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Abstract

guide the generation of ptRFs.

Background: Transfer RNA (tRNA)-derived fragments (tRFs) have been widely identified in nature, functioning in
diverse biological and pathological situations. Yet, the presence of these small RNAs in Plasmodium spp. remains
unknown. Systematic identification and characterization of tRFs is therefore highly needed to understand further
their roles in Plasmodium parasites, particularly in the virulent Plasmodium falciparum parasite.

Results: Genome-wide small RNAs with sizes ranging from 18-30 nucleotides from P. falciparum were deep-
sequenced via lllumina HiSeq 2000 technology. In-depth analysis revealed the presence of a vast number of small
RNAs originating from tRNA-coding genes, responsible for 22.4% of the total reads as the second predominant
group. Three P. falciparum-derived tRF types (ptRFs) were identified as 5'ptRFs, mid-ptRFs and 3'ptRFs. The majority
(90%) of ptRFs were derived from tRNAs that coded eight amino acids: Pro, Phe, Asn, Gly, Cys, GIn, His and Ala.
Stem-loop reverse transcription polymerase chain reaction further confirmed the presence of tRFs in the blood
stages of P. falciparum. Four new motifs with an enriched G/C feature were determined at cleavage sites that might

Conclusions: To our knowledge, this is the first report of a genome-wide investigation of ptRFs from Plasmodium
species. The identification of ptRFs reveals a complex small RNA system manipulated by the malaria parasite, and
might promote research on the function of tRFs in the pathogenesis of Plasmodium infections.
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Background

A growing amount of data suggests that small RNAs
play critical regulatory roles in many biological processes
in both prokaryotes [1-3] and eukaryotes [4, 5]. Other
than the three major types of small RNAs including
microRNAs (miRNAs), endogenous small interference
RNAs (endo-siRNAs) and PiWi-interacting RNAs (piR-
NAs) [6, 7], the advance in deep sequencing technology
has unveiled new classes of small RNAs with novel fea-
tures and functions. One such class is those derived
from transfer RNAs (tRNAs), commonly referred to as
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tRFs (tRNA-derived RNA fragments), which were once
mis-annotated as miRNAs [8, 9].

tRFs are typically short in length, ranging from 12-30
nucleotides (nt) [10]. Despite the fact that the nomencla-
ture used to refer to the subclass of tRFs varies in the lit-
erature, they are generally classified in terms of their
origin: 5'tRFs are generated from 5' end cleavage in the
D-arm of mature tRNAs, 3'tRFs or 3'CCA tRFs are pro-
duced from 3' end processing of mature tRNAs in the
TWC-arm and contain a CCA post-transcriptional modifi-
cation, 3'UtRFs or tRF-1 are derived from the 3' end of a
pre-tRNA, and endogenous tRFs (itRFs or mid-tRFs) ori-
ginate from a combination of cleavage from the anticodon
loop domain and either D-arm or TW¥C-arm of mature
tRNAs. Single cleavage occurring in the anticodon loop
could lead to generation of a conventional class of
tRNA-derived RNAs, namely tRNA-halves (~ 30-50 nt).
Apart from the yield of tRNA-halves from mature tRNA
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under stress conditions, the biogenesis of tRFs as well as
their functions remain to be fully understood.

With increased research interest in tRFs, mounting evi-
dence has linked the production of tRFs to cancer [11],
neurodegenerative disorders, viral infection and other
pathological conditions. They have been involved in cellu-
lar proliferation, RNA interference pathway and regulate
gene translation at the post-transcriptional level, similar to
miRNAs (reviewed in [10, 12]). Moreover, the interactions
in many cases between tRFs with the functional proteins in
miRNA pathway such as argonaute (AGO) protein families
[13, 14], PIWT [15] and DICER proteins [16] further imply
the possibility of tRFs behaving like miRNAs and siRNAs.

Malaria remains the most grievous protozoan load due
to its severe prevalence and lethality in the world, particu-
larly in Southeast Asia and Africa. More than 400,000
deaths were recorded in 2017 by the WHO Malaria Re-
port [17]. Of the five human malaria parasite species, Plas-
modium falciparum is the most virulent, causing the
majority of malaria-related mortality. In P. falciparum, as
well as in other Plasmodium parasites, active RNA inter-
ference apparatus [18] and canonical miRNA molecules
were found to be absent [19, 20], as confirmed by compu-
tational and experimental evidence. The lack of DICER
and AGO homologs in Plasmodium parasites suggests
that these organisms might use an alternative pathway to
accomplish the intense post-transcriptional regulation
needed during the rapid morphological change in the
intraerythrocytic cycle. It is possible that small RNAs such
as tRFs might be involved. Until now, the existence and
characterization of tRFs in Plasmodium parasites has not
been evaluated. tRFs have been identified in several proto-
zoan organisms including Tetrahymena [21], Giardia lam-
blia [22], Trypanosoma cruzi [23] and the exosomes from
Leishmania donovani [24]. This provides credence that
these deeply conserved molecules are expressed in proto-
zoan species, even though their classifications and func-
tions remain unclear. With this inspiration, we sought to
investigate tRFs in the malaria parasite, in which the ma-
chinery associated with small RNA biogenesis is thought
to be either entirely lost or extensively simplified [18—-20].

Here, we focused on the deadly P. falciparum and took
the advantage of deep sequencing technology to compre-
hensively analyze genome-wide high-throughput sequen-
cing data from P. falciparum-derived small RNAs. To
our knowledge, we report for the first time the expres-
sion of novel, endogenous Plasmodium tRFs (ptRFs) and
their global distribution and characterization in blood
stages of P. falciparum.

Methods

Maintenance of P. falciparum

The standard P. falciparum laboratory strain 3D7
(Pf3D7) was obtained from ATCC (Manassas, VA, USA)
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and maintained within fresh human red blood cells
(RBCs) at 5% hematocrit in RPMI-1640 medium supple-
mented with 0.5% (w/v) albumax II (Invitrogen, Carls-
bad, CA, USA), as previously described [25]. Parasitemia
was monitored by Giemsa staining of blood smears.

Small RNA purification and high-throughput sequencing
The mixed-stage infected RBCs were lysed with 0.05%
saponin and washed three times with RPMI-1640 to col-
lect parasites. Total RNA from the parasite pellet was
extracted using Trizol reagent (Invitrogen) following the
manufacturer’s instructions and was quantified by
absorbance at 260 nm. RNA was then separated by
urea-denatured 15% polyacrylamide gel electrophoresis,
and bands of small RNAs of 18-30 nt in length were ex-
tracted and purified. Small RNA library construction
and sequencing was performed following commercial
protocols. Briefly, the small RNA molecules were ligated
to 5' and 3' adaptors sequentially and then converted to
cDNA with reverse transcription followed by polymerase
chain reaction (PCR) amplifications. Approximately 20
pg of reverse transcription (RT)-PCR products per
sample were sequenced using an Illumina Hiseq 2000
platform (Illumina, San Diego, CA, USA) by Beijing
Genomics Institute (BGI, Shenzhen, China).

Small RNA data analysis

A total of 14,828,877 reads were initially obtained from
the sequencing of small RNA libraries. Raw sequences
were pre-cleaned to remove low-quality reads and
10,230,166 high-quality reads were then trimmed to dis-
card the 3' and 5' adaptors, sequences containing the
polyA tail, and those smaller than 18 nt or larger than
30 nt. This dataset was mapped to the genome of the P.
falciparum 3D7 strain (PlasmoDB, release 36, http://
plasmodb.org/plasmo/) using BLASTN to allow the re-
moval of any contamination from human RNA segments
to yield a clean data pool. These data were analyzed in
both total and unique aspects. Total reads, also referred
to as redundant reads in the literature, indicated mul-
tiple reads aligned around the same location, represent-
ing high abundance of the RNA. To demonstrate the
diversity of the small RNA, the total reads were col-
lapsed to remove the redundant ones, resulting in single
consensus aligned unique reads. The clean-read counts
were normalized as a relative number per one million
reads (RPM) in both total and unique categories for fur-
ther analysis. Information of the 45 P. falciparum tRNA
genes was downloaded from the PlasmoDB database. By
performing BLAST alignments, data from the mapped
Plasmodium tRNA-derived segments were extracted and
further analyzed. The expression intensity of the ptRFs
against the whole genome was sequentially calculated with
the “Build” function of Bowtie2 (v.2.1.0.0) and the pipeline
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of TopHat (v.2.0.9) and Cufflinks (v.2.2.1). The data ex-
traction of each type ptRFs was performed by compiled
Perl (v.5.22) codes. The statistical analysis for the Pear-
son’s correlation coefficients was performed using the
“cor” function in R package stats. The plots were drawn
mainly with the ggplot2 package in R language (v.3.5.0).

Motif analysis

Gapped Local Alignment of Motifs (GLAM?2 v1056) [26]
and Motif Comparison Tool (Tomtom v.4.12.0) [27]
were used to predict and compare the motifs around the
cleavage sites of the tRFs. For the GLAM2 algorithm,
the adopted parameters for motif predication were set as
default values, except that only the given strand was
aligned. The outputs were directly submitted into the
Tomtom algorithm for comparing the predicted motifs
against the known RNA motif database. All known
motifs were selected to be calculated using an e-value of
< 10 followed by the adoption of the function for
Pearson’s correlation coefficient.

Stem-loop RT-PCR

Total RNA templates were reverse-transcribed into
c¢DNAs using the EasyScript One-Step gDNA Removal
and cDNA Synthesis SuperMix Kit (TransGen Biotech,
Beijing, China) according to the manufacturer’s instruc-
tions. Specific stem-loop reverse transcription primers
(Additional file 1: Table S1) were designed based on the
sequence of each ptRFs as described previously [28, 29].
The PCR cycling conditions were as follows: initial de-
naturation at 94 °C for 5 min, followed by 30 cycles of
denaturation at 94 °C for 5 s, annealing at 50 °C for 15 s
and extension at 72 °C for 15 s, with a final extension at
72 °C for 5 min. The PCR products were separated on
12% polyacrylamide gel. The expected sizes of the PCR
products were calculated by the length of each ptRF plus
40 base pairs of nucleotides technically introduced in
the design of specific stem-loop primers. Negative con-
trols, absent with either DNase I-treated RNA or reverse
transcriptase in RT reactions, were performed to verify
the accuracy and specificity of the stem-loop RT-PCR.
The sequences of RT-PCR primers are listed in
Additional file 1: Table S2.

Results

General features of tRNA-derived small RNAs in P. falciparum
The quality control strategies gave rise to a total of
9,767,982 high-quality clean reads ranging from 18 to 30
nt in length. Of these, 75.7%, equivalent to 7,392,533
reads, were perfectly mapped to the nuclear genome,
whereas 0.09 and 1.72% matched to the apicoplast
and mitochondrial sequences, respectively (Table 1).
Sequences without genomic match were assumed to be
host-derived small RNAs, which might be erythrocytic
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Table 1 Classification of small RNAs mapping to the P.
falciparum genome

Categories Total Unique
Clean reads 9,767,982 957443
Unmapped reads 2,198,260 312,761
Nuclear genome 7,392,533 635476
MRNAs 634,793 422374
rRNAs 4,464,246 130,442
tRNAs 2,184,619 28,091
sNRNAs/snoRNAs 110,769 8,287
Annoted ncRNAs 95,718 7107
Unannoted small RNAs 80444 39,175
Apicoplast 9298 2415
Mitochondria 167,891 6791

miRNAs translocated into the parasite cytosol as previ-
ously reported [30].

The distribution of these small RNA reads appeared to
be normal in length, with a peak at 23 nt for both total
and unique RNAs, accounting for 12% of the total small
RNAs and 11% of the unique RNAs, respectively
(Fig. 1a). However, the slope of this peak is much lower
than that for Toxoplasma gondii, an evolutionarily close
apicomplexan parasite. Within the same range of 18-30
nt, small RNAs in 7. gondii reached peaks at 21 and 26
nt in two different strains, in correspondence to 18.92%
and 18.13% of unique small RNAs, respectively [31].
This implied that the features of P. falciparum small
RNAs seemed to be different from the canonical 21-23
nt miRNAs. These P. falciparum small RNAs were de-
rived from mRNAs, ribosomal RNAs (rRNAs), tRNAs,
small nuclear RNA (snRNA)/small nucleolar RNAs
(snoRNA), previously reported non-coding RNAs
(ncRNAs), as well as some unannotated RNAs (Table 1,
Fig. 1b). As expected, we found that the tRNA-derived
small RNAs were abundantly presented in the library as
the second predominant group, which represented 22.4%
of the total reads (Fig. 1b). These small RNAs prevailed
on all tRNA-originated chromosomes, while they were
not found on chromosomes 1, 8, 9 and 10 due to the ab-
sence of tRNA genes on these chromosomes (Fig. 1c).
Since only RNAs with a size of 18-30 nt were included
in this study, shorter than those of mature tRNAs or
tRNA-halves, and since quality control before sequen-
cing limited their possibility of being RNA degradation
residues during RNA processing, we predicted these
tRNA-derived reads were Plasmodium tRFs.

Identification of three types of tRFs from P. falciparum

We evaluated the amino acids coded by parental tRNAs
of these ptRFs. The parental tRNAs of these ptRFs coded
a total of 20 amino acids; however, 90% of the ptRFs
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Fig. 1 General features of 18-30 nt length small RNAs from P. falciparum. a Size distribution of the small RNAs derived from blood-stage
parasites. b Classification and percentage of small RNA populations referring to the P. falciparum genome. ¢ Schematic representation of the
genome-wide density analysis for small RNAs on P. falciparum chromosomes. The read counts of total small RNAs were normalized to the relative
number per one million reads (RPM) and plotted against the 14 parasite chromosomes. Red triangles show the locations and abundance of the

were derived from tRNAs that coded eight amino acids:
Pro, Phe, Asn, Gly, Cys, Gln, His and Ala (Fig. 2a). This
bias further proved that these RNA fragments were not
produced by random degeneration of mature tRNAs. We
analyzed the RPM values of these fragments against their
sizes and identified a distinct pattern in their size distribu-
tion, which showed two prominent peaks at ~23 and ~29
nt in correspondence to two groups (18—25 nt and 26—30
nt, respectively) (Additional file 2: Figure S1a).

Given that the biogenesis of tRFs from their parental
tRNA molecules was reported to be evolutionarily
conserved at the 5' end, 3' end and tRNA precursor, we
mapped the ptRF reads to all 45 Plasmodium
tRNA-coding genes and, as expected, we observed that a
large portion of the reads fell into two groups that
mapped to the 5" and 3' ends of their parent tRNAs. Un-
expectedly, it was noticed that part of the ptRFs were
mapped to the middle regions of the parent tRNAs,
which were divergent in size and ends in contrast to the
known mid-tRFs (or itRFs). Hence, we named these
three ptRF types as “5'ptRFs”, “3'ptRFs” and “mid-ptRFs”.

5'ptRFs predominated (86.23%) in ptRFs, while
mid-ptRFs and 3'ptRFs represented only 6.20% and
5.99% of the tRNA-derived fragments, respectively
(Fig. 2b). By plotting the RPM values of three types of
ptRFs against their sizes, we observed two peaks at ~23/
24 and ~29 nt for 5'ptRFs, one peak at ~20 nt for
mid-ptRFs, and two peaks at ~20/21 nt and ~25 nt for
3'ptRFs (Fig. 2c), which displayed great difference in the
expression levels.

To further understand their expression divergence, we
investigated the abundance of ptRFs derived from all 45
P. falciparum tRNAs. The RPM values of ptRFs in both
total and unique categories were plotted against their
sizes to create 270 plots (Additional files 3, 4 and 5:
Figures S2, S3, S4), which exhibited great variance of the
ptRFs from different tRNAs. Nine ptRFs with high RPM
values over 10° were observed, namely 5'ptRFs-AspS'c,
~CysSCA, GIy®<C, _HisCTC, -LeuCrA, -ProAS, -proCSS,
-Pro’“S and 3'ptRFs-Asp®'S; whereas four ptRFs,
5'ptRFs-Sec™, mid-ptRFs-Arg" <%, -Leu™*® and -Leu™¢
were found to have low RPM values less than 5
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(Additional files 3, 4 and 5: Figures S2, S3, S4). For a given
tRNA gene, the production of three types of ptRFs varied
dramatically. For example, tRNA-CysS“* produced more
5'ptRFs than mid-ptRFs or 3'ptRFs with an abundance 3 x
10%-fold higher, while tRNA-Ala"““ generated a lower

level of 5'ptRFs than mid-ptRFs or 3'ptRFs (Fig. 2d). Con-
sequently, no significant correlation was found within the
abundance of these three types in the library. The Pear-
son’s correlation coefficient was -0.0176 (P = 0.6275) be-
tween 5'ptRFs and mid-ptRFs, 0.3192 between mid-ptRFs
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and 3'ptRFs (P = 0.3151), and 0.0218 between 3'ptRFs and
5'ptRFs (P = 0.8068) (Additional file 2: Figure S1b). We
then selected the top 20 abundant ptRFs of each type to
avoid any possibility of them being as RNA degradation
products for further analysis (Additional file 1: Table S3).
Interestingly, these three types of ptRFs were generally
derived from various tRNAs, sharing only four common
parental tRNAs (Additional file 2: Figure S1c). The gener-
ation of ptRFs did not seem to be associated with the
expression levels of their parental tRNAs in P. falciparum.

Experimental validation of ptRF candidates

We experimentally evaluated the expression of the ptRFs
in the transcriptome of P. falciparum to prove our find-
ings. The top 20 abundant ptRFs of each type corre-
sponding to 60 candidates were selected for stem-loop
reverse transcription polymerase chain reaction (stem--
loop RT-PCR). Thirty-five of these candidates (10 in
5'ptRFs, 14 in mid-ptRFs, and 11 in 3'ptRFs) were specif-
ically amplified (Fig. 3), accounting for 58.3% of tested
ptRFs. This confirmed the presence of tRFs in the blood
stages of P. falciparum.

New motifs found to process ptRFs at their cleavage sites
To identify the cleavage sites, we matched each ptRF to
their parental tRNA. As displayed in Fig. 4a, two cleavage
sites were discovered to generate 5'ptRFs, with one occur-
ring at the D-arm to produce 5'ptRFs of 23/24 nt, while
one taking place at the anticodon stem to give rise to
those with sizes around 29 nt. The mid-ptRFs originated
from a combination of cleavage in the anticodon loop do-
main and TyC arm. However, the anticodon loop domain
was cleaved at the 5' side instead of the middle section in
this species, which was novel. Consequently, the cleavage
in TYC arm generated the 3'ptRFs, and the variation of
3'CAA end in tRNAs resulted in two size groups
(3'ptRFs-20/21 nt and 3'ptRFs-25 nt). We further explored
motifs at the cleavage sites that might guide the gener-
ation of the ptRFs. Four motifs (motifs 1-4) were pre-
dicted to process ptRFs at each cleavage site (Fig. 4b).
Although these motifs varied in sequence, they all had a
signature of enriched G/C at the cleavage sites (Fig. 4b).
Despite the fact that the 5'ptRFs showed two sub-classes,
one common motif seemed to be responsible for the
cleavage. Through comparison analysis, we sought to de-
termine whether these motifs matched with the known
motifs in the database including 24 species and 244 pre-
dicted RNA motifs [32] and found no motifs showing high
homology with those reported here, indicating these four
motifs were first identified in P. falciparum.

Discussion
In spite of the progress made in post-genomic research on
malaria parasites, our knowledge on the function of small
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non-coding RNAs in these organisms remains insufficient.
The limitation in cloning techniques to identify small
RNAs in P. falciparum has restricted genome-wide small
RNA characterization. Yet, high-throughput sequencing
provides advanced depth and massive volumes, thereby
enables the exploration of distinct categories of RNAs
compared with traditional methods [19, 20]. It is widely
accepted that miRNAs are not the only regulators of gene
expression; many other types of small RNAs have been
identified to contribute to this process. tRFs is one such
type, associated with many functions similar to miRNAs
at the post-transcriptional level. Thus, it is possible that
Plasmodium parasites complete gene expression regula-
tion through molecules that can substitute for miRNAs,
e.g. tRFs. Studies have shown that tRF expression is evolu-
tionarily conserved from prokaryotes to mammalian cells.
In the present study, we took advantage of high-through-
put sequencing to obtain a coverage over 100-fold for 18—
30 nt length small RNAs, which provided sufficient depth
for systematic analysis. Consistent with tRFs derived from
plant or mammalian cell lines [13, 33], we found three
types of tRFs in P. falciparum: 5'ptRFs, 3'ptRFs and
mid-ptRFs. Of these, 5'ptRFs is the most abundant class,
while mid-ptRFs are generated from the 5' end of the anti-
codon loop of their parental tRNAs, which has not been
previously reported [12, 34, 35].

The mechanism of tRF biogenesis has not been under-
stood clearly because cleavage sites of known tRNA-spe-
cific nucleases remain ambiguous [36]. Information on the
consensus feature(s) of cleavage sites on tRNAs needs to
be fully addressed [37]. Therefore, we analyzed the motifs
for the P. falciparum tRNAs to produce tRFs, and discov-
ered four new motifs at the ends of the ptRFs that may aid
the explanation of the versatile production of ptRFs. Intri-
guingly, motif 3 at the 3' end of the mid-ptRFs and motif 4
at the 5' end of the 3'ptRFs were found from different
tRNA molecules in our analysis, while they shared analo-
gous sequences. We noticed that these motifs are also sit-
uated at the same sites in those tRNAs not producing
ptRFs. It is possible that the generation of ptRFs might in-
volve multiple factors in addition to motif recognition.
Moreover, the D-loop adjacent to motif 1 contains the
“GG” conserved dinucleotide, which is required by RNase
P and 39-tRNase processing and is highly conserved in
Drosophila and humans [38]. Collectively, these findings
provide a clue that there might be unidentified Plasmo-
dium-derived endonucleases playing roles in the biogen-
esis of ptRFs.

The functional proteins closely associated with tRFs
are reported to be DICER, AGO]L, 2, 4 and 5 in plant
cells, and AGOI1, 3 and 4 in animal cells [13, 14, 33].
Yet, genome sequencing of P. falciparum has not re-
vealed the existence of DICER and AGO homologs.
Thus, the mechanism of function and related proteins
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P. falciparum RNA template (left, “+"), without RNA template (middle, "-"), or without reverse transcriptase (right, “-"), respectively. “M" indicates the
DNA ladder. “Length” shows the expected size of PCR products, which is calculated by the size of each ptRF from the deep sequencing data plus
40 bp of nucleotides technically introduced by the design of specific stem-loop primers. The yellow arrow demonstrates the consistence of the
PCR product size on the gel with the expected length

for ptRFs remains to be elucidated. Evidence from one
previous study indicates that human miRNAs complexed
with human AGQO?2 are translocated into the parasite
cytoplasm to function as negative regulators of the infec-
tion [39]. Host-derived miRNA molecules have been
shown to interfere with the synthesis of Plasmodium
proteins [30]. Whether ptRFs function by binding to

host AGO2 or other small RNA biogenesis-related ap-
paratus should be further explored to strengthen our un-
derstanding of the interaction between malaria parasites
and their human host.

In P. berghei and its closely related species T. gondii,
half-tRNAs with a size of nearly 35 nt have been de-
tected experimentally [40]. Although stress-induced
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Fig. 4 Cleavage sites and motif analysis of ptRFs. a Cleavage sites of ptRFs in mature tRNA, employing the secondary structure of tRNAs-GIn~—"~ as
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tRNA-halves are not included in this study, they need to
be explored in P. falciparum. Therefore, more work is
required to investigate ptRFs and other small RNAs as
well as their function both in vitro and in vivo.

Conclusions

To our knowledge, this is the first comprehensive ana-
lysis of tRFs in P. falciparum. Three types of tRFs were
identified, and four new motifs guiding their cleavage
were revealed. The generation and function of these
ptRFs need further exploration. Our work provides evi-
dence of tRFs in P. falciparum, which could promote re-
search on the functions of tRFs in the pathogenesis of

Plasmodium infections and potentially lead to new
therapeutic approaches to malarial disease.
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Additional file 1: Table S1. Sequences of specific stem-loop reverse
transcription primers. Table S2. Sequences of PCR primers for stem-loop
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Additional file 2: Figure S1. Abundance and correlation analysis of ptRFs.
a Size distribution of ptRFs in total and unique categories. b Correlation of
parental tRNAs of three types of ptRFs. Each dot represents a tRNA; R value
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the top 20 ptRFs of each type showing in Venn diagrams. (TIF 535 kb)
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and dotted boxes represent those with RPMs less than 5. (TIF 2602 kb)

Additional file 4: Figure S3. Size distributions of the mid-ptRFs in total
and unique aspects. Dotted boxes correspond to those with RPMs less
than 5. (TIF 2578 kb)

unique aspects. The solid box symbolizes those with RPMs above 10°.
(TIF 2626 kb)
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