.593
Right frontal operculum, inferior frontal gyrus (VSN) 0.019 −0.513

Clustering coefficient Left precuneus (pSN) 0.006 0.535
Left hippocampus (dDMN) 0.017 0.719
Right hippocampus (dDMN) 0.008 0.626
Left parahipocampal gyrus (vDMN) 0.009 0.647
Right superior frontal gyrus, middle frontal gyrus (vDMN) 0.004 0.579
Right middle frontal gyrus, superior frontal gyrus (rECN) 0.013 0.500
Right superior frontal gyrus (rECN) 0.001 0.601
Right caudate (rECN) 0.020 0.545
Left middle frontal gyrus, superior frontal gyrus, precentral gyrus (VSN) 0.007 0.545
Left frontal operculum, inferior frontal gyrus (VSN) 0.022 0.522
Right frontal operculum, inferior frontal gyrus (VSN) 0.013 0.555

Local efficiency Left precuneus (pSN) 0.011 0.500
Right brainstem/midbrain (BGN) 0.020 0.582
Midcingulate cortex (dDMN) 0.204 0.350
Right hippocampus (dDMN) 0.006 0.583
Left parahipocampal gyrus (vDMN) 0.008 0.622
Right superior frontal gyrus, middle frontal gyrus (vDMN) 0.003 0.593
Right superior frontal gyrus (rECN) 0.001 0.592
Right caudate (rECN) 0.020 0.535
Left middle frontal gyrus, superior frontal gyrus, precentral gyrus (VSN) 0.017 0.524
Left frontal operculum, inferior frontal gyrus (VSN) 0.019 0.529

Eigenvector centrality Left precuneus (pSN) <0.001 0.735
Right middle frontal gyrus, superior frontal gyrus (rECN) 0.001 0.670
Right precentral gyrus (SMN) 0.010 0.589

Characteristic path length Right middle frontal gyrus (aSN) 0.015 −0.657
Left precuneus (pSN) 0.018 −0.590
Right superior frontal gyrus (dDMN) 0.019 −0.642
Left and right thalamus (dDMN) 0.010 −0.613
Right superior frontal gyrus (rECN) <0.001 −0.719
Left middle occipital gyrus (VN) 0.003 −0.449
Right middle occipital gyrus (VN) 0.015 −0.482

p-tau Betweenness centrality Posterior cingulate cortex, precuneus (dDMN) 0.011 0.574
Left hippocampus (dDMN) 0.003 0.695
Left inferior parietal gyrus (VSN) 0.001 −0.611

(Continued)
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TABLE 4 | (Continued)

CSF protein Graph metric Anatomical region (network) p value β

Right frontal operculum, inferior frontal gyrus (VSN) 0.019 −0.527
Clustering coefficient Left precuneus (pSN) 0.012 0.520

Posterior cingulate cortex, precuneus (dDMN) 0.007 0.610
Right caudate (rECN) 0.017 0.572

Local efficiency Left precuneus (pSN) 0.006 0.532
Posterior cingulate cortex, precuneus (dDMN) 0.002 0.634
Right hippocampus (dDMN) 0.010 0.563
Right caudate (rECN) 0.016 0.535
Right inferior parietal gyrus (VSN) 0.022 0.501

Eigenvector centrality Right middle frontal gyrus, superior frontal gyrus (rECN) 0.011 0.562
characteristic path length Left precuneus (pSN) <0.001 −0.768

Posterior cingulate cortex, precuneus (dDMN) 0.018 −0.662
Left and right thalamus (dDMN) 0.005 −0.655
Left hippocampus (dDMN) 0.007 −0.509
Right hippocampus (dDMN) 0.003 −0.580
Precuneus (vDMN) 0.022 −0.671
Left middle occipital gyrus (VN) 0.007 −0.412
Right middle temporal gyrus, superior temporal gyrus, supramarginal
gyrus, angular gyrus (LN)

0.020 −0.506

Right inferior parietal gyrus (VSN) 0.023 −0.717
Right inferior temporal gyrus (VSN) 0.007 0.530

Aβ1–42 Betweenness centrality Left precentral gyrus (SMN) 0.016 −0.603
Eigenvector centrality Left inferior temporal gyrus (VSN) 0.017 −0.595

Right middle frontal gyrus (VSN) 0.009 0.527

Notes: aMCI, amnestic mild cognitively impaired subjects; CSF, cerebrospinal fluid; dDMN, dorsal Default Mode Network; vDMN, ventral Default Mode Network, lECN, left
Executive Control Network; AN, Auditory Network; VSN, Visuospatial Network; aSN, anterior Salience Network; rECN, right Executive Control Network; SMN, Sensorimotor
Network; pSN, posterior Salience Network; LN, Language Network; BGN, Basal Ganglia Network; β, linear regression coefficient. In bold, expected direction for the
relationship.

et al., 1999). Additionally, cognitively stimulating activities could
play different roles during pre- and post-amyloid plaque stages,
diminishing Aβ1–42 production in pre-amyloid plaque stages
(Jagust and Mormino, 2011).

Relationship Between Education and
Network Efficiency
Converging evidence suggests that healthy individuals with
higher CR proxies present greater volume and metabolism
in some brain regions (Arenaza-Urquijo et al., 2013a; Rzezak
et al., 2015). The same relationship is true for resting-state
fMRI (Song et al., 2008) and graph analysis studies (van
den Heuvel et al., 2009; Fischer et al., 2014; Santarnecchi
et al., 2015), suggesting that healthy individuals with higher
CR proxies present a greater processing capacity and network
efficiency. Our results align with these previous findings:
healthy controls with higher level of education presented higher
clustering coefficient (Cloc) and local efficiency (Eloc) in areas
belonging to the posterior Salience Network (pSN), dDMN,
AN, VSN, LN and AN and lower characteristic path length
(λ(v)) in regions belonging to the dDMN, AN, LN and VSN
(Table 3).

By contrast, the interpretation of the protective effects of
CR in AD patients could be tricky. For example, structural
MRI studies have consistently found that MCI and AD patients
with higher CR proxies present reduced brain volumes and/or
thickness (Solé-Padullés et al., 2009; Arenaza-Urquijo et al.,
2013b), suggesting that they can tolerate a more advanced
neurodegenerative process when a certain clinical condition
is reached. In fMRI studies, though, patients with higher

CR present higher brain activation during task performance
(Bosch et al., 2010; Colangeli et al., 2016), and higher
DMN functional connectivity (Bozzali et al., 2015) and
network efficiency (Franzmeier et al., 2017) during resting-
state. Consistent with these previous results, we found that
both aMCI and mild AD patients with higher levels of
education generally presented graph metrics suggestive of more
efficient network topologies in regions belonging to several
networks. These findings will be discussed in the light of two
complementary facets to the neural implementation of the CR
hypothesis: neural reserve and neural compensation (Stern,
2002).

Neural reserve may represent innate occurring individual
differences in brain networks that may be modulated
through life events (Stern et al., 2005). In this context,
the positive relationship between efficiency of networks
and educational level in both aMCI and mild AD patients
may be explained by the pre-existing high levels of network
efficiency before the development of the disease. Alternatively,
it could reflect a compensatory increase in the efficiency of
networks facing the development of pathological features
(i.e., neural compensation; Stern et al., 2005). Given that
healthy individuals with higher CR proxies also presented
higher network efficiency (i.e., the beneficial effects of
education were observed in the absence of the disease),
it is tempting to say that our results point towards the
neural reserve explanation. However, we did not obtain
pathophysiological measurements for healthy controls, and
it is known that the pathological burden starts even decades
before the onset of dementia, and cognitively healthy subjects
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could present amyloidosis even without cognitive symptoms.
Thus, we cannot discard the possibility that some examples
of our healthy sample presented AD pathophysiological
features, and it could be that a ‘‘neural compensation-like’’
mechanism is already taking place in some cognitively normal
subjects.

The present work brings evidence of an association between
educational level and network efficiency not only in the healthy
elderly, but also among the aMCI and the demented. It is yet
to be found, however, whether possessing higher CR proxies
promotes network efficiency or that those subjects with more
efficient networks tend to engage more in stimulating activities
(Scarmeas and Stern, 2003).

Relationship Between Pathophysiology
and Network Efficiency
Overall, we found that aMCI CSF biomarker levels were
associated with a dual pattern of network topology
(Table 4), similarly to previous research reporting that
CSF markers of amyloid deposition and neuronal injury
in MCI were associated with both increased and decreased
functional connectivity of resting-state networks (Canuet
et al., 2015). In the mild AD sample, in turn, we could
observe some more notorious results: generally, pathological
levels of CSF proteins were related to features of more
efficient networks (mostly, but not limited to, the DMN).
Divergent results from our and previous work (such as in
Binnewijzend et al., 2014), in which the authors report no
significant correlations of eigenvector centrality (v) with CSF
biomarker) may have arisen from different methodologies
adopted.

Since the pathophysiological process is known to start
during a preclinical phase, protein levels have been related
to alterations in functional connectivity (Wang L. et al.,
2013) and graph metrics (Brier et al., 2014) in cognitively
normal older individuals with evidence of preclinical AD.
At a further stage, such as in MCI subjects for example,
there could be an inconsistent adaptation process arising as
a result of higher protein abnormalities and structural brain
damage. Such speculation could possibly explain the lack of
relationship pattern between CSF protein levels and graph
metrics found here. Mild AD patients, in turn, might have
already reached a plateau for protein biomarkers (Jack et al.,
2010) when a process of compensation takes place, explaining
the relationship between higher pathological levels of CSF
proteins and network efficiency. However, such interpretation
is speculative and longitudinal studies would be necessary to
confirm it.

LIMITATIONS AND CONCLUSION

This work has some limitations that must be acknowledged.
First, its relative small sample size and the lack of CSF
data for the control sample. Second, its cross-sectional nature
does not allow for understanding the effect CR may have
on neuropathological accumulation and network topology over

time. Third, it is possible that the relationship between CR
proxies and network topology, as well as the modifying effects
of education are not directly or linearly related to CR. For
instance, higher educational level is usually related to higher
levels of indexes of socioeconomic status and lifestyle that
have been shown to mitigate the risk of AD (Lu et al.,
2016). Relatedly, it has been shown that being engaged in
intellectual leisure, social and physical activities reduces the
risk of developing dementia (Scarmeas et al., 2001). In the
present study, we did not evaluate personal engagement in such
activities, nor cardiovascular risk factors or unhealthy lifestyles.
Brain volume/size was also claimed to protect against clinical
deterioration (Guo et al., 2013), and this variable was not
accounted for.

We should not forget to mention the contribution of
some confounding factors to the graph analysis approach as
well. Whereas most studies have used the AAL template for
defining nodes, we chose our nodes based on a functional
atlas of resting-state networks; and it has been demonstrated
that both local and global topological properties of networks
exhibit strong dependence on the choice of parcellation scale
(Zalesky et al., 2010b). Furthermore, some studies have used
thresholds to produce binary adjacency matrices, which generate
graphs of different sparsity or connection density (Bullmore
and Sporns, 2009). Lastly, unanalyzed biological factors such
as the presence of APOE4 gene have been associated with
disrupted graph topologies (Daianu et al., 2015; Wang et al.,
2015).

Over the last few decades, many authors have committed
to studying the relationships and effects of pursuing higher
CR levels for the brain. Such studies are of utmost importance
because not only do they provide evidence of the beneficial effects
of being immersed in a cognitively stimulating environment,
but also highlight that interventions might be useful for slow
age-related cognitive decline or dementia and to lengthen healthy
aging. The current study has the strength of combining a wide
range of educational levels that are not often seen in European
or North-American studies, and could potentially lead to new
insights into the mechanisms of CR. In summary, our findings
suggest that although higher levels of CR did not seem to protect
individuals from developing the pathophysiological features of
AD, cognitively healthy controls, aMCI and demented patients
with higher level of CR presented features of more efficient
networks. Moreover, educational level could modify the effects
of p-tau in network topology in the aMCI group, and the
effects of t-tau and p-tau in network topology in the mild
AD group; meaning that subjects with higher CR are better
able to cope with the effects of pathology in terms of network
efficiency.
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