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Copyright © 2012 M. Roman and D. Selişteanu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Nowadays, the use of advanced control strategies in biotechnology is quite low. A main reason is the lack of quality of the data,
and the fact that more sophisticated control strategies must be based on a model of the dynamics of bioprocesses. The nonlinearity
of the bioprocesses and the absence of cheap and reliable instrumentation require an enhanced modeling effort and identification
strategies for the kinetics. The present work approaches modeling and control strategies for the enzymatic synthesis of ampicillin
that is carried out inside a fed-batch bioreactor. First, a nonlinear dynamical model of this bioprocess is obtained by using a novel
modeling procedure for biotechnology: the bond graph methodology. Second, a high gain observer is designed for the estimation
of the imprecisely known kinetics of the synthesis process. Third, by combining an exact linearizing control law with the on-
line estimation kinetics algorithm, a nonlinear adaptive control law is designed. The case study discussed shows that a nonlinear
feedback control strategy applied to the ampicillin synthesis bioprocess can cope with disturbances, noisy measurements, and
parametric uncertainties. Numerical simulations performed with MATLAB environment are included in order to test the behavior
and the performances of the proposed estimation and control strategies.

1. Introduction

The design and implementation of modern control strategies
in bioindustry require useful models of the biotechnolog-
ical processes. In many real-life applications, the dynamic
models are high-order and nonlinear [1–3]. The bioprocess
modeling is a quite difficult task; still, by using the mass
balance of the components inside the process and obeying
some modeling rules, a dynamical state-space model can be
obtained [1–3].

A practical alternative to the classical modeling is the
bond graph method, introduced by Paynter in 1961, and
further developed in [4]. In the last period, there have
been a lot of works on the subject of the theory and
application of bond graphs for different kind of systems,
such as electrical [5], mechanical, hydraulic, thermal, and
chemical [6–8]. This method provides a uniform manner
to describe the dynamical behavior for all types of physical
systems. The advantages of bond graph modeling are the
following: offers a unified approach for all types of systems;

allows to display the exchange of power in a system by
its graphical representation; due to causality assignment, it
gives the possibility of localization of the state variables and
achieving the mathematical model in terms of state space
equations in an easier way than using classical methods;
provides information regarding the structural properties of
the system, in terms of controllability observability, and so
forth. The bond graph method uses the exchange power in
a system, which is normally the product between the effort
and flow variables in the true bond graph [5]. Besides this
representation there is another one, in which the product
effort-flow does not have the physical dimension of power,
called pseudo bond graph [7, 8]. Pseudo bond graphs are
more suitable for chemical systems due to the physical
meaning of the effort and flow variables. The bond graph
modeling of a few biological systems was reported in some
works, such as [9]. Though, the bond graph modeling
of biotechnological processes is not fully exploited yet; in
recent years, only some applications in wastewater treatment
bioprocesses were reported [3, 10, 11].
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To obtain the model of a bioprocess it is necessary to
know the fundaments of the bioprocess and to have good
knowledge concerning the bond graph methodology. Even
if for a bioreactor specialist seems to be easily to obtain the
model via classical method, the bond graph approach can be
applied without difficulty after a short training. The major
advantage of the proposed approach is that the obtained
bond graph models of the bioprocesses can be easily used and
extended to other bioprocesses. For example, the bond graph
models can be used in order to obtain complex models of
interconnected bioprocesses [11], and for the direct design
of some observers and controllers [12].

The use of modern control techniques for bioprocesses
is hampered by the nonlinearity of this kind of processes
and the unavailability of several on-line measurements [2].
Serious problems appear in the measurement of biological
variables, that is, the substrates, biomass and product con-
centrations, and so forth. In many cases, the state variables
(concentrations) are analyzed manually and as a result there
is not on-line (and real-time) control. These various issues
can be solved using “software sensors.” A software sensor is
a combination between a hardware sensor and a software
estimator. These software sensors can be used not only
for the estimation of the concentrations (state variables),
but also for the estimation of the kinetic parameters.
Very important is the estimation of kinetic rates inside a
bioreactor, that is, the so-called kinetics of the bioprocess.
The growing interest for development of software sensors
for bioprocess and biological systems is proven by the
numerous publications and applications in this field [1–
3, 13–16]. One of the first approaches from historically
point of view is based on Kalman filter which leads to
complex nonlinear algorithms. Another classical technique
is the Bastin and Dochain approach based on adaptive
systems theory [1]. This strategy consists in the estimation
of unmeasured state with asymptotic observers, and after
that, the measurements and the estimates of state variables
are used for on-line estimation of kinetic rates. This method
is useful, but in some cases, when many reactions are
involved, the implementation requires the calibration of too
many parameters. For instance, if we have n components’
concentrations used for the estimation of m kinetic rates,
it is necessary to calibrate 2n tuning parameters [1]. In
order to overcome this problem, a possibility is to design
an estimator using a high gain approach (see [13, 14]). The
gain expression of the high gain observers involves a single
tuning parameter whatever the number of components and
reactions. High gain observers have evolved over the past
two decades as an important tool for the design of output
feedback control of nonlinear systems [17]. The early work
on high gain observers appeared in the late 1980s, and
afterwards the technique was developed independently by
two schools of researchers: a French school lead by Gauthier,
Hammouri, Farza, and others, [13, 14], and a US school lead
by Khalil [17].

The modeling techniques and the estimation strategies
were used for the design of several control strategies, such
as optimal control [1], sliding mode control [18], adaptive
control [1, 18], vibrational control, model predictive control

[19], fuzzy and neural strategies, and so on. Generally speak-
ing, due to specificity and nonlinearity of bioprocesses,
there is no universal solution to the control problem, and
good solutions are given only by studying each particular
bioprocess.

In this paper, which is an extended work of [20], three
main correlated issues concerning the enzymatic bioprocess
of ampicillin are studied: modeling, kinetics estimation, and
control. First, a pseudo bond graph approach is proposed for
the modeling of an enzymatic synthesis of ampicillin, widely
used in bioindustry. Ampicillin (6-[2-amino-2-phenylacet-
amide] penicillanic acid) is a semisynthetic β-lactamic anti-
biotic which is very stable at acidic conditions, well absorbed
and effective against a wide variety of microorganisms, with
low minimal inhibitory concentration [21–24]. Currently, it
is manufactured in bioindustry through a chemical route.
These reactions typically involve costly steps, such as very
low temperatures and the use of toxic organic solvents like
methylene chloride and silylation reagents. Enzymatic syn-
thesis is an alternative process; it has high selectivity,
specificity, and activity in mild reaction conditions (aqueous
medium, neutral pH, and moderate temperatures) [25–27].
The main aim of enzyme immobilization is the industrial
reuse of enzymes for many reaction cycles [25, 28, 29].
Thus, simplicity and improvement of enzyme properties
have to be strongly associated with the design of protocols
for enzyme immobilization. A critical review of enzyme
immobilization was presented in [25]. Concerning the use
of enzymatic methods in production of semisynthetic β-
lactamic antibiotics, several drawbacks and perspectives are
presented by Volpato et al. [30]. These antibacteria agents
are produced in hundreds tons/year scale. They are usually
produced by the hydrolysis of natural antibiotics (penicillin
G or cephalosporin C). Due to the contaminant reagents
used in conventional chemical route, as well as the high
energetic consumption, biocatalytic approaches have been
studied for both steps in the production of these very
interesting medicaments during the last decades [30]. The
hydrolysis of penicillin G to produce 6-APA catalyzed by
penicillin G acylase is one of the most successful examples
of the enzymatic biocatalysis. The dynamical model of
this complex bioprocess is obtained via the bond graph
methodology by using the reaction scheme and the analysis
of biochemical phenomena inside the bioreactor.

Second, because the kinetic rates of the enzymatic
bioprocess of ampicillin production are nonlinear and highly
uncertain, an on-line estimation strategy is designed. Some
estimation strategies were proposed in the last years, such
as observer-based estimators and the second-order observers
(see, e.g., [31]). In this paper, the design and implementation
of high gain observers is proposed, with certain advantages
concerning the robustness against disturbances and the
simple tuning. The high gain estimation scheme does not
require any model for the kinetic rates. The tuning of the
proposed observers is reduced to the calibration of a single
parameter. The nonlinear observer design is based on the
work of Gauthier et al. [14], Farza et al. [13], focused on
deriving global results under global Lipschitz conditions.
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Third, an adaptive control law for the enzymatic fed-
batch bioprocess of ampicillin production is developed.
For bioprocesses taking place into fed-batch reactors, the
adaptive control approach is a viable alternative of the
optimal control [1, 2]. In order to design a control law,
the so-called exact linearizing approach is used [32]. The
nonlinear controller thus obtained is combined with the high
gain estimator for the unknown kinetics, and consequently
an adaptive controller is obtained. Due to the fact that the
implementation of highgain observer and of the adaptive
controller requires on-line state estimates, these will be
provided by an asymptotic observer. The performances and
the behavior of the estimation and control algorithms are
studied by using extensive numerical simulations. All these
simulations are achieved by using the development, pro-
gramming and simulation environment Matlab (registered
trademark of The MathWorks, Inc., USA).

The results obtained in this study show a good behavior
of the adaptive controlled ampicillin synthesis bioprocess.
The proposed adaptive control scheme is quite simple,
because only two tuning parameters were used, one for
estimator and one for the linearizing controller. The bond
graph modeling, estimation, and control strategies can be
also applied to other processes belonging to the nonlinear
class of bioprocesses considered in the study.

2. Materials and Methods

2.1. Bond Graph Modeling Method for the Enzymatic Synthesis
of Ampicillin. The bioprocesses are highly complex processes
that take place inside biochemical reactors (bioreactors).
The bioreactors can operate in three modes: the continuous
mode, the fed-batch mode, and the batch mode [1–3]. A Fed-
Batch Bioreactor (FBB) initially contains a small amount of
substrates (the nutrients) and microorganisms and is pro-
gressively filled with the influent substrates. When the FBB is
full, the content is harvested. A Batch Bioreactor is filled with
the reactant mixture: substrates and microorganisms and
allows for a particular time period for the reactions inside
the reactor; after some time the products are removed from
the tank. In a Continuous Stirred Tank Bioreactor (CSTB),
the substrates are fed to the bioreactor continuously and
an effluent stream is continuously withdrawn such that the
culture volume is constant.

Next, the bond graph method is used in order to obtain
the model of the enzymatic synthesis of ampicillin process,
which takes place inside an FBB. Firstly, after a short
presentation of the bond graph method, a simple prototype
fed-batch bioprocess is modeled. After that, the enzymatic
synthesis of ampicillin is widely studied, and the bond graph
model is obtained by using the reaction scheme, the analysis
of the phenomena inside the bioprocess and the bond graph
modeling rules.

Bond graph technique uses the effort-flow analogy to
describe physical processes. A bond graph consists of sub-
systems linked together by lines representing power bonds.
Each process is described by a pair of variables, effort e
and flow f, and their product is the power. The direction of
power is depicted by a half-arrow. In a dynamic system the

effort and the flow variables, and hence the power fluctuate
in time. One of the advantages of bond graph method
is that models of various systems belonging to different
engineering domains can be expressed using a set of only
nine elements. A classification of bond graph elements can
be made up by the number of ports; ports are places where
interactions with other processes take place. There are one
port elements represented by inertial elements (I), capacitive
elements (C), resistive elements (R), effort sources (Se),
and flow sources (Sf ), two ports elements represented by
transformer elements (TF) and gyrator elements (GY), and
multiport elements effort junctions (J0), and flow junctions
(J1). I, C, and R elements are passive elements because
they convert the supplied energy into stored or dissipated
energy. Se and Sf elements are active elements because they
supply power to the system and TF, GY, 0-and 1-junctions
are junction elements that serve to connect I, C, R, Se,
and Sf, and constitute the junction structure of the bond
graph model. Besides the power variables, two other types of
variables are very important in describing dynamic systems
and these variables, sometimes called energy variables, are
the generalized momentum p as time integral of effort and
the generalized displacement q as time integral of flow [4].

In biotechnology, pseudo bond graph models are accom-
plished starting with processes reactions schemes and using
both base bond graph elements and pseudo bonds with effort
and flow variables as concentrations and mass flows. One
of the simplest biological reactions is the microorganisms
growth process, with the reaction scheme [1] given by:

S
ϕ−→ X , (1)

where S is the substrate,X is the biomass and ϕ is the reaction
rate.

This simple growth reaction represents in fact a proto-
type reaction, which can be found in almost every biopro-
cess. The dynamics of the concentrations of the components
from reaction scheme (1) can be modeled considering the
mass balance of the components. The dynamical model of
process (1) is simple, but if the reaction scheme is more
complicated, the achievement of the dynamical model is
difficult. In order to model bioprocesses, pseudo bond graph
method is more appropriate because of the meaning of
variables involved—effort (concentration) and flow (mass
flow). From the reaction scheme (1) and taking into account
the mass transfer through the FBB, using the bond graph
modeling characteristics, the pseudo bond graph model
of the fed-batch bioprocess is achieved see Figure 1. The
bond graph model is depicted in the 20 sim environment
(registered trademark of Controllab Products B.V. Enschede,
The Netherlands).

The directions of half arrows correspond to the run of
the reaction, going out from the substrate S towards biomass
X . In the bond graph model, the mass balances of the
species involved in the bioreactor are represented by two 0-
junctions: 01,2,3,4 (mass balance for the substrate S) and 07,8,9

(mass balance for the biomass X). Due to the fact that the
form of kinetics is complex, nonlinear, and in many cases
unknown, the modeling of the reaction kinetics is a difficult
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task. A general assumption [1] is that a reaction can take
place only if all reactants are presented in the bioreactor.
Therefore, the reaction rates are necessarily zero whenever
the concentration of one of the reactants is zero.

In order to model the reaction rate ϕ, because of the
dependency of substrate and biomass concentrations, we
have used a modulated two port R element, denoted MR5,6.
Mass flow of the component entering the reaction is modeled
using a modulated source flow element Sf 1 and quantities
exiting from the reaction are modeled using modulated
flow sources elements Sf represented by bonds 3 and 9.
This approach was imposed by the dependency of these
elements on Fin: the input feed rate, and on V : volume of
the bioreactor.

From Sf constitutive equations we have f3 = e3S f3,
f9 = e9S f9. The accumulations of substrate and biomass in
FBB are represented by bonds 2 and 8 and are modeled using
capacitive elements C, with the constitutive equations:

e2 = q2

C2
=
(∫

t

(
f1 − f3 − f4

)
dt
)

C2
, (2)

e8 = q8

C8
=
(∫

t

(
f7 − f9

)
dt
)

C8
. (3)

By using the constitutive relations of transformer ele-
ments TF4,5 and TF6,7, the relations for flows f4 and f7 are
obtained: f4 = k4,5 f5, f7 = f5/k6,7, with k4,5 and k6,7 the
transformers modulus, which are in fact yield coefficients
of the bioprocess (their values equal one for this fed-batch
bioprocess). In fact, e2 is the substrate concentration, which
will be denoted with S, e8 is the biomass concentration X , f5
is proportional to ϕ and V , C2 = C8 = V with S f3 = S f9 =
Fin. Therefore, from (2) and (3) we will obtain the dynamical
model of the fed-batch bioprocess:

V
dS

dt
= V · Ṡ(t) = FinSin − F0S− ϕV ,

V
dX

dt
= V · Ẋ(t) = −F0X + ϕV ,

dV

dt
= V̇(t) = Fin.

(4)

The model (4) expresses the equations of mass balance
for the reaction scheme (1). Taking into account that the
dilution rate D = Fin/V , the dynamical behavior of the
concentrations can be easily obtained from (4):

Ṡ(t) = DSin −DS− ϕ,

Ẋ(t) = −DX + ϕ,

V̇(t) = Fin.

(5)

Next, this bond graph procedure is extended to the
modeling of the enzymatic synthesis of ampicillin taking
place inside a fed-batch bioprocess. Ampicillin (6-[2-amino-
2-phenylacetamide] penicillanic acid) is a semisynthetic β-
lactamic antibiotic which is very stable at acidic conditions,

0
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C:X

0Sf

Sf Sf

1
2
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4 5 6 7
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9

Fin, V

Figure 1: Pseudo bond graph model of the fed-batch prototype
bioprocess. The directions of half arrows correspond to the run of
the reaction, from the substrate S towards biomass X . The mass
balances are represented by two 0-junctions: 01,2,3,4 (for S), and 07,8,9

(for X). Mass flows of entering/exiting components are modeled
using modulated source flows Sf. The reaction rate is modeled by
a modulated two port R element, denoted MR5,6. Fin is the input
feed rate (l/h) and V the bioreactor volume (l).

well absorbed and effective against a wide variety of microor-
ganisms, with low minimal inhibitory concentration [21–
24]. Currently, it is manufactured in bioindustry through
a chemical route. For instance, an amino β-lactam, such as
6-aminopenicilanic acid (6-APA), having its carboxyl group
protected, reacts with an activated side-chain derivative (D-
phenylglycine acid chloride, to produce ampicillin). The
protecting group is than removed by hydrolysis. These
reactions typically involve costly steps, such as very low tem-
peratures and the use of toxic organic solvents like methylene
chloride and silylation reagents [22]. Enzymatic synthesis
is an alternative process; it has high selectivity, specificity,
and activity in mild reaction conditions (aqueous medium,
neutral pH and moderate temperatures). The influence of the
substrate structure on the catalytic properties of penicillin G
acylase (PGA) from Escherichia coli in kinetically controlled
acylations has been studied in [27]. In particular, the affinity
of different β-lactam nuclei towards the active site has been
evaluated considering the ratio between the rate of synthesis
and the rate of hydrolysis of the acylating ester. It has
been shown that this approach presents several advantages
compared with the classical chemical processes [27].

Still, none of the known enzymatic methods have yet
been upscaled to industrial applicability, due to the high
costs caused by a low yield. Penicillin G acylase (PGA), for
example, can act as a hydrolase as well as a transferase,
which means that the same enzyme catalyzes the synthesis of
ampicillin as well as the hydrolysis of the activated acyl donor
and the hydrolysis of the newly formed antibiotic. The main
reactions involved in the enzymatic synthesis of ampicillin
are presented in Figure 2 [33, 34].

The reaction scheme of this complex bioprocess contains
three reactions [31]:

(a) the ampicillin synthesis:

k1S1 + S2
ϕ1−→ k5P2 + k6P3, (6)

(b) the phenylglycine methyl ester hydrolysis:

S2
ϕ2−→ k3P1 + k7P3, (7)
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Figure 2: Reactions of enzymatic synthesis of ampicillin [33]. The reaction scheme contains three main reactions: the ampicillin synthesis,
the phenylglycine methyl ester hydrolysis, and the ampicillin hydrolysis.

(c) the ampicillin hydrolysis:

P2
ϕ3−→ k4P1 + k2S1, (8)

In the above reactions, S1, S2, P1, P2, and P3 represent
6-aminopenicillanic acid (6-APA), phenylglycine methyl
ester (PGME), phenylglycine (PG), ampicillin (AMP), and
methanol, respectively. ϕ1,ϕ2, and ϕ3 represent the reaction
rates of these three reactions, and ki are yield coefficients.
Considering that the bioprocess takes place inside a fed-batch
bioreactor, from the reaction scheme (6)–(8), and by using
the bond graph elements and modeling rules, a bond graph
model of the process is obtained see Figure 3.

As it is mentioned previously, the meanings of the
effort and flow variables of the bond graph model are
concentration and mass flow, respectively. The directions of
the half-arrows in the bond graph correspond to the progress
of the reactions, going out from the components S1 and
S2 towards P2 and P3 for the first reaction, from S2 to P1

and P3 for the second reaction, and from P2 towards P1

and S1 for the third reaction, respectively. In bond graph
terms, the mass balances of the components involved in the
bioprocess are represented by five 0-junctions: 01,2,3,4,33 (mass
balance for S1), 06,7,8,9,11(mass balance for S2), 015,16,17,18,31

(mass balance for P1), 020,21,22,27 (mass balance for P2), and
024,25,26,36 (mass balance for P3). The constitutive relations of
these junctions are characterized by the equality to zero of the
sum of flow variables corresponding to the junction bonds;
therefore, the next relations are obtained:

f1− f2− f3− f4 + f33=0, f6− f7− f8− f9− f11=0,

f15− f16− f17 + f18 + f31=0, f20− f21− f22− f27=0,

f24− f25− f26 + f36=0.
(9)

The accumulations of components S1, S2, P1, P2, and P3

in the bioreactor are represented by bonds 2, 7, 16, 22, and

25, and they are modeled using capacitive elements C. The
constitutive equations of C-elements are as follows:

e2 = 1
C2

q2 = 1
C2

∫

t

(
f1 − f3 − f4 + f33

)
dt, (10)

e7 = 1
C7

q7 = 1
C7

∫

t

(
f6 − f8 − f9 − f11

)
dt, (11)

e16 = 1
C16

q16 = 1
C16

∫

t

(
f15 − f17 + f18 + f31

)
dt, (12)

e22 = 1
C22

q22 = 1
C22

∫

t

(
f20 − f21 − f27

)
dt, (13)

e25 = 1
C25

q25 = 1
C25

∫

t

(
f24 − f26 + f36

)
dt, (14)

where e2, e7, e16, e22, e25 are the concentrations of compo-
nents S1, S2, P1, P2, P3 (all in mM = 10−3 mol/L), and
C2,C7,C16,C22,C25 are the parameters of C-elements: C2 =
C7 = C16 = C22 = C25 = V , with V the bioreactor volume
(L).

The output flows of the components exiting from the
reactions are modeled by using flow source elements Sf
represented by bonds 3, 8, 17, 21, and 26. The consti-
tutive equations of these elements are as follows: f3 =
S f3, f8 = S f8, f17 = S f17, f21 = S f21, f26 = S f26, where
S f3, S f8, S f17, S f21, S f26 are the parameters of Sf-elements.
Therefore we have S f3 = S f8 = S f17 = S f21 = S f26 =
F0, where F0 is the output flow (L/min). Mass flows of the
components entering the reactions are modeled using source
flow elements Sf 1, Sf 6, and Sf 18. Consequently, we have
f1 = VF1, f6 = VF2, f18 = VF3, where F1, F2 and F3 (all
in mM/min) are the feed rates of 6-APA, PGME, and PG,
respectively. The transformer elements TF4,5, TF9,10, TF11,12,
TF14,15, TF19,20, TF23,24, TF27,28, TF30,31,TF32,33, TF35,36 were
introduced to model the yield coefficients. For the modeling
of the reaction rates we used three two-port modulated
R elements: MR1, MR2, and MR3. From the constitutive
relations of the three 1-junction elements, 15,10,19,34, 112,13,23,
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and 128,29,32we obtain: f5 = f10 = f19 = f34, f12 = f13 = f23,
f28 = f29 = f32, where the constitutive relations of MR
elements imply that f34 = ϕ1V , f13 = ϕ2V , and f29 =
ϕ3V . Also, from the constitutive relations of transformers we
obtain the following relations:

f4 = k4,5 f5, f9 = k9,10 f10, f11 = k11,12 f12,

f15 = 1
k14,15

f14, f20 = 1
k19,20

f19,

f24 = 1
k23,24

f23, f27 = k27,28 f28, f31 = 1
k30,31

f30,

f33 = 1
k32,33

f33, f36 = 1
k35,36

f36,

(15)

with k4,5, k9,10, k11,12, k14,15, k19,20, k23,24, k27,28, k30,31, k32,33,
and k35,36 the transformers modulus, which are in fact yield
coefficients of the bioprocess.

Using these notations, from (10)–(14) and the above rela-
tionships, the following dynamical model of the bioprocess is
obtained:

V · Ṡ1 = VF1 − F0S1 − k4,5ϕ1V +

(
1

k32,33

)

ϕ3V ,

V · Ṡ2 = VF2 − F0S2 − k9,10ϕ1V − k11,12ϕ2V ,

V · Ṗ1 =
(

1
k14,15

)

ϕ2V − F0P1 + VF3 +

(
1

k30,31

)

ϕ3V ,

V · Ṗ2 =
(

1
k19,20

)

ϕ1V − F0P2 − k27,28ϕ3V ,

V · Ṗ3 =
(

1
k23,24

)

ϕ2V − F0P3 +

(
1

k35,36

)

ϕ1V.

(16)

Taking into account that k4,5 = k1, k32,33 = 1/k2, k9,10 =
k11,12 = 1, k14,15 = 1/k3, k30,31 = 1/k4, k19,20 = 1/k5, k27,28 =
1, k35,36 = 1/k6, k23,24 = 1/k7, and using the so-called dilution
rate D = F0/V = 1/tr , with tr : medium residence time, the
equations (16) can be written in the next form:

Ṡ1 = −k1ϕ1 + k2ϕ3 −DS1 + F1,

Ṡ2 = −ϕ1 − ϕ2 −DS2 + F2,

Ṗ1 = k3ϕ2 + k4ϕ3 −DP1 + F3,

Ṗ2 = k5ϕ1 − ϕ3 −DP2,

Ṗ3 = k6ϕ2 + k7ϕ1 −DP3.

(17)

The model of this bioprocess, obtained via bond graph
approach, is equivalent with the model obtained via classical

method (see e.g., [31]). The model (17) can be expressed in
the form:

d

dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

S2

P1

P2

P3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−k1 0 k2

−1 −1 0

0 k3 k4

k5 0 −1

k6 k7 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
K

⎡

⎢
⎢
⎢
⎣

ϕ1

ϕ2

ϕ3

⎤

⎥
⎥
⎥
⎦
−D

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

S2

P1

P2

P3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1

F2

F3

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

The state vector of the system (18) will be denoted
as: ξ = [ S1 S2 P1 P2 P3 ]T . The vector of reaction rates is
ϕ = [ ϕ1 ϕ2 ϕ3 ]T , K is the matrix of dimensionless yield
coefficients, and the vector of feed rates is denoted with
F = [ F1 F2 F3 0 0 ]T . By using these notations, the dynamical
nonlinear model (18) can be compactly written as:

ξ̇ = Kϕ(ξ)−Dξ + F. (19)

The dynamical model of the enzymatic synthesis of
ampicillin (19) belongs to a large class of nonlinear biopro-
cesses carried out in bioreactors and is referred as general
dynamical state-space model of this class of bioprocesses [1].

2.2. On-Line Estimation of Unknown Kinetics with High Gain
Observers. The most difficult task for the construction of the
dynamical model (19) is the modeling of the reaction rates.
The form of kinetics is complex, nonlinear, and in many cases
partial or completely unknown. A realistic assumption is that
a reaction can take place only if all reactants are presented
in the reactor [1]. Thus, the reaction rates are necessarily
zero whenever the concentration of one of reactants is zero.
Taking into consideration these aspects, the reaction rates
can be written as follows:

ϕ(ξ) =

⎡

⎢
⎢
⎢
⎣

ϕ1

ϕ2

ϕ3

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

S1 0 0

0 S2 0

0 0 P2

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
H(ξ)

⎡

⎢
⎢
⎢
⎣

μ1

μ2

μ3

⎤

⎥
⎥
⎥
⎦
= H(ξ)μ(ξ), (20)

where μ(·) is the vector of specific reaction rates. A possible
structure of the nonlinear specific growth rates is of Monod-
type model, and it is given in [22, 23, 34]. Consequently, the
reaction rates can be modeled as follows:

(a) for the ampicillin synthesis:

ϕ1(ξ) = S1μ1(ξ)

= S1

kEN + S1
· kcat1CEZS2

Km1(1 + P2/kAE) + S2

(21)

(b) for the phenylglycine methyl ester hydrolysis:

ϕ2(ξ) = S2μ2(ξ) = kcat1CEZS2

Km1(1 + P2/kAE ) + S2
(22)



Journal of Biomedicine and Biotechnology 7

C:S1

C:S2

C:P3

C:P1

MR1

MR3

MR2

1

1

1

C:P2

Sf

Sf

Sf

Sf

Sf

Sf

Sf

Sf

TF

TF

TF

TF

TF

TF

TF

TF

TF

TF

0

0

0

0

0

25

18

1

2

3

4

5

6

7

8 9

10

11

12

16

1514

13

17

19

20

21

22

23

24

26

27
28

29

30

31

32

33

34

35

36

Figure 3: Bond graph model of the enzymatic synthesis of ampicillin. The directions of half arrows correspond to the run of the
reaction, from the reactants towards the reaction products. The mass balances are represented by five 0-junctions, and the mass flows of
entering/exiting components are modeled using modulated source flows Sf. The reaction rates are modeled by three modulated two port R
elements, MR1, MR2, and MR3. In order to simplify the model representation, the feed flow and the volume are not shown. The bond graph
model was depicted in 20 sim environment.

(c) for the ampicillin hydrolysis:

ϕ3(ξ) = P2μ3(ξ) = kcat2CEZP2

Km2(1 + S2/kEA ) + P2
, (23)

where CEZ represents the enzyme activity (UI/mlgel), kEN,
kAE, and kEA are inhibition constants (mM), kcat1, and
kcat2 are kinetic constants (mM/UI min), Km1, and Km2 are
Michaelis-Menten constants (mM).

However, in practice the reaction rates and/or the specific
reaction rates given by the relations (21)–(23) are imprecisely
known. For on-line estimation of these kinetic rates, high
gain observers can be designed. Next, the nonlinear model
(19) is expressed as:

ξ̇ = KH(ξ)ρ(t)−Dξ + F, (24)

where ρ(t) represents the unknown kinetics of the process. If
we suppose that the reaction rates are totally unknown, then
ρ(t) = ϕ(t) and H(ξ) = 1. If the structure of the reaction
rates is known ϕ(ξ) = H(ξ)μ(ξ), but the specific reaction
rates are unknown, then ρ(t) = μ(t) and H(ξ) is the matrix
given in (20).

The high gain observers design necessitates a factoriza-
tion of the model (24) [13, 14, 20]. We will consider that the
yield matrix K is of full rank, which is true for our particular
model, and for general class of bioprocesses’ models is a
generic property. We shall suppose that all state variables are

measured (contrarily, a state estimator can be used). Since
the yield matrix K is of full rank, then the partition (Ka,Kb)
can be considered, such that the submatrix Ka has full rank.
Therefore, a partition (ξa, ξb) of the state vector is obtained,
and consequently a partition for F is achieved: (Fa,Fb). Then,
the system (24) can be written as follows:

ξ̇a = Ka ·H(ξa, ξb) · ρ(t)−D · ξa + Fa,

ξ̇b = Kb ·H(ξa, ξb) · ρ(t)−D · ξb + Fb,
(25)

By using this factorization, a highgain observer can be
implemented. The design of highgain observers is done in
[13, 14], with supplementary assumptions regarding global
Lipschitz conditions, the boundedness of H(ξ) diagonal
elements’ away from zero, and so forth. The equations of the
nonlinear high gain observer for (24) are obtained as [14]:

˙̂
ξa = KaH(ξa, ξb)ρ̂−Dξ̂a + Fa − 2θ

(
ξ̂a − ξa

)
,

˙̂ρ = −θ2 ·
[
Ka ·H(ξ̂a, ξb)

]−1 ·
(
ξ̂a − ξa

)
.

(26)

The high gain observer (26) provides on-line estimates ρ̂
for the unknown kinetics. This on-line estimation algorithm
is in fact a copy of the process model, with a corrective term.
The observer is simple and the tuning of the gain can be
done by modifying only one design parameter: θ. It should

be noticed that ξ̂a is an “estimate” of ξa, provided by the
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algorithm in order to be compared with the real state (ξa is
measured or provided by a state observer), and the resulting
error to be used in (26).

In order to obtain the equations of the observers for
our bioprocess, the next factorization of yield matrix and
corresponding partition are considered [20]:

Ka =

⎡

⎢
⎢
⎢
⎣

−k1 0 k2

−1 −1 0

0 k3 k4

⎤

⎥
⎥
⎥
⎦

, Kb =
⎡

⎣
k5 0 −1

k6 k7 0

⎤

⎦,

ξa =

⎡

⎢
⎢
⎢
⎣

S1

S2

P1

⎤

⎥
⎥
⎥
⎦

, ξb =
⎡

⎣
P2

P3

⎤

⎦,

Fa =

⎡

⎢
⎢
⎢
⎣

F1

F2

F3

⎤

⎥
⎥
⎥
⎦

, Fb =
⎡

⎣
0

0

⎤

⎦.

(27)

Then, for the enzymatic synthesis of ampicillin, two
high-gain estimators can be derived from (26) [20].

(a) an estimator for the specific reaction rates. In this
case ρ(t) = μ(t), and H(ξ) is the matrix given in (20). The
equations of the high-gain observer are:

⎡

⎢
⎢
⎢
⎢
⎣

˙̂S1

˙̂S1

˙̂P1

⎤

⎥
⎥
⎥
⎥
⎦
= Ka

⎡

⎢
⎢
⎢
⎣

Ŝ1 0 0

0 Ŝ2 0

0 0 P2

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

μ̂1

μ̂2

μ̂3

⎤

⎥
⎥
⎥
⎦
−D

⎡

⎢
⎢
⎢
⎣

Ŝ1

Ŝ2

P̂1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

F1

F2

F3

⎤

⎥
⎥
⎥
⎦
− 2θ

⎡

⎢
⎢
⎢
⎣

Ŝ1 − S1

Ŝ2 − S2

P̂1 − P1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

˙̂μ1

˙̂μ2

˙̂μ3

⎤

⎥
⎥
⎥
⎦
= −θ2 ·

⎡

⎢
⎢
⎢
⎣
Ka ·

⎡

⎢
⎢
⎢
⎣

Ŝ1 0 0

0 Ŝ2 0

0 0 P2

⎤

⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎦

−1

·

⎡

⎢
⎢
⎢
⎣

Ŝ1 − S1

Ŝ2 − S2

P̂1 − P1

⎤

⎥
⎥
⎥
⎦

,

(28)

(b) a second estimator can be obtained if the entire
reaction rate vector is considered unknown. In this case
ρ(t) = ϕ(t) and H(ξ) = 1. Then, the equations of the
highgain observer are as follows:

⎡

⎢
⎢
⎢
⎢
⎣

˙̂S1

˙̂S1

˙̂P1

⎤

⎥
⎥
⎥
⎥
⎦
= Ka

⎡

⎢
⎢
⎢
⎣

ϕ̂1

ϕ̂2

ϕ̂3

⎤

⎥
⎥
⎥
⎦
−D

⎡

⎢
⎢
⎢
⎣

Ŝ1

Ŝ2

P̂1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

F1

F2

F3

⎤

⎥
⎥
⎥
⎦
− 2θ

⎡

⎢
⎢
⎢
⎣

Ŝ1 − S1

Ŝ2 − S2

P̂1 − P1

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

˙̂ϕ1

˙̂ϕ2

˙̂ϕ3

⎤

⎥
⎥
⎥
⎦
= −θ2 · [Ka]−1 ·

⎡

⎢
⎢
⎢
⎣

Ŝ1 − S1

Ŝ2 − S2

P̂1 − P1

⎤

⎥
⎥
⎥
⎦
.

(29)

The high gain observer (28) needs the on-line measure-
ments of S1, S2, P1, and P2. Usually, only the first three
concentrations are available. Therefore, a state observer is
required in order to reconstitute the measurements of P2. For
example, an asymptotic state observer is designed in [31]. In
such a case, the estimates of P2 provided by the asymptotic
observer will be used in (28). In the case of the high gain
observer (29), only the measurements of S1, S2, and P1 are
needed.

2.3. Adaptive Control Law Design. Concerning the fed-batch
bioprocess control, a typical problem is that of generating
the substrate feed rate profile to optimize a performance
criterion [1]. For our process, the main objective is to obtain
a high level of the ampicillin concentration. This goal can be
achieved through an optimal control, that is, the calculation
of a feeding rate optimal profile. This is unsatisfactory when
the kinetics is imprecisely known. A possible suboptimal
alternative is the adaptive control [1]. In this section, firstly,
an exact linearizing control law is obtained. Then, adaptive
versions are implemented, considering that the kinetics are
unknown, and by using the kinetics estimators described
before.

The exact linearizing control law for the model (18) (or
the model written in the compact form (19)) is obtained in
a classical three steps strategy (see [32] for the general point
of view and [1] for bioprocesses). The control goal is that the
ampicillin concentration y(t) = ξ4(t) = P2(t) to track the
desired substrate trajectory y∗(t) = P∗2 (t), with the dilution
rate as control action: u(t) = D(t). The first step consists in
the achievement of an input-output model of the bioprocess,
which is obtained directly from (18):

ẏ = Ṗ2 = ξ̇4 = k5ϕ1(ξ)− ϕ3(ξ)− u · y. (30)

Second, we consider a stable and linear reference model
for the tracking error y∗ − y:

(
ẏ∗ − ẏ

)
+ λ
(
y∗ − y

) = 0, λ > 0. (31)

Finally, the exact linearizing control law is obtained by
calculus of usuch that (30) has the same behavior as (31):

u(t) =
(

1
y

)

· (k5ϕ1(ξ)− ϕ3(ξ)− λ
(
y∗ − y

))

=
(

1
y

)

· (k5μ1(ξ)ξ1 − μ3(ξ)y − λ
(
y∗ − y

))

=
(

1
y

)

·
(

k5
ξ1

kEN + ξ1
· kcat1CEZξ2

Km1
(
1 + y/kAE

)
+ ξ2

− kcat2CEZy

Km2(1 + ξ2/kEA ) + y
− λ

(
y∗ − y

)
)

,

(32)

where we consider y∗ = const.
The exact linearizing control (32) can ensure the achieve-

ment of control goal only if the involved concentrations are
on-line measurable and if the reaction rates (or the specific
growth rates, resp.) are known. Contrarily, the estimations
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Figure 4: Simulation results—exact linearizing control law. The closed loop system was tested for a step profile of the ampicillin
concentration reference. Panel (a) shows the time evolution of ξ1 = S1, ξ2 = S2, ξ3 = P1, and ξ5 = P3 (i.e., 6-APA, PGME, PG, and
methanol concentrations, resp.). In panel (b), the profiles of specific reaction rates μ1,μ2, and μ3 are depicted. Panel (c) presents the output
y = P2 (ampicillin concentration) versus the reference profile y∗ = P∗2 . Panel (d) shows the control action, that is, the evolution of the
dilution rate.

provided by the estimators are needed, and if they are
used in the exact linearizing control law, some adaptive
versions of the nonlinear law are obtained. For example, if
the estimations ρ̂(t) = μ̂(t) provided by (28) are used in the
control law (32), an adaptive version of this law is obtained
as follows:

u(t) =
(

1
y

)

· (k5μ̂1(t)ξ1 − μ̂3(t)y − λ
(
y∗ − y

))
. (33)

The entire adaptive control algorithm consists of (28)
and (33). Regarding the stability and convergence properties
of the controlled system, these are widely discussed for a
general class of bioprocesses in [1]. Another version of the
adaptive control law (33) is obtained if the full vector of
reaction rates is considered as unknown. In this case, the high
gain estimator (29) is used, and the adaptive control law takes
the following form:

u(t) =
(

1
y

)

· (k5ϕ̂1(t)− ϕ̂3(t)− λ
(
y∗ − y

))
. (34)

Therefore, the complete adaptive control algorithm
consists now of (29) and (34). Moreover, when the ampi-
cillin concentration cannot be on-line measured, then an
asymptotic observer [31] can be used in order to provide
the estimates yest, and consequently a version of the adaptive
controller (33) is obtained as follows:

u(t) =
(

1
yest

)

· (k5μ̂1(t)ξ1 − μ̂3(t)yest − λ
(
y∗ − yest

))
.

(35)

The adaptive control algorithm consists of (28), (35),
plus the asymptotic observer.

The design of asymptotic observers is based on mass
and energy balances without the knowledge of the process
kinetics being necessary [1]. More precisely, the design is
based on some useful changes of coordinates, which lead to a
submodel of the process which is independent of the kinetics.
Next, the fundaments of the design of an asymptotic observer
for the process (24) will be presented. The maximum state
information which can be reconstituted is obtained by using
the states ξ1 = [S1 P1]T considered as measurable. Therefore,

the vector of unavailable states is ξ2 =
[
S2 P2 P3 ]T ; these
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Figure 5: Simulation results—adaptive control law (free-noise measurements). Panel (a) shows the time evolution of the output y = P2

(ampicillinconcentration) versus the reference profile y∗ = P∗2 , in the adaptive case. Panels (b), (c), and (d) present the profiles of specific
reaction rates μ1,μ2, and μ3 together with their estimates μ̂1, μ̂2, and μ̂3, respectively, estimates provided by the nonlinear observer.

states will be estimated. In order to achieve the change of
coordinates, the partition (ξ1, ξ2) induces partitions of the
yield matrix K : (K1, K2), also of the rate vector (F̃1, F̃2)
accordingly. The state partition was chosen such that the
submatrix K1 is full rank and dim(ξ1) = rank(K1) =
rank(K). Then a linear change of coordinates can be defined
as follows:

z = G · ξ1 + ξ2, (36)

with z an auxiliary state vector and G the solution of the
matrix equation G · K1 + K2 = 0. In the new coordinates,
model (19) can be rewritten as

ξ̇1 = K1ϕ(ξ1, z −Gξ1)−D · ξ1 + F̃1,

ż = −D · z + G · F̃1 + F̃2.
(37)

The main achievement of the change of coordinates
is that the dynamics of the auxiliary state variables is
independent of the reaction kinetics. The asymptotic

observer equations are derived as follows (from (36) and
(37)) [31]:

⎡

⎢
⎢
⎢
⎣

ż1est

ż2est

ż3est

⎤

⎥
⎥
⎥
⎦
= −D

⎡

⎢
⎢
⎢
⎣

z1est

z2est

z3est

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
k1

1
k3

k5

k1
0

k6

k1

−k7

k3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
F1

F3

⎤

⎦ +

⎡

⎢
⎢
⎢
⎣

F2

0

0

⎤

⎥
⎥
⎥
⎦

, (38)

⎡

⎢
⎢
⎢
⎣

Ṡ2est

Ṗ2est

Ṗ3est

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

z1est

z2est

z3est

⎤

⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
k1

1
k3

k5

k1
0

k6

k1

−k7

k3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
S1

P1

⎤

⎦. (39)

The asymptotic observer can be used for the implemen-
tation of the adaptive law (35).

3. Results and Discussion

The behavior and the performance of the proposed estima-
tion and control algorithms were analyzed by using intensive
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Figure 6: Simulation results—adaptive control law (noisy measurements). Panel (a) shows the profile of the output y = P2 (ampicillin
concentration) versus the reference y∗ = P∗2 , in the adaptive case, when noisy measurements of S1 and S2 are used in both estimation and
control algorithms. Panels (b), (c), and (d) present the profiles of specific reaction rates μ1,μ2, and μ3 together with their estimates μ̂1, μ̂2 and
μ̂3, respectively, in the case of noisy measurements.

Table 1: Bioprocess parameters values.

Parameter Value

kcat1 0.546 (mM/UI min)

kcat2 1.857 (mM/UI min)

CEZ 30 (UI/mlgel)

kEN 22.57 (mM)

kAE 1.05 (mM)

kEA 32.13 (mM)

Km1 15.32 (mM)

Km2 12.83 (mM)

F1 2 (mM/min)

F2 2.5 (mM/min)

F3 1 (mM/min)

k1 0.7

ki, i = 2, . . ., 7 1

simulations. The simulations were performed in MATLAB
environment (registered trademark of The MathWorks Inc.,
USA). The fed-batch bioprocess has been simulated by
numerical integration of the basic model equations (18),

(21)–(23). The values of kinetic parameters and of yield
coefficients used in simulations are presented in Table 1
[23, 31].

Three simulation scenarios were taken into considera-
tion.

(i) The exact linearizing control law (32) was imple-
mented for the bioprocess (18), with the design parameter
λ = 3. The closed loop system was tested for a step profile
of the ampicillin concentration reference. This simulation
case is a kind of benchmark, because all the parameters and
the reaction rates are considered to be known (and given
by the relations (21)–(23)). A parametric disturbance was
considered in the feed rate F2, which has a 20% decrease of its
nominal value (between t = 50 min and t = 100 min). The
simulation results are presented in Figure 4. Panel (a) shows
the time profiles of ξ1 = S1, ξ2 = S2, ξ3 = P1, and ξ5 =
P3 (i.e., 6-APA, PGME, PG, and methanol concentrations,
resp.). In panel (b) the evolution of the specific reaction
rates is depicted, while in panel (c) the output (ampicillin
concentration) versus the reference profile is shown. Panel
(d) presents the control action, that is, the evolution of the
dilution rate. From these simulation results, it can be seen a
very good behavior of the controlled bioprocess.
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Table 2: Performance criterion results (free-noise data).

Tuning parameter I1 I2 I3

θ = 1 0.01029 0.03230 0.08333

θ = 2 0.00321 0.01789 0.03768

θ = 5 0.00225 0.00849 0.01124

θ = 50 0.00039 0.00052 0.00126

Table 3: Performance criterion results (noisy measurements).

Tuning parameter I1 I2 I3

θ = 1 0.06370 0.03392 0.16932

θ = 2 0.09196 0.02198 0.35544

θ = 5 0.62471 0.24404 1.59703

θ = 50 — (divergent) — (divergent) —(divergent)

(ii) In the second simulation scenario, an adaptive
version of the control law was implemented in the same
conditions as in previous case. This adaptive controller
consists of the high gain observer (28) and the control law
(33). Therefore, the specific growth rates μ1, μ2, and μ3 were
considered to be unknown. The kinetic expressions (21)–
(23) were introduced only for simulation; so these models
were not used in the process of observer design. The main
goal of the estimator (28) is to reconstitute the time evolution
of μ1, μ2, and μ3 from the measurements of S1, S2, P1, and P2

obtained from the simulation.
The value of the tuning parameter was set to θ = 2.

The on-line estimations provided by the high gain observer
(28) were used in the control law (33)—in fact only μ̂1 and
μ̂3 are used here. The results in this simulation case are
shown in Figure 5. Panel (a) presents the output versus the
reference profile, and panels (b), (c), and (d) show the time
evolution of the estimated specific reaction rates versus their
“true” profiles. In this scenario, the obtained results are good,
despite the uncertainty in the bioprocess kinetics.

(iii) In order to test the robustness of the proposed
estimation and control algorithms to noisy measurements,
the behavior of the controlled bioprocess was also analyzed
for noisy data of S1 and S2. The measurements of these
concentrations are considered to be vitiated by an additive
Gaussian noise, with zero mean and amplitude equal to 5%
of the free-noise values. The same version of the adaptive
control law (28), (33) was used in this case. The obtained
results are presented in Figure 6. As in previous case, panel
(a) shows the output versus the reference profile, and panels
(b), (c), and (d) depict the time evolution of the estimated
specific reaction rates versus their “true” profiles.

It can be seen that the behavior of the controlled
process is quite good, in spite of the combined action of
noisy measurements, parametric disturbance, and kinetics
uncertainty. The specific reaction rates μ1 and μ3 seem to be
a little bit more sensible to noise.

A lot of supplementary simulations were performed for
the other versions of adaptive control laws, such as (29), (34)
and (28), (35). In all situations, a good behavior of the closed

loop system was obtained. The results illustrate that the high-
gain observer provides accurate estimates of the kinetic rates.
It can be seen that the noisy measurement induces some
noisy estimates of the kinetics, but the noise effect is limited
(however, this effect can be reduced for lower values of
the tuning parameter). Several comparisons and comments
regarding the behavior and the performance of the on-line
estimation strategy can be achieved. Some remarks can be
done by visualization of estimation errors μ̃1 = μ1 − μ̂1, μ̃2 =
μ2− μ̂2 and μ̃3 = μ3− μ̂3. However, accurate comparisons can
be realized by considering a criterion, for example, one based
on averaged square estimation errors [3]:

I1 = 1
TS

∫ TS

0
μ̃2

1(t)dt,

I2 = 1
TS

∫ TS

0
μ̃2

2(t)dt,

I3 = 1
TS

∫ TS

0
μ̃2

3(t)dt,

(40)

where TS is the total simulation time.
The values of I1, I2, and I3 computed for different values

of tuning parameter and free noise data are given in Table 2,
and for vitiated measurements in Table 3. It results that the
precision can be increased if the tuning parameter is bigger.
The problem for a large value of θ is that the observer
becomes noise sensitive. Notice that the estimation error can
be made as small as wished if we choose greater values of
θ. The problem for a large value of θ is that the observer
becomes noise sensitive. Therefore, the value of the tuning
parameter is a compromise between a good estimation and
the noise rejection. The obtained results concerning the noise
sensitivity of the high gain observers are similar with those
discussed in several works, such as [35–38].

4. Conclusions

The bond graph modeling approach constitutes a notewor-
thy option to the classical modeling in the case of complex
bioprocesses. The ampicillin synthesis process was modeled
in a natural way via pseudo bond graphs, and the obtained
model was used for estimators and controllers design. One
of the key advantages of the bond graph modeling of bio-
processes is the possibility to reuse the models, for example,
in the interconnected bioreactors. The application of this
feature is beyond of the scope of the present paper, but it is of
crucial importance in other bioprocesses. However, it should
be mentioned that the obtained model is only validated
for the specific enzyme preparation used (but the proposed
method can be utilized with adequate modifications when
the enzyme is changed).

To overcome problems such as the kinetics uncertain-
ties and the lack of on-line measurements, a high gain
observer was designed and implemented for the on-line
reconstruction of the specific reaction rates. The advantages
of this kind of estimator are the simplicity of design,
the good convergence and stability properties, and the
accuracy of estimates (especially for free noise data). Another
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important advantage is the fact that the tuning of one single
design parameter is necessary. The estimation results can be
improved if the tuning parameter is chosen higher in value,
but only if the measurements are free noise. Contrarily, the
observer becomes noise sensitive and it is possible that the
estimates of kinetics cannot be utilized in the control law
design.

The simulation results show a good behavior of the
adaptive controlled ampicillin synthesis bioprocess. The
proposed adaptive control law was obtained by combining
an exact linearizing control law with the kinetics estimator.
The control goal, that is, the preservation of a high ampicillin
concentration, is achieved despite the action of disturbances
and noisy measurements. The bond graph modeling esti-
mation and control strategies can be also applied to other
processes belonging to the nonlinear class of bioprocesses
considered in the present study.
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