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Abstract

Motivation: Novel approaches are needed for discovery of targeted therapies for non-small-cell

lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung

cancer cell lines provides an ideal source for determining candidate drug targets.

Results: Unsupervised learning algorithms uncovered patterns of differential vulnerability across

lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent

candidate targets for therapy and are found to be involved in splicing, translation and protein fold-

ing. In particular, many NSCLC cell lines were especially sensitive to the loss of components of the

LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulnerabilities were also found for

different cell line subgroups. Furthermore, the predicted vulnerability of a single adenocarcinoma

cell line to loss of the Wnt pathway was experimentally validated with screening of small-molecule

Wnt inhibitors against an extensive cell line panel.

Availability and implementation: The clustering algorithm is implemented in Python and is freely

available at https://bitbucket.org/youngjh/nsclc_paper.

Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Non-small-cell lung cancer (NSCLC) remains a significant health-

care burden despite recent progress in drug discovery and develop-

ment. Recent FDA-approved targeted therapies are only intended

for appropriate subpopulations of patients. The drug Xalkori (crizo-

tinib) is highly effective, but only for �4% of lung cancer patients

(Shaw and Engelman, 2013). Similarly, Iressa (gefitinib) and other

EGFR inhibitors target mutations found only in a portion of patients

while the majority have the wild-type version (Laurie and Goss,

2013). Compared with cytotoxic chemotherapy, targeted therapy

has the advantage of greater specificity. However, discovery and de-

velopment of such agents requires the identification of druggable

targets. Inhibitors of certain characteristic mutations, such as KRAS

G12C and G12D, are still under extensive development for clinical

use (Cox et al., 2014; Hunter et al., 2014). The heterogeneity of

NSCLC is another barrier confronting drug discovery. A number of
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different subtypes exist, and identifying the appropriate patient sub-

population for therapy is crucial. Therefore, the problem becomes

one of identifying druggable targets in NSCLC that will guide dis-

covery of small-molecule compounds or antibodies against these tar-

gets, and also to identify the patient subpopulations to which the

targets apply. We attempt to tackle the former issue through compu-

tational analysis of a high-throughput whole genome RNA interfer-

ence (RNAi) screen against a panel of NSCLC cell lines.

When identifying drug targets, one approach is to identify genes

whose knockdown selectively leads to death of cancer cells but not

matched normal cells. Such genes represent genetic vulnerabilities

and potential drug targets. Several studies have been able to use

whole genome RNAi to identify genetic vulnerabilities for cancer

drug target discovery. A screen against all genes in two lung cancer

cell lines identified proteasome members as candidate targets and

discovered that small-molecule proteasome inhibition synergized

with radiotherapy in a mouse xenograft model (Cron et al., 2013).

Another study applied a whole genome shRNA screen on lung can-

cer cell lines to discover genes that were part of the Wnt pathway

whose knockout potentiates EGFR inhibition (Cas�as-Selves et al.,

2012).

For drug discovery, it is desirable to investigate many cell lines.

A major effort, termed Project Achilles, involved RNAi knockdown

of more than 11 000 human genes using shRNA libraries in over

100 cancer cell lines. Ovarian cancer cell lines were found to be es-

pecially dependent upon �50 genes (Cheung et al., 2011). A follow-

up study sought to uncover essential cancer genes based on the

hypothesis that certain genes that are not themselves oncogenes but

show copy-number loss could be cancer vulnerabilities. A scoring

scheme was developed to prioritize genes that were essential to can-

cer cell lines and also exhibited partial copy number loss (Nijhawan

et al., 2012). Recently, independent of Project Achilles, extensive

high-throughput chemical and genetic screens were employed to ex-

plore new avenues of treating NSCLC. The study found molecular

signatures of FLIP and COPI addiction and indolotriazine sensitivity

that indicate genetic vulnerabilities present in patient populations

(Kim et al., 2013). The genetic screens leading to these results

included siRNA screening of a number of lung cancer cell lines. This

screening was ultimately conducted on a whole genome scale, which

motivated this study.

Here, we propose a novel computational approach to prioritize

candidate drug targets for NSCLC by subdividing cell lines into dif-

ferent groups and identifying genetic vulnerabilities targeted to each

group. In particular, we aim to attain a binary partitioning of cell

lines into either sensitive or resistant to targeting of a particular gen-

etic vulnerability. We are interested only in genetic vulnerabilities

that sensitize a subgroup of cell lines rather than all cell lines because

due to the genetic heterogeneity of lung cancer, an effective universal

treatment for all NSCLC types is not thought to exist. Applications

of unsupervised learning algorithms were developed that identify

biological processes and protein complexes to which NSCLC cell

lines are differentially sensitive upon siRNA knockdown. The top-

scoring results represent lung cancer genetic vulnerabilities and can-

didate therapy targets.

2 Methods

2.1 Experimental datasets and procedures
Our study centers on a cell line panel consisting of 12 patient-

derived NSCLC cell lines and one immortalized normal epithelial

cell line (Supplementary Table S1). Included among the cell lines are

subtypes commonly observed in patients: adenocarcinoma, squa-

mous-cell and large-cell carcinoma. As described previously (Kim

et al., 2013), a whole genome knockdown screen with Ambion and

Dharmacon siRNA libraries in the 96-well plate format was con-

ducted against the cell line panel. For each gene, either three siRNAs

(Ambion) or four siRNAs (Dharmacon) were pooled, and cell line

viability was measured using the CellTiter-Glo (Promega) assay.

Raw data were row and column median normalized. Using siMacro

(Singh et al., 2013), a robust Z score was calculated from the screen-

ing data to reflect the viability of each cell line to knockdown of a

single gene. A robust Z score is defined as

z ¼ Cell viability�median

Median absolute deviation

and is less sensitive to outliers than a traditional Z score. Both the

median and median absolute deviation were calculated over data

grouped by experimental batch.

It was determined that robust Z scores less than �3.0 reflected

non-viability. Scores were combined from both Ambion and

Dharmacon libraries by taking the minimum of the scores. Thus, it

was assumed that disagreement between the results of the two libra-

ries were more likely to be due to false-negatives. The siRNA screen

Z scores were further simplified by binarizing as follows. All robust

Z scores less than �3.0 were set equal to 1; otherwise the score was

set equal to 0. In essence, a binarized score of 1 represents a hit or

sensitivity of a cell line to the corresponding gene knockdown.

A larger pool of NSCLC cell lines encompassing the cell line

panel described above was screened with the tankyrase inhibitors

IWR-1-endo (Calbiochem) and XAV 939 (Tocris) in an 8-point

4-fold dilution series (top dose ¼ 100 mM) in 96-well plates. Cells

were plated 24 h prior to the addition of drug, incubated for 4 days,

and assayed using MTS (CellTiter 96 Aqueous One Solution Cell

Proliferation Assay) according to the manufacturer’s instructions

(Promega). Cell number per well was determined empirically and

ranged from 500 to 4000 per well, inversely proportional to dou-

bling times (typically 2000/well). Dose response curves were gener-

ated and IC50s calculated using in-house software, DIVISA. All cells

were grown in RPMI-1640 (Sigma) supplemented with 5% FBS and

incubated at 37�C in a humidified atmosphere with 5% CO2. Cell

lines were authenticated using the Power-Plex 1.2 kit (Promega) and

confirmed to match the DNA fingerprint library maintained by

ATCC and the Minna/Gazdar laboratory and confirmed to be free

of mycoplasma by e-Myco kit (Boca Scientific).

RNAi screens of cancer cell lines from Project Achilles (Cowley

et al., 2014) were utilized as an external comparison dataset for our

study. Results from shRNA knockdown of 5711 genes on 19

NSCLC cell lines were extracted from Project Achilles v2.4.3. NaN

values were imputed by replacement with row medians. No thresh-

olding of the data was carried out so viability was assessed on a con-

tinuous spectrum. We followed the Project Achilles’ convention of

identifying lower gene knockdown values with greater essentiality

and higher values with reduced essentiality. A number of genes were

associated with multiple knockdown values for each cell line; these

data were kept as is.

2.2 Application of k-means clustering
The gene sets examined for genetic vulnerabilities were protein com-

plexes chosen from CORUM (Ruepp et al., 2010) and literature

sources (Havugimana et al., 2012; http://metazoa.med.utoronto.ca).
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The full RNAi data were represented as a m� n matrix M where m

is the number of genes, n is the number of cell lines, and

Mij ¼
(

0; if cell line j survives knockdown of gene i

1; otherwise

Extracting the RNAi sensitivity profiles for genes in a protein

complex yields a r� n submatrix P of M where r is the number of

genes in the complex. Thus, every protein complex is represented as

a matrix of ones and zeros.

For each protein complex, we measured the degree of bimodal

response to gene knockdowns as follows. Denoting by P the matrix

for a protein complex as above, we computed a vector v by calculat-

ing the column means of P: P : vj ¼ ð1=rÞ
Pr

i¼1 Pij. Then k-means

clustering with k ¼ 2 was applied to v, and the difference between

the resulting centroids was the score assigned to each protein com-

plex. By calculating the column means, we normalized for the size of

the complex. We considered two different implementations of the

k-means clustering algorithm. First, we used the standard implemen-

tation found in the Python library scikit-learn, which runs the algo-

rithm 10 times with different centroid seeds, choosing the result on

the basis of the within-cluster sum-of-squares (Pedregosa et al.,

2011). The technique from k-meansþþ was followed for centroid

initialization (Arthur and Vassilvitskii, 2007). Second, an alternative

implementation was Ckmeans.1d.dp, which employs dynamic pro-

gramming to guarantee optimal solutions for the one-dimensional

case (Wang and Song, 2011).

A permutation test to determine statistical significance was per-

formed in the following manner. For each protein complex, the en-

tire RNAi data for all genes were permuted, followed by repeating

the k-means clustering on the same complex. The permutations

were repeated 1000 times to generate a distribution of scores from

the randomized data. Then the score from the actual complex was

compared with the distribution to calculate a P-value. For every pro-

tein complex, this entire process of generating a distribution of

scores from permuted data to compare against the complex’s actual

score to yield a P-value was repeated. Finally, multiple hypothesis

correction at 10% FDR was carried out using the q-value statistical

package (Storey, 2002). One alternative to the permutation test in

assessing statistical significance is Fisher’s exact test. Specifically, for

each protein complex, a contingency table was tabulated according

to the number of viable and non-viable gene knockdowns, and

which cell line cluster (according to the 2-means clustering) those

knockdowns fell within. The Bonferroni correction at 10% FDR

was applied to the P-values from Fisher’s exact test.

A procedure to benchmark the performance of the 2-means clus-

tering method was based on a leave-one-out strategy. For each pro-

tein complex, a single gene member was randomly withheld. The

remaining gene members formed a training set, on which the

2-means clustering was calculated. The clustering resulted in assign-

ments of cell lines to either a knockdown-sensitive or knockdown-

resistant cluster. Using these assignments, we tested whether the

average number of RNAi hits in the sensitive cell lines for the with-

held gene was greater than that of the resistant lines. To assess for

statistical significance in the training set, multiple hypothesis correc-

tion was performed using a permutation test as described above. A

receiver operating characteristic (ROC) curve was plotted from the

test set consisting of the withheld genes, given that the correspond-

ing training samples were statistically significant. This benchmark-

ing procedure was repeated multiple times and a mean ROC curve

was generated by vertical averaging.

2.3 Biclustering
Independent of the 2-means clustering approach, a second method

was employed to detect NSCLC genetic vulnerabilities without reli-

ance on annotated gene sets. The entire RNAi knockdown dataset

was represented as a matrix as described above, where each row is a

gene knockdown and each column is a cell line. The Large Average

Submatrix (LAS) biclustering algorithm was applied to this matrix

to uncover biclusters in which the rows (genes) exhibit similar be-

havior across a set of columns (cell lines) (Shabalin et al., 2009). In

particular, the desired biclusters have the property of being large in

average value relative to other submatrices of similar size and repre-

sent biological systems to which certain NSCLC cell lines are espe-

cially dependent. The genes corresponding to each bicluster were

then used to query the Database for Annotation, Visualization and

Integrated Discovery (DAVID) for functional enrichment (Huang

et al., 2009a, 2009b). We also searched each bicluster for enrich-

ment of protein complexes by calculating the hypergeometric prob-

ability of obtaining at least the observed number of overlap between

a complex and the bicluster genes. Statistical significance of complex

enrichment was controlled at 5% FDR by the Benjamini–Hochberg

procedure (Benjamini and Hochberg, 1995).

2.4 Alternative methods for determination of gene set

sensitivity
We also considered alternative measures of gene set sensitivity. For

every cell line within each gene set, the probability of observing the

number of ‘hit’ genes (gene knockdowns producing non-viability)

was computed according to a hypergeometric distribution. The re-

sulting probabilities for each line were then multiplied together to

obtain an overall score for the gene set. Statistical significance of the

scores was found using a permutation test, as was done for the

2-means clustering.

3 Results

From a whole genome RNAi screen of NSCLC cell lines, we identi-

fied candidate drug targets in the form of genetic vulnerabilities spe-

cific to cell line subgroups. A couple of factors were considered

when determining genetic vulnerabilities. First, given the heterogen-

eity of NSCLC, gene deletions that are almost universally toxic

across the cell line panel would likely be toxic to other normal

human cells as well. In addition, it is desirable to specifically target

lung cancer cells but not normal cells, yet only one cell line in the

panel was from a non-cancerous normal lineage. This suggests that

in the interest of specificity, the number of cell lines constituting a

genetic vulnerability should not be too large. On the other hand, a

vulnerability consisting of a single cell line may be less likely to gen-

eralize to an appreciable number of patients. Therefore, the chal-

lenge stems from identifying groups of genes to which some, but not

all, NSCLC cell lines are especially dependent. Ideally, these cell

lines would represent a particular patient subpopulation. Another

challenge was to avoid a combinatorially intractable problem of

having to examine all possible combinations of cell lines against all

possible combinations of genes. Novel applications of unsupervised

learning algorithms were developed to overcome these challenges to

prioritize potential NSCLC targets from RNAi sensitivities.

The general workflow of this study is outlined in Figure 1. From

the whole genome RNAi screen on 12 NSCLC cell lines and one

normal epithelial line, we extracted knockdown sensitivity profiles

for selected gene sets. Each gene set was clustered, scored and
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ranked by statistical significance. The clustering score measures the

degree to which the cell lines segregate into sensitive and resistant

groups upon knockdown of genes in the set. Gene sets with a clear

segregation of sensitive and resistant lines are termed bimodal. It is

imperative that our scoring scheme prioritizes such bimodal sets

over other patterns of RNAi sensitivity that would be less desirable

as a candidate drug target. For example, gene sets that are all toxic

or half-toxic are undesirable due to predicted toxicity beyond those

in our cell line panel. In addition, gene sets that are largely resistant

or having a random pattern of sensitivity clearly would not be

desired as well.

3.1 Subgroup-specific NSCLC vulnerabilities are found

among protein complexes
The selected gene sets we chose to examine were 2820 protein com-

plexes. As calculated by the 2-means clustering approach, 35 had

statistically significant scores at 10% FDR from a permutation test

(Supplementary Fig. S1). Fisher’s exact test also determined 33 of

those 35 complexes to be highly statistically significant

(Supplementary Fig. S3c). We found that the standard k-means algo-

rithm and the 1-D optimal k-means method, Ckmeans.1d.dp,

yielded identical results although Ckmeans.1d.dp demonstrated

marked runtime speedup. Finally, simulations of a synthetic dataset

showed that the permutation test for statistical significance was not

biased toward larger or smaller complexes (Supplementary Fig. S4).

Overall, the 2-means clustering method found strong genetic vul-

nerabilities including components of splicing and translation

(Fig. 2). The top-ranking gene sets are protein complexes that all ex-

hibit the desired bimodal behavior, in which one particular group of

cell lines is far more vulnerable to loss of components in the complex

than the other cell lines. Notably, the HBEC30 normal cell line did

not generally show sensitivity to knockdown of any of the top-

ranking vulnerabilities.

RNA splicing is a major category of lung cancer vulnerabilities,

as evidenced by the RNAi sensitivity patterns of the LSm2-8, 17S U2

snRNP and CDC5L complexes. Components of the translation ma-

chinery, represented by the eIF3 complex and ribosome small sub-

unit, constitute another major class of vulnerabilities. Two notable

candidate drug targets are the proteasome and the CCT/TRiC chap-

eronin complex, which gives one of the cleanest signals in terms of

clustering the cell lines into sensitive and insensitive groups.

Moreover, different cell line subgroups exhibit different sensitiv-

ities. For example, HCC95, HCC44, H460 and H2122 are espe-

cially vulnerable to loss of the LSm2-8 complex, while a slightly

broader cell line set is highly dependent upon the CCT complex. A

few cell lines, particularly HCC95, are frequently sensitive to many

of the genetic vulnerabilities. For some of the genetic vulnerabilities,

the cell lines affected do not belong to a single histological subtype.

Rather, they encompass at least one of the three main NSCLC sub-

types of adenocarcinoma, squamous-cell and large-cell carcinoma.

In assessing the performance of our 2-means clustering by a

leave-one-out strategy, only protein complexes above a certain size

Fig. 1. Gene sets with bimodal sensitivity represent NSCLC vulnerabilities.

RNAi sensitivity profiles were extracted for selected gene sets (six examples

shown). A ranking scheme was designed to prioritize gene sets whose knock-

down leads to a bimodal response of cell lines

Fig. 2. k-means clustering uncovers differential essentiality of NSCLC cell

lines to protein complexes. The clustering partitions the cell line panel into

two groups: sensitive and insensitive to loss of components of the complex.

Shown are eight of 35 protein complexes that yielded statistically significant

scores (10% FDR)
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were considered. For complexes with at least five members, the

2-means clustering achieves a mean AUC of 0.62, with the average

being computed over five iterations of withholding a random gene

from each complex. When considering protein complexes containing

at least eight members, a mean AUC of 0.66 is attained over eight it-

erations (Supplementary Fig. S2).

We applied our 2-means clustering method to data from Project

Achilles on sensitivity of 19 NSCLC cell lines to shRNA knockdown

of 5711 genes. Due to the lower coverage of genes compared to our

whole genome knockdown dataset, the 2-means clustering is able to

be applied to only a portion of many of the protein complexes.

According to a permutation test, we were unable to find any statis-

tically significant protein complexes at the same FDR 10% level

previously used. The top scoring result is a ribosomal complex, fol-

lowed by two proteasome complexes. A majority of the significant

protein complexes found from our own RNAi dataset also maintain

the general pattern of partitioning into sensitive and resistant cell

lines in the Project Achilles experiment (Supplementary Fig. S1).

Because no statistical significance was found, we did not carry out

the benchmarking procedure as above.

3.2 Biclustering finds genetic vulnerabilities without

reliance on annotated gene sets
LAS biclustering was employed as an independent and complemen-

tary approach to identifying candidate drug targets. The 2-means

clustering approach relies on annotated gene sets, namely protein

complexes, to address the challenge of selecting gene groups to inter-

rogate for bimodal response to RNAi knockdown. On the other

hand, biclustering offered an alternative strategy to tackle this chal-

lenge as it could find genetic vulnerabilities without regard to any

prior annotation. The LAS algorithm found 22 statistically signifi-

cant biclusters with Bonferroni-corrected P-values <10�5. Of the

top 10 highest ranking biclusters, the first represents a nearly univer-

sally toxic set—all of the lung cancer cell lines are vulnerable to loss

of almost any of the genes. The next best-ranking results are those

which are toxic only to a single cell line. The lower-ranked statistic-

ally significant biclusters tend to represent vulnerabilities for a

broader set of cell lines (Supplementary Table S2). Functional en-

richment was not found for three of the top 10 results. In addition,

searching each bicluster for enrichment of protein complexes yielded

heavy enrichment for the spliceosome. For most of the biclusters,

the functions of the enriched protein complexes match those found

from the DAVID enrichment (Supplementary Table S3).

Many of the protein complexes from 2-means clustering also par-

ticipate in biological processes found in LAS biclustering (Table 1).

In particular, there appears to be frequent enrichment for translation

and splicing, which are the functions of the ribosome small subunit,

and the LSm2-8, CDC5L and 17S U2 snRNP complexes. No func-

tional enrichment was found for the bicluster genes affecting

HBEC30, which was also often resistant to knockdown of the pro-

tein complexes prioritized by 2-means clustering. Interestingly in

2-means clustering, HCC4017, HCC366, and H1819 were mostly

among the groups of resistant cell lines although in biclustering,

their genes were enriched in translation, splicing and proteasome

components. Upon closer examination, the genes responsible for

this enrichment are different from those comprising the translation,

splicing and proteasome protein complexes. Apparently, biclustering

complements the 2-means clustering in uncovering certain genetic

vulnerabilities not found by the latter. We also note that the Wnt

pathway, which is enriched in the 7th-ranked bicluster, was not dis-

covered by the 2-means clustering as many of its genes either did not

appear in our protein complex set or were only present individually

in single complexes.

3.3 Small-molecule screen confirms predicted cell line

sensitivity
One notable bicluster showed enrichment for the Wnt pathway

(Fig. 3A and B). The H2073 adenocarcinoma cell was highly vulner-

able to loss of Wnt pathway members. This suggests that small-mol-

ecule compounds targeting Wnt should reproduce the RNAi gene

knockdown sensitivity pattern when tested on the cell line panel.

Two Wnt inhibitors, IWR-1 and XAV939, were screened on a larger

group of cell lines encompassing the panel, and the results confirmed

Table 1. Biclustering uncovers unique vulnerabilities of single

NSCLC cell lines to biological processes

Bicluster

rank

Size

(genes � lines)

Lines

affected

Enriched annotations

1 1591 � 12 All but HBEC30 Translation, splicing,

kinetochores, mitosis

2 756 � 1 HBEC30 No enrichment

3 1060 � 1 HCC4017 Translation, splicing,

nuclear lumen

4 1141 � 1 HCC366 Nuclear proteins and

proteasome non-ATP

subunits

5 1219 � 1 H1819 Translation, splicing

6 813 � 1 H1155 Nucleolar and cytoskeletal

proteins

7 1154 � 1 H2073 Wnt pathway

8 859 � 2 H460, H2122 No enrichment

9 920 � 1 H1395 Translation

10 1254 � 1 H1993 No enrichment

The 10 highest scoring biclusters found from the LAS algorithm each repre-

sent genetic vulnerabilities for particular NSCLC cell lines. The genes in each

bicluster were searched for functional enrichment.

Fig. 3. Biclustering finds strong vulnerability of H2073 to loss of Wnt signal-

ing. (A) The seventh-ranked bicluster, containing 1154 genes, is enriched for

the Wnt pathway. (B) The sensitivity profile of the gene set comprising the

functional enrichment shows sensitivity of H2073 to knockdown of any of the

genes in the set. (C) Screening of IWR-1 and XAV939 against an expanded

panel of NSCLC cell lines (each denoted by a diamond) indeed shows that

H2073 is markedly vulnerable to chemical inhibition of the Wnt pathway
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the predicted sensitivity (Fig. 3C). The two compounds had a select-

ive deleterious effect on H2073 while essentially sparing the other

cell lines. Each cell line denoted by a diamond was colored accord-

ing to a normal mixture model that predicted the number of groups.

If there were two groups, green and red were used for sensitive and

resistant, respectively. Otherwise, the diamonds were colored gray.

3.4 Alternative approaches to measuring complex

sensitivity do not prioritize bimodality
We evaluated several other methods to measure complex sensitivity.

These approaches depended on annotated gene sets, as opposed to

biclustering, which has no such constraints. Cell line viability results

from our whole genome screen are not approximately normally dis-

tributed (Supplementary Fig. S3a), which precludes the use of a sim-

ple z-test comparing the complex members’ scores to the

background distribution. Even if the data were normally distributed

(as the Project Achilles data is), this method would not distinguish

bimodal from half-toxic complexes (Supplementary Fig. S3b), and

in fact would prioritize universally toxic complexes.

We also considered using the hypergeometric distribution to as-

sess the significance of multiple occurrences of sensitivity within a

protein complex. From a permutation test, we found 544 statistic-

ally significant protein complexes at FDR 10% (Supplementary Fig.

S3d). With the large number of protein complexes being statistically

significant, we felt that this method was less discriminative than the

2-means clustering approach in prioritizing complexes.

4 Discussion

Collectively, the protein complexes we discovered to be NSCLC

genetic vulnerabilities span various cellular processes including

splicing, translation and protein folding. It is natural to ask how

they fit in with currently established cancer therapies and whether

known drugs could be repurposed for these complexes. Clearly, they

contrast with hormonal therapy or the usual mitotic targets of cyto-

toxic chemotherapy. It turns out that some of the strongest genetic

vulnerabilities are known targets of small-molecules.

Arsenic trioxide (As2O3) targets the TRiC/CCT complex (Pan

et al., 2010) and has been used to treat acute promyelocytic leuke-

mia in patients who did not respond well to other types of chemo-

therapy (Shen et al., 1997; Soignet et al., 1998, 2001). As2O3 can

perhaps be repurposed for NSCLC, particularly for patients whose

tumors bear similarity to the sensitive cell line subgroups identified

from the 2-means clustering analysis. Several studies have evaluated

the effect of As2O3 in human lung primary fibroblasts and in the

lung cancer cell lines A549 and H460 (Li et al., 2009; Park and

Kim, 2012). Collectively, they suggest that H460 is markedly more

sensitive to As2O3 than lung fibroblasts, consistent with the CCT

complex vulnerability we observed.

We also identified the proteasome as a candidate NSCLC drug

target and recently, proteasome inhibitors have been investigated as

anti-cancer agents. One such inhibitor is Velcade (bortezomib),

which has been FDA-approved for multiple myeloma (Kisselev

et al., 2012). Bortezomib has shown to be effective in combination

with other chemotherapy agents for NSCLC (Davies et al., 2007)

and has been evaluated in clinical trials for NSCLC as well (Besse

et al., 2012; Jones et al., 2012; Piperdi et al., 2012). This also sug-

gests that newer and more specific proteasome inhibitors, such as

Kyprolis (carfilzomib) could be efficacious for patients with

NSCLC.

In addition, translation and splicing emerged as strong genetic

vulnerabilities from the 2-means analysis. Previously, translation has

been proposed as a potential target in cancer (Grzmil and

Hemmings, 2012). Moreover, eIF3 is known to be overexpressed in

lung cancers (Pincheira et al., 2001), and ectopic expression of five

eIF3 subunits has been shown to transform immortalized fibroblasts

into malignant cells (Zhang et al., 2007). Notably, in our study we

found that knockdown of four of those five subunits strongly sensi-

tizes six of the 12 NSCLC cell lines in our panel, while an immortal-

ized epithelial line is comparatively unaffected (Fig. 2). The splicing

apparatus has been suggested as a cancer target as well (Grosso

et al., 2008; van Alphen et al., 2009). Of the splicing-associated pro-

tein complexes discovered from the 2-means analysis (Fig. 2), the

SF3b component of U2 snRNP is known to be targeted by a number

of small-molecule compounds. Both the pladienolides and meaya-

mycin target SF3b, and the latter has been shown to be more dele-

terious in human lung cancer cells than normal lung fibroblasts

(Albert et al., 2009; Bonnal et al., 2012).

Some of the NSCLC genetic vulnerabilities that were found by

our computational analysis include protein complexes that may ap-

pear to be entirely essential. It is perhaps surprising that certain cell

lines are largely resistant to knockdown of many of these genes. One

explanation may simply be a result of the strict thresholding of the

RNAi data to produce binary readings of cell line viability, which

could be affected by the <100% sensitivity of the assay. Another ex-

planation may be provided by essential gene ‘moonlighting’ and

‘flipping’ of protein complex essentiality between distantly related

species (Ryan et al., 2013). It was shown that certain protein com-

plexes almost completely flip essentiality between Saccharomyces

cerevisiae and Schizosaccharomyces pombe. A similar phenomenon

may be occurring among our NSCLC cell line panel. Although the

cell lines are not necessarily distantly related, they likely differ suffi-

ciently due to different mutational compositions. Different yeast

species flip protein complex essentiality as a result of adaptations to

differing needs and environments, a phenomenon likely common to

cancer cells as well. Moreover, particular NSCLC cell lines are

largely resistant to loss of most, but not all, members of certain pro-

tein complexes. Those genes that are mostly essential in both sensi-

tive and insensitive cell line subgroups could exhibit ‘moonlighting’

behavior by having multiple functions in both essential and nones-

sential processes.

The NSCLC genetic vulnerabilities uncovered by the computa-

tional analysis described here extends an earlier study (Kim et al.,

2013) in uncovering additional potential targets for therapy that

were not previously reported. While our study shares the general

aim of identifying genetic vulnerabilities, we exclusively focus on

identification of biological systems, such as protein complexes, that

certain lung cancers are especially dependent upon. Our results also

present a complementary viewpoint to the Project Achilles effort in

analyzing whole genome RNAi knockdown of cancer cells. One

goal from Project Achilles was to discover genes that simultaneously

had partial copy number loss and were essential to cancer cells

(Nijhawan et al., 2012). Interestingly, the results from that analysis

found single gene vulnerabilities in splicing, translation and the pro-

teasome as well. One such vulnerability was LSM4, which is a part

of the LSm2-8 complex. A key difference is that the NSCLC vulner-

abilities presented here are from the viewpoint of looking not only

at single genes but biological systems such as protein complexes. In

contrast with previous analyses, we obtain cell line subgroups that

may represent particular patient populations along with candidate

targets for each of those subgroups.
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5 Summary

Novel candidate drug targets were found from computational ana-

lysis of a whole genome RNAi knockdown screen in NSCLC cell

lines. The targets are protein complexes specific for particular lung

cancer cell lines and function in splicing, translation and protein

folding. Results of previous studies support further investigation of

these protein complexes as avenues of therapeutic intervention in

NSCLC. Moreover, the candidate targets provide an opportunity

for drug repurposing, which could lead to reduced time in the drug

development pipeline. Our results simultaneously establish lung can-

cer cell line subgroups and potentially novel druggable targets that

are specific to each subgroup. This study contributes to a deeper

understanding of therapeutically relevant events at the molecular

scale in NSCLC.
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