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Despite mitochondria being key for the control of cell homeostasis and

fate, their role in DNA damage response is usually just regarded as an

apoptotic trigger. However, growing evidence points to mitochondrial

factors modulating nuclear functions. Remarkably, after DNA damage,

cytochrome c (Cc) interacts in the cell nucleus with a variety of well-

known histone chaperones, whose activity is competitively inhibited by

the haem protein. As nuclear Cc inhibits the nucleosome assembly/disas-

sembly activity of histone chaperones, it might indeed affect chromatin

dynamics and histone deposition on DNA. Several histone chaperones

actually interact with Cc Lys residues through their acidic regions, which

are also involved in heterotypic interactions leading to liquid–liquid
phase transitions responsible for the assembly of nuclear condensates,

including heterochromatin. This relies on dynamic histone–DNA interac-

tions that can be modulated by acetylation of specific histone Lys resi-

dues. Thus, Cc may have a major regulatory role in DNA repair by

fine-tuning nucleosome assembly activity and likely nuclear condensate

formation.
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Mitochondria play an essential role in cell metabolism

and take part in the core of cell signalling networks

that sense and coordinate responses to environmental

changes. The control of mitochondrial state—via mito-

phagy, translation attenuation, unfolded protein

response activated by mistargeting, mitochondrial

unfolded protein response or mDNA damage regula-

tion [1,2]—involves extra-mitochondrial factors and

expression of nuclear genes. In fact, some of them are

induced by mitochondrial transcription factors, for

example during the retrograde response. Moreover, a

set of mitochondrial factors, either encoded in the

mitochondria, such as the mitochondria-derived pep-

tides [3], or in the nucleus, such as the apoptosis-in-

ducing factor (AIF) and cytochrome c (Cc), are key

players in cell fate decisions [4,5].

Mitochondria are also end-targets of apoptosis sig-

nalling elicited by strong nuclear DNA damage. The

DNA damage response (DDR), mediated by p53,

eventually activates proteins such as PUMA (p53

upregulated modulator of apoptosis), BAX (Bcl-2-as-

sociated X protein) and BAK (Bcl-2 homologous

antagonist/killer), thereby yielding the release of pro-

apoptotic factors from mitochondria [6]. Notably, one

of the three known DDR early sensors, the ataxia

telangiectasia and Rad3-related (ATR) protein, plays a

dual role depending on its isomerization state: one

state aids the onset of DDR upstream of p53 in the

cell nucleus and the other state plays a protective role

against pro-apoptotic stimuli in mitochondria [7]. This

illustrates how mitochondrial reactions can be modu-

lated during the DDR response, but does not imply a

direct involvement of mitochondrial proteins in regula-

tion of nuclear DNA repair or DDR.

It was once assumed that the biological function of

Cc was confined to mitochondria and restricted to its

ability to connect complexes III and IV in the electron

transport chain. The functionality of Cc is indeed con-

trolled in vivo by several post-translational modifica-

tions (PTMs) [8–17]. Such a canonical function of the

haem protein was however questioned with the discov-

ery that Cc is released from mitochondria to cytosol

upon treatment of cells with the apoptotic inducer stau-

rosporine [5]. Afterwards, the apoptotic ability of the

haem protein translocated into the cytosol was extended

to other genotoxic treatments, such as etoposide, ultra-

violet irradiation, actinomycin D or H2O2-mediated

oxidative stress [18,19]. In the cytosol, Cc interacts with

the apoptosis-activating factor 1 (Apaf-1), triggering (a)

apoptosome assembly, (b) the subsequent activation of

downstream caspases and (c) controlled cell dismantle-

ment [20–22]. Cc also binds to the inositol 1,4,5-triphos-

phate receptor (IP3R) at the endoplasmic reticulum

membrane. This further stimulates massive Cc release

and, consequently, apoptosis [23,24]. In fact, the

sequence of events reaches a critical point of ‘no return’

in the execution of apoptosis [5]. Oxidation of the lipid

cardiolipin by Cc at the onset of apoptosis is indeed a

decisive step [25].

Beyond cytosolic Cc being a key element in apopto-

sis, several findings have led to the emergence of Cc as

a pleiotropic mitochondrial factor that migrates to the

cell nucleus upon DNA damage both in mammals and

plants [26–30]. Mitochondrial Cc in the nucleus targets

histone chaperones that might share common structural

—and probably functional—features (Fig. 1). In this

review, we summarize major aspects of Cc signalling in

the cell nucleus, describe the structure-to-function rela-

tionships of reported nuclear targets and discuss the

biological consequences of various interactions.

Mitochondrial cytochrome c as a
signalling factor of DNA lesions in the
nucleus

In addition to the consideration of cytosolic Cc as a

key element in apoptosis, an exciting discovery has

been the observation of this metalloprotein migrating

to the cell nucleus following DNA damage. New puta-

tive functions for nuclear Cc are thus now emerging.

Redistribution of Cc and Apaf-1 to the nucleus during

apoptosis induced by actinomycin D—a drug that gen-

erates DNA breaks—was first reported by Ru�ız-Vela

and coworkers [29]. Later, Nur-E-Kamal et al. [30] sta-

ted that Cc gradually accumulates in the nucleus of

HeLa cells upon applying the DNA-damage inducer

camptothecin. Remarkably, nuclear Cc accumulation

correlates with nuclear pyknosis during apoptosis,

thereby contributing to chromatin remodelling and

condensation [30].

Another notable finding revealed that Cc migrates to

the cell nucleus soon after drug-induced DNA damage,

even before triggering the caspase cascade and apopto-

some formation in the cytosol [31]. Later, Cc was found

to be diffuse and faintly located in the cytosol, but

abundantly distributed in the nuclei of HeLa cells upon

treatment with actinomycin D [32]. Again, the haem

protein was detectable in the cell nucleus prior to cas-

pase cascade activation or apoptosis induction [32].

Recently, nuclear translocation of Cc induced by copper

has been found in neuroblastoma cells [33]. Such out-

comes hint to novel functions for nuclear Cc, beyond

the well-known roles in the cytosol and mitochondria.

Several proteomic analyses by our group served to

identify an ample set of proteins that bind to extra-mito-

chondrial Cc following DNA breaks in humans and
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plants [26–28]. Such new interactions constitute a com-

plex Cc-centred cell death signalling network. In fact,

the haem protein plays a dual role in leading living cells

to death not only by inhibiting pro-survival routes but

also by triggering pro-apoptotic pathways [26–
28,34,35]. Upon induction of DNA breaks, Cc binds to

a series of chromatin-binding factors in the nuclei of

both human and plant cells [26,27]. These findings high-

light the multi-functional role of Cc during the onset of

apoptosis triggered by DNA breaks and suggest a previ-

ously unsuspected role for the hemeprotein in chromatin

remodelling for DNA damage repair.

Role of chromatin modifiers in DNA
foci and their regulation by nuclear
cytochrome c

A plethora of endogenous and exogenous sources cause

different types of DNA damage, with double-strand

breaks (DSBs) being among the most toxic type of

lesions as they can lead to chromosomal translocations

and cancer development [36,37]. Cells respond to DSBs

by activating a pathway, the so-called DDR, which is a

well-orchestrated network of cellular routes, including

initial recognition, signal amplification, activation of cell

cycle checkpoints and repair of DNA lesions [38,39].

Within seconds to minutes following any DNA

break, repair and checkpoint proteins are recruited to

DSB sites, leading to the formation of DNA repair foci

[40–42]. These foci are massive in comparison with the

small size of a DSB itself [43]. The massive accumula-

tion of DNA repair factors at foci apparently rapidly

magnifies signalling, in such a way that a single break

is sufficient to induce a large response and to arrest

the cell cycle [44,45]. Such rapid signal amplification is

essential for preserving the genome and preventing cells

with DSBs from entering mitosis [43].

DNA repair foci were initially observed in mam-

malian cells with the DNA repair protein Rad51 [46]

and later with additional proteins that respond to DSBs

[47,48]. It was later observed that, immediately after

DSB induction, ataxia telangiectasia modified (ATM)

and other kinases phosphorylate C-terminal Ser residues

(Ser136 and Ser139) of histone H2AX—a variant of

H2A—at the DSB site [40,49]. Phosphorylated H2AX

(cH2AX) is detectable within minutes after DNA break

and aids the recruitment of other DDR proteins to

DSB sites [50–52]. The number of foci formed during

DDR is routinely used to assess the intensity of DNA

damage and repair kinetics [53–55].
Recent studies demonstrate that DNA repair pro-

teins assemble as DNA repair foci via liquid–liquid

Fig. 1. Role of histone chaperones in DNA damage-induced LLPS and proposed regulation by Cc. The DDR induces histone PTMs, for

example acetylation and ubiquitination, and subsequent recruitment of DNA foci constituents. DNA repair foci are condensates formed upon

LLPS events yielding droplets, which provides a unique environment for DNA repair. Histone chaperones contribute by mediating histone

eviction and deposition, thus allowing components of DNA repair mechanisms to access the damaged site. In addition, mitochondrial Cc

migrates to the cell nucleus to interact with histone chaperones by their acidic regions in a manner similar to histones. In this way, Cc may

contribute to the regulation of DNA repair by fine-tuning histone turnover.
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phase separation (LLPS) [56]. DNA repair foci form

clusters by fusing with one another over time in mam-

malian cells [57,58] and yeasts [59,60]. Similar cellular

condensates—also known as membraneless compart-

ments—can be found in different cellular locations.

For example, stress granules, processing bodies (P-

bodies), uridine-rich small nuclear RNA bodies (U-

bodies) and centrosomes can be detected in the cyto-

plasm [56,61–63]. In contrast, nucleoli, DNA repair

foci, Cajal bodies, heterochromatin, nuclear speckles

and histone locus bodies are found in the nucleus [64–
66]. Some of them are however ubiquitous, as Cajal

bodies, nucleoli or P-bodies. Other condensates (e.g.

DNA repair foci, stress granules or paraspeckles)

appear after certain stimuli in specific cell types [56].

The main forces driving LLPS are multivalent weak

interactions involving signalling domains repetitively

included in RNA/DNA and/or proteins. The latter

often contain intrinsically disordered, low complexity

(LC) domains that can be regulated by PTMs [67].

In yeast, DNA repair foci are assembled through

the fusion of liquid-like bodies of Rad52 protein sur-

rounding different DSBs within the nucleus [68]. Trun-

cation of Rad52 intrinsically disordered region (IDR)

avoids phase separation and increases cell sensitivity to

DNA damage, highlighting the role of Rad52-mediated

phase transitions in the DNA repair process [68]. Upon

DNA damage, poly(ADP-ribose) polymerase 1 (PARP1)

localizes to DNA damage sites and its auto-poly(ADP-

ribosyl)ation triggers the recruitment of several proteins,

for example fused in sarcoma/translocated in sarcoma

(FUS/TLS), ewing sarcoma (EWS) and TATA box-

binding protein-associated factor 68 kDa (TAF15), also

abbreviated as FET proteins [69]. PARP1-mediated clus-

tering of FET proteins around the DSB causes phase

separation, which leads to DNA repair foci formation

[69]. The exact role of these condensates in the DDR is

unknown, but they improve DNA repair efficiency

somehow [56]. Phase separation and DNA foci forma-

tion involve multivalent weak interactions between poly

(ADP-ribose) and the arginine–glycine–glycine (RGG)

domain, along with the LCDs of FET proteins [56,69].

Consequently, preventing the assembly of DNA repair

foci via PARP1 inhibition leads to neurodegenerative

diseases [70].

In addition to liquid-like DNA repair foci forma-

tion, DDR affects the overall chromatin structure to

enable the access of repair proteins to the DNA injury

site. DSB repair requires profound chromatin rear-

rangements to sense damage and to aid the approach

of repair machinery [71]. During DNA damage sensing

and repair, histones undergo PTMs, including phos-

phorylation, acetylation, methylation and

ubiquitination. Such modifications act as beacons for

recruiting proteins involved in DDR [72].

Chromatin restoration at repair sites involves the

deposition of newly synthesized histones, as shown for

histone variants H2A, H3.1 and H3.3 [73–77]. New

histone laying and chromatin reshaping following

DSBs requires dedicated histone chaperones [78],

including histone regulator A (HIRA) [74], chromatin

assembly factor 1 (CAF-1) [73], facilitates chromatin

transcription (FACT) [75], nucleolin (NCL) [79], apra-

taxin-PNK-like factor (APLF) [80], anti-silencing func-

tion 1 (ASF1) [81], death domain-associated protein

(DAXX) [82], p400 remodelling ATPase [83], inositol-

requiring 80 (Ino80) [84], nucleosome assembly protein

1-like 1 and 4 (NAP1L1 and NAP1L4) [85], acidic

nuclear phosphoprotein 32 family member E

(ANP32E) [86] and SET/template-activating factor

(TAF)-Ib (SET/TAF-Ib) [87].
Notably, nuclear Cc binds various histone chaper-

ones following DNA breaks, suggesting the hemepro-

tein assists DNA repair regulation. In the following

subsections, we review and discuss the main findings

regarding regulation of the DDR by some histone

chaperones and Cc in the context of genotoxic stress.

SET/template-activating factor-Ib

SET/TAF-Ib is a protein involved in a wide variety of

biological processes, namely cell cycle control [88], repli-

cation [88–90], transcription and chromatin remodelling

[91], and apoptosis [92]. SET/TAF-Ib was first described

as a translocated gene in acute undifferentiated leukae-

mia [93] and was found to be upregulated in diverse

kinds of tumours [94,95]. For this reason, it has been

considered as an oncoprotein. SET/TAF-Ib forms a

dimer that assumes a headphone-like shape. Each

monomer consists of an N-terminal backbone helix

involved in dimerization, an earmuff domain and a long

acidic stretch in the C-end [96].

Within the context of the DDR, SET/TAF-Ib has

been described to be involved in the regulation of this

process at several stages, as addressed hereafter. First,

it is well established that SET/TAF-Ib acts as a his-

tone chaperone of the nucleosome assembly protein

(NAP) family, whose members are capable of disas-

sembling nucleosomes in an ATP-independent manner

[96,97]. This explains the crucial role of histone chap-

erones during the DDR of facilitating the entry of

DNA repair proteins into the damaged site [98–101]
and allowing chromatin dismantling, repair and rear-

rangement in a quick and precise manner [99,102].

During this process, histone chaperones meet the

demand for histone supplies and promote proper
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nucleosome assembly and the recycling of modified

histones evicted from chromatin [103,104]. Therefore,

SET/TAF-Ib is considered to be an important factor

in chromatin dynamics and remodelling, with special

emphasis on its influence on DNA repair [105,106]. In

fact, the histone chaperone activity of SET/TAF-Ib is

crucial for the regulation of cell survival upon expo-

sure to DNA-damaging agents [87].

Furthermore, SET/TAF-Ib is a key subunit of the

inhibitor of acetyltransferases complex, or INHAT

[105]. Acetylation and deacetylation are mediated by

families of histone acetyltransferases (HATs) and his-

tone deacetylases (HDACs), respectively [107,108]. The

INHAT complex usually comprises two other proteins,

namely template-activating factor-Ia (TAF-Ia) and

acidic Leu-rich nuclear phosphoprotein 32 family

member A (ANP32A, a.k.a. phosphoprotein of

32 kDa or pp32). This large complex exerts a negative

regulatory effect over the HAT activity of p300, the

CREB-binding protein (CBP) and the p300/CBP-asso-

ciated factor (PCAF) [105,109–111].
It has also been reported that SET/TAF-Ib inhibits

the p300/CBP- and PCAF-mediated acetylation of

non-histone proteins, namely the tumour suppressor

p53 [112], the forkhead box protein O1 (FoxO1) [113]

and the well-known DDR player Ku70 [114]. The

Ku70/Ku80 heterodimer binds to the DNA ends of

DSBs as a first step of the non-homologous end-join-

ing (NHEJ) DNA repair pathway. Then, Ku70/Ku80

recruits other NHEJ effectors, including DNA-depen-

dent protein kinase catalytic subunits (DNA-PKcs), X-

ray repair cross-complementing protein 4 (XRCC4),

ligase IV, XRCC4-like factor (XLF) or the nuclease

Artemis [115], thus allowing the repair process. Inter-

estingly, it has recently been reported that Ku70/Ku80

is bound to SET/TAF-Ib through the C-terminal end

of the histone chaperone in the homeostatic cell

nucleus, impeding the binding of the former to non-

damaged DNA [114]. However, upon DNA damage,

the complex dissociates and releases Ku70/Ku80,

which is then capable of binding to DSBs and initiat-

ing the NHEJ pathway. Thus, SET/TAF-Ib physiolog-

ically downregulates NHEJ-mediated DNA repair and,

hence, the DDR [114]. Concomitantly, CBP and

PCAF can acetylate several Lys residues of Ku70,

causing the release of Bax from the Ku70-Bax complex

and triggering Bax-mediated apoptosis [116]. This pro-

cess is also inhibited by the INHAT activity of SET/

TAF-Ib [114], conferring its status as an oncoprotein.

Of note, SET/TAF-Ib also finetunes cell survival and

proliferation by exerting its INHAT activity over the

tumour suppressor p53 [112,117] and the transcription

factor FoxO1 [113].

Recent studies have revealed how SET/TAF-Ib mod-

ulates the DDR by directly acting on the DNA foci.

When a DSB occurs, signal transducer kinases are

recruited by DSB sensor proteins and activate several

DDR mechanisms. Among them, ATM kinase phos-

phorylates the KRAB-associated corepressor (KAP1)

[118], which subsequently phosphorylates heterochro-

matin protein 1 (HP1). HP1 phosphorylation triggers

its release from chromatin together with CHD3, which

is a fundamental pre-requisite for chromatin relaxation,

as well as to allow DNA repair mechanisms to access

DNA lesions [98,119,120]. A model has recently been

proposed in which SET/TAF-Ib interacts with KAP1

upon DNA damage and retains it bound to chromatin.

Therefore, chromatin resection and relaxation are

impaired, and DNA repair processes slow down [121].

Last but not least, SET/TAF-Ib is a well-known

inhibitor of protein phosphatase 2A (PP2A). PP2A is

one of the main serine–threonine protein phosphatases

in mammalian cells [122,123] that regulates a wide

variety of cellular processes, namely the cell cycle,

metabolism, DNA replication, transcription and trans-

lation, cell proliferation and apoptosis [124–127].
Moreover, PP2A regulates the DDR at several levels

by controlling the phosphorylation state of DDR sig-

nal factors. Indeed, PP2A dephosphorylates the DDR

transducer kinase ATM and DNA-PK, as well as

Ku70/Ku80 accessory subunits, thus diminishing their

activity and promoting the repair of injured DNA

[128,129]. In light of the above, PP2A inhibition by

SET/TAF-Ib reflects another level at which the histone

chaperone regulates diverse steps of the DDR.

Interestingly, when mitochondrial Cc reaches the

nucleus upon DNA damage, the hemeprotein binds to

SET/TAF-Ib and competes with histones for binding

to the chaperone [31]. This results in inhibition of the

nucleosome assembly/disassembly activity of SET/

TAF-Ib, directly affecting its function on chromatin

dynamics [31]. This process may slow down histone

deposition/eviction on damaged DNA by SET/TAF-

Ib. Since Cc and histones compete with each other for

binding to SET/TAF-Ib with similar affinity constants,

a sufficient Cc concentration in the nucleus would shift

histones out of the complex with the histone chaper-

one [130]. Furthermore, the Cc:SET/TAF-Ib interac-

tion could have additional effects on DDR-related

functions described for SET/TAF-Ib, expanding the

regulatory role of nuclear Cc. Given its histone chap-

erone activity, SET/TAF-Ib largely contributes to struc-

tural chromatin remodelling [91]. It is thus tempting to

hypothetize that the interaction of SET/TAF-Ib with Cc

might interfere in its role as a gene transcription activa-

tor, thereby resulting in transcription repression.
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Nucleosome assembly protein 1-related protein 1

The nucleosome assembly protein 1 (NAP1)-related

protein 1 (NRP1) belongs to the NAP1 family of his-

tone chaperones. NRP1 is the plant orthologue of

SET/TAF-Ib, sharing a high degree of structural

homology [131]. A homology model of NRP1 resem-

bling the structure of human SET/TAF-Ib showed a

headphone-shaped homodimer composed of a long

backbone helix at its N-terminal region responsible for

dimerization and a C-terminal earmuff domain which

likely acts as a histone chaperone [132]. In addition, it

has been posited that DDR mechanisms are highly

conserved in plants with respect to other eukaryotic

organisms [133]. These findings invite the possibility

that functions are shared between NRP1 and its

human counterpart SET/TAF-Ib. Much like SET/

TAF-Ib, NRP1 regulates replication, transcription and

cellular division during plant growth and development

as well as DNA repair [134–138] due to its ability to

assemble and disassemble nucleosomes [132,139].

Like any other histone chaperone, NRP1 binds to

both H2A-H2B [137,140] and H3-H4 histone dimers

[132]. As mentioned above, NRP1 participates in tran-

sient chromatin assembly and disassembly events

[85,132]. These processes are crucial for homologous

recombination repair, which is essential for genome

integrity in plants [140]. Several works have suggested

an important role for NRP1 in genomic integrity main-

tenance [140,141]. Specifically, NRP1 gathers in plant

cell nuclei upon DSB induction, suggesting its role in

the plant DDR. Thus, NRP1 modulates chromatin

dynamics, which influences the ability of DNA repair

effectors to accomplish their function [132]. It has been

proposed that not only does NRP1 promote homolo-

gous recombination synergistically with ATP-dependent

chromatin-remodelling factor Ino80, but also that this

mechanism is triggered by the formation of cH2AX foci

[142]. Additionally, NRP1 causes a decrease in the con-

tent of the H2A.Z histone variant in nucleosomes under

standard growing conditions [143].

Much like SET/TAF-Ib, NRP1 accumulates in the

cell nucleus upon DNA damage and inhibits plant

PP2A [144,145]. The functional consequences of such

interactions have not yet been elucidated. However, it is

tempting to propose that NRP1-mediated PP2A inhibi-

tion has similar consequences in plants and mammals.

As mentioned above, plant Cc reaches the cell

nucleus, where it interacts with NRP1, upon DNA

damage stimuli. Such an interaction impairs the his-

tone chaperone activity of NRP1, thereby suggesting

that Cc modulates the DDR in a concentration-depen-

dent manner [130,132]. Like human SET/TAF-Ib,

plant NRP1 regulates gene transcription due to its

ability to assemble/disassemble nucleosomes [134–138];
therefore, the interaction of NRP1 with Cc in plants

might negatively affect the transcription of genes

involved in growth, development and/or DNA repair.

The presence of similar mechanisms in both mam-

malian and plant cells suggests that they are largely

conserved throughout evolution.

Acidic Leu-rich nuclear phosphoprotein 32 family

member B

The members of the ANP32 family stand out from

other histone chaperone groups because of their diver-

gent roles within the cell [146]. For instance, mam-

malian ANP32 proteins have been reported to

participate in death regulatory pathways. Within this

context, several studies have shown that ANP32 pro-

teins aid in apoptosome formation by stabilizing Apaf-

1 [147,148]. Moreover, the ANP32 family member A

(ANP32A) directly promotes caspase-3 activation

[149]. In contrast, the ANP32 family member B

(ANP32B), which shares 81% sequence homology with

ANP32A, has been described as a caspase-3 substrate

and inhibitor, suggesting antagonistic regulatory roles

for ANP32A and ANP32B during cell death

[146,150,151]. ANP32B, like other members of its fam-

ily, displays a structured N-terminal domain with four

Leu-rich regions (LRRs), and a C-terminal low com-

plexity acidic region (LCAR) composed of negatively

charged residues [152].

As histone chaperones, ANP32 family members par-

ticipate in transcriptional regulation and configuration

of chromatin architecture [146,152]. Diverse studies

have shown that both ANP32A and ANP32B modu-

late transcription by facilitating nucleosome rearrange-

ment around the promoters of specific genes [153–157].
This activity must be guided by transcriptional factors,

for example Kr€upper-like transcription factor 5

[155,158]. Nucleosome assembly assays showed that

ANP32B histone chaperone activity relies on its N-ter-

minal structured domain [158]. In fact, the N-end

domain specifically binds to the H3-H4 histone dimer,

whereas the C-end LCAR binds to the H2A-H2B

dimer, thus increasing ANP32B affinity towards the

nucleosome and facilitating its nucleosome assembly

activity [158].

The role of ANP32B during the DDR is not fully

elucidated, although it is known to bind to Cc upon

DNA damage [27]. The hemeprotein could thus regu-

late the histone chaperone activity of ANP32B, as

already described for SET/TAF-Ib and NRP1

[28,31,132,159]. Within this context, Cc in the nucleus
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acquires a major regulatory role in the DNA repair

process by fine-tuning the nucleosome assembly activ-

ity of histone chaperones.

Other members of the ANP32 protein family also

act as histone binding proteins. ANP32A participates

in the INHAT complex [105] and, in particular, inhi-

bits histone PTMs by binding unmodified histone H3

tails [160,161]. In turn, the ANP32 family member E

(ANP32E) binds specifically to the histone variant

H2A.Z while associated with the p400/Tip60 complex

[155,162]. Notably, the ANP32E LCAR comprises a

precise sequence—absent in other ANP32 family mem-

bers like ANP32A or ANP32B—that yields binding

specificity towards H2A.Z [155,162].

Nucleolin

Nucleolin (NCL) likewise interacts with Cc in the cell

nucleus following DNA damage [27]. NCL is a multi-

functional phosphoprotein localized mainly in the

nucleolus, being one of the most abundant non-riboso-

mal proteins of such membrane-less organelles

[163,164]. NCL also transits to the nucleoplasm in

response to genotoxic stress. Like any RNA-binding

protein (RBP), NCL is involved in several aspects of

DNA metabolism, participating broadly in DNA/

RNA regulation, for example transcription, ribosome

assembly or mRNA stability and translation [165,166].

Several reports suggest that NCL promotes cell prolif-

eration, since its amount closely correlates with the

proliferative status of cells. As NCL is upregulated in

tumours, it is widely used as a marker of cell prolifera-

tion [167–169]. Furthermore, NCL participates directly

in the cellular response to DNA damage elicited upon

UV and ionizing radiation [170,171].

Remarkably, NCL interacts with c-H2AX followed

by its recruitment around the DSB foci induced by

camptothecin treatment [79]. It is also involved in the

activation of ATM kinase and the formation of Rad51

foci following UV or camptothecin exposure [172].

NCL is composed of three main domains: an N-termi-

nal domain-containing several Asp/Glu-rich acidic

stretches, a central domain comprising four RNA

recognition motifs (RRM) and a C-terminal domain

rich in RGG repeats. The exact contribution of the N-

terminal domain for NCL function is unknown, but it

contains numerous phosphorylation sites which are

essential for NCL function [169]. The acidic stretches

at the N-terminal region have been proposed to bind

histone H1 to induce chromatin decondensation

[165,173]. The central domain has been the focus of

several structural studies, showing that this stretch of

RRMs specifically recognizes RNA [169,174,175]. The

C-terminal domain contains RGG repeats interspersed

with other amino acids, usually aromatic in nature.

The RGG region is responsible for non-specific inter-

actions with nucleic acids that, however, facilitate the

specific binding of the central RRM platform to RNA

[176,177]. These regions have also been described as

protein–protein interaction domains since they recog-

nize several core ribosomal proteins [178,179].

Nucleolin possesses histone chaperone activity,

which greatly enhances the action of the chromatin

remodelling machinery [180]. Thus, NCL promotes

the destabilization of the histone octamer, allowing

the dissociation of H2A-H2B dimers to facilitate

chromatin transcription [180,181]. NCL is recruited

to sites of DNA breaks via binding to DNA repair

protein RAD50, and it removes histones H2A and

H2B from the nucleosome at the break site [182].

Such NCL-dependent nucleosome disruption is nec-

essary both for gathering DSB repair factors and for

efficient DNA repair [182]. Interestingly, recruitment

of NCL to the DSB results from the interaction of

its RGG domain with the RAD50 protein [182].

Implications for the DDR or gene transcription

repression of the interaction between NCL and Cc

in the nucleus following DNA breaks have not been

explored yet.

Heterogeneous nuclear ribonucleoprotein C1

and C2

Heterogeneous nuclear ribonucleoproteins (hnRNPs)

form a significant subclass of known ribonuclear pro-

teins (RNPs). These proteins escort RNA from tran-

scription in the nucleus to translation in the cytoplasm.

Accordingly, hnRNPs are responsible for packaging,

processing and exporting of pre-mRNA molecules

[183,184]. They are also involved in gene regulation

through a variety of protein–protein, protein–RNA and

protein–DNA interactions [184]. hnRNP C1 and

hnRNP C2 are splice variants which differ by a 13-

amino acid stretch present in the middle of the coding

sequence of the C2 gene [184,185] and are frequently

referred to as hnRNP C1/C2 or simply hnRNP C [184].

Specifically, hnRNP C1/C2 proteins have been shown

to be involved in mRNA transcript packaging, splicing,

nuclear retention and mRNA stability [183]. Under nor-

mal conditions, they are both located in the nucleo-

plasm, but not in nucleoli [186]. hnRNP C1/C2 proteins

associate with RNA as tetramers formed by three

hnRNP C1 subunits and one hnRNP C2 subunit, with

an arrangement that seems to be critical for nucleic

acid-binding [187]. Each monomer contains a single

RRM, a delineated nuclear localization signal (NLS), a
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basic leucine zipper-like motif (bZLM) and an acidic

auxiliary domain [187].

hnRNP C1/C2 are also nucleosome remodelling pro-

teins that bind chromatin in response to genomic dam-

age [184,186]. Experiments analysing general stress

response pathways suggest a role for these proteins in

the DDR [184]. Despite their DNA damage-induced

chromatin-binding ability, hnRNP C1/C2 are not

actively recruited to the sites of DNA breaks [186]. Con-

sequently, they might be involved in the functioning of

chromatin in a global context, rather than in specifically

targeting DNA breaks [186]. It has been proposed that

hnRNP C1/C2 may play an indirect role in the DDR by

coordinating the changes in gene expression required

for DNA repair after irradiation through direct interac-

tion with genomic DNA, DNA-associated proteins and/

or mRNA transcripts [184,186]. The hnRNP C1/C2

proteins bind to the Ku protein complexed to RNA

transcripts and can be phosphorylated by the catalytic

subunit of the DNA-dependent protein kinase [188].

This suggests a possible role for hnRNP C1/C2 in DNA

DSB repair through the NHEJ pathway [186]. Other

studies have connected hnRNP C1/C2 with telomere

repair and maintenance [189]. Similarly to the above-de-

scribed NCL:Cc complex, the DNA damage implica-

tions of the hnRNP C1/C2:Cc complexes are not fully

understood yet.

Acidic regions as main targets for
cytochrome c

Since the mid-1980s, it has been known that non-his-

tone chromosomal proteins are enriched with certain

regions primarily composed of acidic amino acids

[190]. Such acidic tails could indeed play an important

role in anchoring proteins to basic histones [191] and

regulating nucleosome assembly and disassembly [192–
194]. The role of histone chaperones in chromatin

reorganization has been widely studied, with particular

focus on the role of their acidic regions [195,196].

From a structural point of view, histone chaperones

exhibit a wide variety of different motifs, but a com-

mon feature is the presence of acidic stretches with a

high content of glutamates and aspartates. These

domains are often found near the C-terminal end of

histone chaperones and are usually disordered in the

absence of any partner [197]. At physiological pH, his-

tones are positively charged, and hence, their interac-

tion with DNA is electrostatically driven. However,

their positive charges allow them to engage in undesir-

able interactions with diverse acidic components of the

cell, which may result in protein aggregates [196]. The

acidic regions of histone chaperones thus enable them

not only to bind histones to prevent their aggregation,

but also to escort histones throughout their synthesis,

transport and assembly/disassembly from DNA mole-

cules [195,197,198].

Acidic disordered stretches, a.k.a. LCARs, become

effective ‘readers’ of positively charged histones through

electrostatic interactions. Such molecular recognition is

improved by additional contacts between the folded

regions of histone chaperones and histones [199–202].
Several studies indicate that the acidic regions of chap-

erones can actually establish non-electrostatic contacts

with histones, thereby contributing to substrate speci-

ficity of histone chaperones [203–205].
The acidic disordered stretches of histone chaper-

ones display a high prevalence of acidic amino acids

but a low number of aromatic or hydrophobic residues

[195]. They behave as IDRs since the electrostatic

repulsion between the negatively charged side chains

keeps them flexible and unstructured in solution [206].

IDRs exhibit a wide ensemble of conformational states

[207]. Such suppleness allows the adoption of different

conformations when binding to a protein partner—a

phenomenon commonly known as ‘fuzziness’. Fuzziness

adds flexibility, conformational heterogeneity and versa-

tility to the protein–protein recognition processes, thus

facilitating complex regulation [208]. IDRs can act as

molecular hubs, showing multivalent interactions with

multiple partners within the same stretch of amino acids

[209]. The LCAR-involving complexes are driven by a

high number of transient contacts with fast association

and dissociation rates. Interestingly, the acidic disor-

dered stretches of histone chaperones take advantage of

these features for binding histones, allowing a more pre-

cise and adaptive complex formation [195].

As discussed above, several histone chaperones are

able to interact with Cc [26–28]. More in-depth studies

of Cc specifically complexed to SET/TAF-Ib and

NRP1 showed that Cc interferes with the nucleosome

assembly activity of the two chaperones [31,132]. Plas-

mid supercoiling and nucleosome assembly assays

showed that Cc complexed with chaperones impairs

the function of the latter. Cc competes with histones

for binding to SET/TAF-Ib and NRP1, as inferred

from 1D 1H nuclear magnetic resonance (NMR) and

electrophoretic mobility shift assays [31,132]. Further-

more, 2D [1H-15N] NMR titration experiments

revealed a spread pattern of residues on the Cc surface

affected by binding to histone chaperones, in particu-

lar residues at the haem-surrounding area and the face

opposite to the haem crevice [210–213]. Such experi-

ments suggest that Cc forms fuzzy complexes with his-

tone chaperones, as reported in other systems [208]. It

is noteworthy that the haem-centred surface area of
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Cc is crucial for non-redox interactions with histone

chaperones, as this surface of c-type cytochromes is, in

general, for electron transfer in well-known respiratory

and even photosynthetic complexes [214–222].
Cc and histones share some biophysical features,

namely a molecular weight of ca. 12 kDa and a highly

positive electrostatic surface potential [223–225]. Based
on such common physicochemical properties and their

direct competition for binding to histone chaperones,

it is plausible that Cc specifically targets the acidic

regions of histone chaperones, as do histones, thus

explaining how Cc might alter histone eviction/deposi-

tion to facilitate the action of DNA repair factors

(Fig. 1). Further experimental work is however

required to make general the molecular recognition

mechanisms of Cc towards the acidic regions of chap-

erones by exploring other Cc:chaperone complexes,

such as those involving the ANP32 protein family

members, NCL or hnRNP C1/C2 [27,28].

Nuclear condensates result from
electrostatically driven LLPS:
examples modulated by Lys-rich
proteins

Many nuclear processes—for example DNA transcrip-

tion, DNA repair, RNA processing, pre-ribosome

assembly—occur within nuclear condensates that com-

partmentalize and concentrate the required protein

and nucleic acid molecules [226]. Such nuclear conden-

sates exhibit emergent properties and common features

that provide the cell with particular regulatory capabil-

ities [226]. In addition to the LLPS-mediated DNA

repair foci addressed in Role of chromatin modifiers in

DNA foci and their regulation by nuclear cytochrome

c, chromatin stands out as nuclear condensates where

histone proteins and DNA can display liquid-like fea-

tures. We discuss below the role of histone lysines in

regulating the formation of nuclear condensates.

Role of lysines in LLPS

Cation–p and electrostatic interactions are the main

driving forces of biomolecular condensation. In this

context, Tyr and Arg residues have been identified to

be essential in LLPS leading to condensates of FUS

family proteins, while Gly residues regulate droplet flu-

idity and Gln and Ser residues promote droplet hard-

ening [227]. Nucleophosmin (NPM) condensates at the

granular component of the nucleolus are mediated by

its binding to proteins bearing multivalent Arg-rich

motifs [228,229]. Another example of Arg-mediated

LLPS is the condensates formed by heterogeneous

nuclear ribonucleoprotein A2 (hnRNP A2), which pos-

sesses a charged residue-rich LC domain that is crucial

for LLPS because methylation of Arg residues by pro-

tein–arginine methyl transferase 1 (PRMT1) hampers

phase transition by disrupting cation–p interactions

between aromatic and Arg residues [230]. Similar stud-

ies have been performed with DEAD-box helicase 4

(Ddx4) and FUS proteins [231–233].
Like arginine, lysine can establish cation-p and elec-

trostatic contacts (Fig. 2). The Lys side chain is posi-

tively charged at physiological pH and is one of the

most frequently post-translationally modified amino

acids [234]. Over the past few years, the spotlight was

turned on the involvement of Arg residues in LLPS,

but several recent studies have pointed out that Lys

residues could also participate in biomolecular conden-

sation and its regulation by PTMs [235–237]. A com-

parison between the physicochemical properties of

Lys-rich and Arg-rich condensates revealed that Lys-

rich/RNA condensates are more dynamic and differ

from the Arg-rich/RNA coacervates, which are over

100 times more viscous [235,237]. Both Arg and Lys

residues have the same electrostatic charge at physio-

logical pH, but the structure and geometry of their

side chains modulate interaction with other molecules.

The planar guanidinium group of arginine facilitates

the cation–p interactions with aromatic residues and is

involved in p–p contacts [238], in contrast with the

weaker directional preference of the lysine ammonium

group. The number and nature of hydrogen bonds

formed by the ammonium and guanidinium cations

differ as well. Lysine can actually form more hydrogen

bonds than arginine, and the bond angle formed by

lysine is distorted to 120° in contrast to the almost

perfectly co-linear bond formed by the guanidinium

group [239,240]. Such differences are proposed to

weaken the interactions of Lys residues with RNA,

thereby increasing the diffusion time of Lys-rich versus

Arg-rich peptides in droplets [235,237]. Altogether,

these findings provide the fundamental principles to

understand how droplet assembly, dynamics and mul-

tiphase coexistence are regulated by Arg/Lys residues.

Histones as Lys-rich proteins taking part in

condensates

Recent studies have suggested that heterochromatin

may possess liquid droplet-like properties [241]. In this

way, nuclear separation of silenced heterochromatin

from actively transcribed euchromatin is in part driven

by LLPS [242,243]. This seems to be sufficient to pro-

duce the compaction degree necessary to organize the

genome in the nucleus [244]. Since histones package
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cellular DNA into chromatin, it is not surprising that

these proteins contribute to heterochromatin formation

through reversible LLPS with DNA.

It has been reported that a mixture of the four core

histones and the linker histone H1 undergoes LLPS

with double-stranded DNA [245]. Recently, it was also

demonstrated that histone H1 condenses into liquid-

like droplets with DNA in vitro [245,246], as well as

with both DNA and nucleosomes in cell nuclei [247].

Such a H1-mediated phase separation observed in

nuclei is in agreement with the higher net positive

charge and greater structural disorder of H1 compared

with core histones [247]. Regarding the core histones,

only H2A was able to induce droplet formation in the

presence of DNA and nucleosomes, but to a lesser

extent than H1 [247]. Interestingly, the other core his-

tones (H2B, H3 and H4) precipitated under identical

conditions. These studies strongly support a key role

for histones in LLPS-mediated formation of hete-

rochromatin domains [247].

Histone tails drive the formation of liquid conden-

sates as they behave as IDRs involved in weak and

often reversible interactions with several ligands and

neighbouring nucleosomes [244,248]. Mutation of Lys

and Arg residues in the histone H4 tail leads to a

chromatin defective in droplet formation, thus reveal-

ing the vital role of contacts between positively

charged histone tails and negatively charged DNA

molecules in chromatin LLPS [244].

Linker histone H1, DNA lengths between nucleo-

somes, histone PTMs and nuclear proteins exhibiting

phase separation properties might regulate chromatin

LLPS, thereby contributing to chromatin reorganiza-

tion and compartmentalization [244,248,249]. All these

factors also finetune droplet properties to form con-

densates of different density, similar to the behaviour

of chromatin inside cells [244,249].

Effect of lysine acetylation on nuclear

condensates

Lys residues undergo PTMs, including acetylation,

methylation, ubiquitylation, SUMOylation and glyca-

tion, among others [250]. In particular, lysine acetyla-

tion leads to neutralization of its positive electrostatic

charge and thereby impairs its cation–anion and

Fig. 2. Nuclear condensate formation is dependent on PTMs of lysines. Positively charged residues of IDRs mediate LLPS. In fact, Lys

residues in IDRs facilitate cation–anion and cation–p interactions within droplets formed by LLPS, whereas lysine acetylation impairs such

interactions and, consequently, LLPS.
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cation–p interactions (Fig. 2). With this in mind,

Matthias and co-workers showed that deacetylation

of DEAD box RNA helicase 3 X-linked (DDX3X) is

necessary for robust LLPS and, consequently, for

stress granule maturation [236].

The dynamics of chromatin condensation/decon-

densation are essential for several cell processes,

including gene regulation, the DDR and cell differen-

tiation [251–253]. Histones undergo different PTMs

that alter their interaction with DNA and other his-

tones (Table 1) [254–257]. In particular, acetylation is

a reversible PTM that introduces an acetyl group

from acetyl-CoA into the e-amino group of lysine.

Specifically, acetylation of Lys residues in histone N-

terminal tails—mainly H3 and H4—is related to chro-

matin decondensation (or formation of euchromatin),

by neutralizing lysine positive charges and enabling

specific electrostatic interactions between histones and

DNA [258–260], whereas the absence of lysine modifi-

cations allows chromatin condensation (or formation

of heterochromatin) by reversible LLPS (Fig. 3).

Recently, Rosen and co-workers described the con-

densation and LLPS of acetylated chromatin [244]

with histone acetylated lysines acting as binding plat-

forms for bromodomain-containing proteins (bro-

modomains) involved in gene transcription and

chromatin remodelling [261,262]. Although bromod-

omains allow acetyl-chromatin condensation, the

resulting droplets have singular physicochemical

properties and are non-miscible with unmodified

chromatin droplets [244].

As mentioned in SET/template-activating factor-

Ib, histone acetylation and deacetylation reactions

are catalysed by HATs and HDACs, respectively

[107,108] (Fig. 3). Histone acetylation not only plays

a crucial role in transcriptional upregulation

[109,263,264] but is also required for recruitment of

the DDR effector proteins [265]. In fact, growing

evidence supports a role for histone acetylation in

DNA repair [72]. Thus, residue acetylation at a

specific position followed by deacetylation is relevant

for viability after DNA repair during homologous

recombination [266], which suggests that dynamic

changes in histone acetylation accompany DSB

repair. The pattern of acetylation is highly conserved

among eukaryotes, highlighting the importance of

this PTM in chromatin remodelling [267]. As also

mentioned in SET/template-activating factor-Ib,
another regulatory mechanism is based on inhibition

of the HAT activity of p300/CBP and PCAF acetyl-

transferases exerted by the INHAT complex, which

impairs lysine acetylation by binding to histones

(Fig. 3) [105,160,268]. Thus, the INHAT complex T
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inhibits histone acetylation through a ‘histone mask-

ing’ mechanism, which consists in hindering the his-

tone surface from acetyltransferases [105] (Fig. 3).

SET/TAF-Ib, as a component of the INHAT com-

plex, mediates nucleosome assembly and acts in the

DDR by preventing the binding of several chromatin

modulator factors to DNA, thereby resulting in DNA

condensation [91,121]. Under DNA damage, Cc

migrates from mitochondria to the nucleus, where it

interacts with SET/TAF-Ib and impairs its nucleosome

assembly activity [31]. The degree of such inhibition

can be regulated by the amount of Cc that reaches the

nucleus [130]. On the basis of these findings, nuclear

Cc emerges as an additional regulating agent of his-

tone acetylation by blocking SET/TAF-Ib, and, conse-
quently, INHAT complex functionality (Fig. 3).

DNA methylation—which is another hallmark of

chromatin condensation—and histone acetylation

depend on one another, thus resulting in crosstalk

mediated by SET/TAF-Ib as DNA demethylation

inhibition is also mediated by the histone chaperone

[269,270]. A fine balance between DNA methylation

and histone modification at the level of lysines thus has

significant implications for understanding cell develop-

ment, reprogramming and tumorigenesis [108,271].

Conclusions and perspectives

In addition to its well-established functions in mito-

chondrial metabolism and apoptosis, growing evidence

reveals an astounding, unexpected role for Cc in the

cell nucleus upon DNA damage. In the nucleus, this

hemeprotein binds to several histone chaperones

involved in chromatin remodelling following the

DDR. Since nuclear Cc interferes with the nucleosome

assembly activities of such chromatin factors, it might

likewise alter chromatin dynamics after DNA insults.

The role of Cc in the nucleus may actually be wider if

the hemeprotein regulates INHAT and/or PP2A activi-

ties by binding to histone chaperones, for example

Fig. 3. Interplay among HAT, INHAT and Cc in chromatin remodelling. Enzymatic acetylation and deacetylation of lysines at the N-terminal

tail of histones, mainly H3 and H4, are responsible for chromatin remodelling, thereby regulating the reversible condensation of euchromatin

into heterochromatin, with a more compacted structure. HAT catalyses the acetyl group transfer for lysine acetylation, whereas HDAC plays

the antagonistic role. The action of HAT can, however, be inhibited by the INHAT complex, which binds to deacetylated histones to cause a

‘masking effect’ that decreases their net positive charge, which is essential for histone–histone and histone–DNA electrostatic interactions.

As the INHAT complex is composed of TAF-Ia, SET/TAF-Ib and ANP32A proteins, the action of INHAT can in turn be impaired by Cc, which

binds to SET/TAF-Ib upon DNA break and translocation of Cc into the nucleus.
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SET/TAF-Ib. In this way, nuclear Cc emerges not only

as a major regulatory agent in DNA repair through its

fine-tuning of nucleosome assembly activity and, likely,

nuclear condensate formation, but also moonlights as

a key master protein of cell life and death.
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