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Structural characterization of a protein adsorbed on aluminum
hydroxide adjuvant in vaccine formulation

Linda Cerofolini', Stefano Giuntini?, Enrico Ravera @', Claudio Luchinat'?, Francesco Berti (@ and Marco Fragai

1,2

The heterogeneous composition of vaccine formulations and the relatively low concentration make the characterization of the
protein antigens extremely challenging. Aluminum-containing adjuvants have been used to enhance the immune response of
several antigens over the last 90 years and still remain the most commonly used. Here, we show that solid-state NMR and isotope
labeling methods can be used to characterize the structural features of the protein antigen component of vaccines and to
investigate the preservation of the folding state of proteins adsorbed on Alum hydroxide matrix, providing the way to identify the
regions of the protein that are mainly affected by the presence of the inorganic matrix. L-Asparaginase from E. coli has been used as
a pilot model of protein antigen. This methodology can find application in several steps of the vaccine development pipeline, from
the antigen optimization, through the design of vaccine formulation, up to stability studies and manufacturing process.
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INTRODUCTION

Vaccination is one of the major contributors to the control of
infections in human population globally. Insoluble aluminum salts
have been used to enhance the immunogenicity of antigens
against bacterial and viral infections since 1926, when Glenny
et al. reported their use to improve the response of diphteria
toxoid.! Recently other adjuvants based on oil-in-water emulsions
(i.e. MF59, ASO3) and liposomes have been used for licensed
vaccines and other candidates at different stages of research and
development.>®> However, the aluminum salts are the most
commonly used adjuvants for commercial vaccines and, also
due to their long-term success, they still remain the “gold
standard” against a new adjuvant.*

For licensed vaccines, aluminum(lll) hydroxide (AlumOH) and
aluminum(lll) phosphate (AlumP) are the most commonly used
adjuvants. AlumOH is a chemically crystalline aluminum(lll)
oxyhydroxide (AIOOH), prepared by exposing soluble aluminum
(1) salts (generally Al(H,0)sCls or AIK(SO,),) to alkaline conditions
to obtain a suspension which is finally dehydrated under
hydrothermal conditions. AlumP is a noncrystalline compound
generated by incorporation of phosphate which interferes with
the crystallization process. AlumP can be prepared by mixing the
aluminum salt Al(H,0)sCls or AIK(SO,4), with a basic solution of
trisodium phosphate, or directly mixing aluminum salt with
phosphate solution, followed by precipitation with sodium
hydroxide. The substitution of hydroxyl groups of AlumOH with
phosphate groups results in the formation of aluminum hydro-
xyphosphate, Al(OH),(PO,),, a nonstoichiometric compound in
which the ratio of hydroxyls to phosphate depends on the
precipitation conditions.*

In the final formulation the antigen is adsorbed on the Alum-
based adjuvant and administered as precipitate. After the
injection, a fraction of the antigen is released in the extracellular

fluid and cleared from the injection site. These adjuvants enhance
the immune response by a slow release of the antigen from the
injection site and, more important, through activation of the
dendritic cells and stimulation of CD4+ T cells.> However,
probably due to the complexity and several immunological
pathways operating simultaneously, the mechanism of action of
aluminum adjuvants for enhancing the immune response remains
not fully understood, although they have been used over many
years in vaccines for human use.

Electrostatic interaction, phosphate ligand exchange, hydrogen
bonding and van der Waals interactions may be involved in the
adsorption mechanism depending on antigen, adjuvant, excipi-
ents, pH and ionic strength.6 However, the interaction with the
adjuvant may alter folding, conformation and stability of the
antigen.’® For folded protein antigens, electrostatic forces are
reported to dominate the interaction with the AlumOH hydrated
gel in a manner dependent on the pH and isoelectric point.’”
Alteration of folding and native conformational state of the
epitopes may affect the immune response by influencing the
antigen processing and presentation, the amount of protein
bound to the adjuvant and its binding affinity.® Also the long-term
stability of the antigen in the final formulation is extremely
important for the effectiveness and commercial viability of the
vaccine. Therefore, the characterization of the protein antigen
bound to the aluminum gel adjuvant is particularly relevant for
the development of more effective and stable vaccine. Unfortu-
nately, the heterogeneous composition of vaccines has hampered
for long time the biophysical and structural characterization of the
protein component within the formulation. Desorption from the
aluminum adjuvant and elution have often been used to analyze
post-formulation antigens. However, this strategy does not
provide structural information on the antigen when adsorbed
on the adjuvant. Attenuated total reflectance Fourier-transformed
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Fig. 1

2D "N "3C NCA a and NCO b spectra of ANSII-AlumOH (blue, left) and rehydrated freeze-dried ANSII (red, middle); a superposition of

the two NCA and NCO spectra, respectively, is also displayed to help in the comparison (right). The spectra were acquired at ~290 K, MAS

14 kHz and 800 MHz

infrared and fluorescence spectroscopy, circular dichroism and
differential scanning calorimetry have been used to investigate
adjuvant-interacting protein antigens.”'® More recently, electron
microscopy has been used to characterize the antigens in
adjuvant bound states."" However, this approach is not for
general use, and it may be feasible only with extremely large
proteins or protein assemblies.

In the last years, solid-state NMR is emerging as an outstanding
spectroscopic technique in structural biology,'>™** and to inves-
tigate, at atomic detail, difficult protein systems in many different
states, including biosilica-entrapped proteins, hydroxyapatite-
protein composites, PEGylated and polysaccharide-conjugated
proteins and proteins grafted onto nanoparticles.?** In particu-
lar, soluble proteins and protein assemblies,>* membrane proteins,
such as bacterial porins'” and transmembrane helix proteins,”
viral capsid components®® and RNA3” have been characterized by
solid-state NMR spectroscopy, opening up promising opportu-
nities for the study of different classes of antigens. Here we show
that atomic structural details on protein antigens adsorbed on
Aluminum gel adjuvant can be achieved by solid-state NMR from
vaccine formulations obtained starting from isotopically enriched
antigens and stored for several months. The following NMR
analysis performed on Escherichia coli L-Asparaginase (ANSII) sheds
light (i) on the folding state of the protein bound to aluminum
adjuvant, (ii) on the protein regions involved in the interaction
with gel, and (iii) it provides a new tool for vaccines formulation
development and stability studies.

RESULTS

NMR spectroscopy

AlumOH adjuvanted formulation of uniformly isotopically
enriched ANSII [U-'*C-"°N] was used as vaccine model and
investigated by solid-state NMR. Despite the low amount of
protein absorbed on the inorganic matrix, the 2D amide-carbon
alpha (2D "N '3C NCA) and amide-carbonyl (2D *N '3C NCO)
correlation spectra of ANSI-AlumOH (Fig. 1a, b, respectively),
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collected on sedimented material obtained by centrifugation, are
of high quality, and comparable for the number of cross-peaks
detected to the 2D '°N '3C NCA and 2D "N '3C NCO spectra
collected on rehydrated freeze-dried ANSII. In both N—C correla-
tion spectra the resonances are superimposable to those of the
rehydrated freeze-dried ANSII (Fig. 1), immediately demonstrating
that the three-dimensional structure of the protein is preserved
after adsorption on the inorganic salt. The assignment of the 2D
5N "3C NCA spectrum of ANSII-AlumOH (see Supplementary Table
1) was easily obtained by comparison with the 2D >N 'C NCA
collected on the rehydrated freeze-dried ANSII, and also using the
information from the 2D '3C-"3C correlation spectrum (dipolar
assisted rotational resonance, DARR) acquired on ANSII-AlumOH.

Data analysis

The assignment of the spin systems allowed the analysis of the
chemical shift perturbation (CSP). The CSP data reveal that the
residues experiencing the largest changes are located on the
protein surface with negative electrostatic potential (Fig. 2). In
particular, the largest CSP are observed for residues in the region
between Ala-250 and Lys-310, which possesses a wide distribution
of negative charge. The presence of electrostatic interactions
between the negatively charged surface of the protein and the
positive surface of the inorganic material is further supported by
the properties of the aluminum oxyhydroxide that has an
isoelectric point of about 11.4, and at pH 7.5 exhibits a positive
surface charge.®® These findings are consistent with the mechan-
ism proposed for the adsorption of folded antigen proteins onto
the AlumOH.

DISCUSSION

The application of structural biology to develop new vaccines has
already proved its effectiveness.>* Engineered antigens incorpor-
ating protective determinants have been developed by NMR-
based structural methodologies to improve protection, safety and
industrial scale production.”® Recently, we have demonstrated
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Fig.2 Chemical shift perturbations (CSP) of ANSII-AlumOH with respect to rehydrated freeze-dried ANSII, evaluated according to the formula

NS :%\/(A(SC(,/Z)2 + (A6y/5)%.% The residues experiencing variations larger than the standard deviation (red dashed line) have been

highlighted in red a. CSP mapping on the protein surface (PDB code: 3ECA) with the region with the largest perturbation in magenta
b. Electrostatic potential generated by APBS plugin in PyMOL on 3ECA with blue and red representing the regions of positive and negative

electrostatic potential, respectively c

that high-resolution SSNMR, based on '3C detection, can be
applied to assess the preservation of the folding of silica-
encapsulated enzymes,?” and track the chemical shift perturbation
on the protein surface induced by the interaction with ligands.*'
ANSII from E. coli is a homotetrameric assembly of 138 kDa with D,
symmetry. This protein is in clinical use since 1967 against
childhood acute lymphoblastic leukemia but has now been largely
replaced by its PEGylated form, which exhibits longer-lasting
activity and, more important, a lower immunogenicity.*? The
previously reported characterization of native ANSIl and its
antigenic properties make it a suitable model to investigate the
potential of new NMR methods for vaccines development and
characterization. The amount of protein antigen adsorbed to the
adjuvant and the heterogeneity of the vaccine formulation are
two important limiting factors for their biophysical characteriza-
tion. However, these limitations can be overcome today by using
the high sensitivity of solid-state NMR combined with isotopic
labeling methodologies. Therefore, the use of solid-state NMR and
structural methodologies to characterize adsorbed antigens
promises to solve several challenges frequently encountered in
vaccine development. For example, the destabilization of protein
antigen structure upon the adsorption to the aluminum adjuvants
has been suggested to play a role in immune stimulation. In
particular, protein unfolding may favor the proteolytic degrada-
tion of the antigen and the presentation of the fragments to the
immune cells.® At the same time, for some vaccines, other studies
have shown that the loss of the native secondary and tertiary
structure can result in partial loss of immunogenicity.”*** In this
respect, the information provided by solid-state NMR on folding

Published in partnership with the Sealy Center for Vaccine Development

preservation could be decisive to determine the molecular basis of
the loss of efficacy and to design vaccine with an improved
immunogenicity. A further potential application of the solid-state
NMR to vaccine development concerns the optimization of the
experimental conditions for the adsorption of antigen to
aluminum salts. Usually, the adsorption of the antigen protein is
optimized by changing the pH and buffer components that
directly affect the electrostatic interactions (i.e. zeta potential).
However, the amount of protein antigen adsorbed to the
aluminum salt is determined by measuring the concentration of
the residual free protein in solution without any quantitative and
qualitative information on the protein bound to the adjuvant. In
this respect, the collection of mono- and multidimensional solid-
state  NMR spectra on formulations containing isotopically
enriched protein antigens allows for a completely new approach
providing semiquantitative information on the adsorbed protein
antigen and on its folding state, suitable for driving structure-
based optimization of vaccine formulation and manufacturing
process. Also accelerated stability studies and mechanistic studies
to investigate the exposure to high temperatures, freeze-thaw
events and low pH would benefit from the use of this new
methodology. Moreover, it should be pointed out that this
methodology can be applied to a wide range of proteins because
the labeling of antigens in eukaryotic expression systems, although
highly expensive for academia, is nowadays feasible.**>° Finally,
the extension of the cryo-probe technology to solid-state NMR
and the forthcoming increase in magnetic field strength of the
NMR instruments are expected to improve further the sensitivity
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of the experiments allowing a more detailed characterization, or
decreasing the amount of protein required for the detection.

METHODS

Expression and purification of uniformly isotopically enriched
ANSII [U-">C-"*N]

Escherichia coli C41(DE3) cells were transformed with pET-21a(+) plasmid
encoding ANSII gene. The cells were cultured in '3C, ">N-enriched minimal
medium (M9) containing 0.1 mg/mL of ampicillin, grown at 310K, until
ODggo reached 0.6-0.8, then induced with 1mM isopropyl B-p-1-
thiogalactopyranoside. They were further grown at 310K overnight and
then harvested by centrifugation at 6500 rpm (JA-10 Beckman Coulter) for
15min at 277 K. The pellet was suspended in 10 mM Tris-HCl, pH 8.0,
15 mM EDTA, 20% sucrose buffer (60 mL per liter of culture) and incubated
at 277K for 20min upon magnetic stirring. The suspension was
centrifuged at 10,000 rpm (F15-6x100y Thermo Scientific) for 30 min and
the supernatant discarded. The recovered pellet was re-suspended in H,O
milli-Q (60 mL per liter of culture) and newly incubated at 277 K for 20 min
under magnetic stirring. Again the suspension was centrifuged at
10,000 rpm (F15-6x100y Thermo Scientific) for 30 min. The pellet was
discarded, whereas the supernatant was treated with ammonium sulfate.
Still under magnetic stirring, solid ammonium sulfate was added in
aliquots up to 50% saturation. The precipitate was removed by
centrifugation, then further ammonium sulfate was added up to 90%
saturation to trigger the precipitation of ANSII, which was recovered again
by centrifugation. The precipitated ANSII was re-dissolved in a minimal
amount of 20 mM Tris-HCI buffer at pH 8.6 and dialyzed extensively against
the same buffer. ANSII was purified by anionic-exchange chromatography
using a HiPrep Q FF 16/10 column (GE Healthcare Life Science). The protein
was eluted in 20 mM Tris-HCl buffer at pH 8.6 with a linear 0-1 M NaCl
gradient. Fractions containing pure ANSII were identified by Coomassie
staining SDS-PAGE gels, then joined and dialyzed extensively against
50 mM phosphate buffer at pH 7.5.

Preparation of vaccine formulation

Commercially available AlumOH (Sigma) was used. To reduce the
phosphate content and assure a complete adsorption to AlumOH
adjuvant, 10mL of ANSII [U-13C-"°N] protein at the concentration of
0.583mg/mL in 150 mM sodium phosphate (pH 7.5) was dialyzed and
concentrated to 2 mL volume by using a Vivaspin 5 kDa molecular weight
cutoff membrane (Sartorius). A protein concentration of 2.77 mg/mL was
obtained as estimated by MicroBCA commercial kit (Thermo).

Fifty milliliters of AlumOH adjuvanted formulation at a protein
concentration of 100 pg/mL (with 2 mg/mL of AI(OH); and 9 mg/mL of
NaCl) was prepared by mixing 1.805 mL of ANSII [U-'3C-">N] (5 mg totally),
23.195 mL MilliQ H,0, 25 mL AlumOH at 4 mg/mL Alum(OH); and 18 mg/
mL NaCl. To estimate the amount of protein adsorbed to the AlumOH
adjuvant, the hydrogel was pelleted at 15,000 rpm for 1 min and the
protein content estimated on the supernatant.

Sample preparation and NMR measurements

SSNMR experiments were recorded on a Bruker Avance Il spectrometer
operating at 800 MHz (19T, 201.2 MHz "3C Larmor frequency) equipped
with Bruker 3.2 mm Efree NCH probe-head. All spectra were recorded at
14 kHz MAS frequency and the sample temperature was kept at ~290 K.

The sample of ANSII-AlumOH was stored for 6 months at 277K to
reproduce a possible shortest shelf-life of a commercial vaccine. A mild
centrifugation was used to separate the colloidal AlumOH adjuvant with
the adsorbed ANSII from the supernatant. The hydrogel was pelleted at
10,000 rpm for 1 h at 4°C using an ALC multispeed refrigerated PK121R
centrifuge (rotor model A-M10). Then, the precipitate was used to fill a
Bruker 3.2 mm thin-wall zirconia rotor. Silicon plugs (courtesy of Bruker
Biospin) placed below the turbine cap were used to close the rotor and
preserve hydration. The rotor was filled with 30 mg of wet precipitate.

A batch of freeze-dried ANSII [U- '3C, "N, ca. 20 mg of material] was
prepared as reference sample. The protein material was packed into a
Bruker 3.2 mm zirconia rotor, and rehydrated with a solution of 9 mg/mL
NaCl in MilliQ H,0, to simulate the same conditions of ANSII-AlumOH. The
hydration process was monitored through 1D {'H}-'3C cross-polarization
SSNMR spectrum and stopped when the resolution of the spectrum did
not change any further for successive additions of the solution.?%2%3°
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The amount of protein present in the NMR sample of ANSII-AlumOH was
estimated to be 0.7-1mg (per 20-25 mg of AlumOH), according to the
relative intensity of 1D {'H}-"3C cross-polarization spectra recorded on
ANSII-AlumOH and on the sample of rehydrated freeze-dried ANSII

containing a known amount of protein.

Standard '*C-detected SSNMR spectra (2D >N "*C NCA, 2D *N 3C NCO
and 2D '3C-"3C DARR, mixing time 50 ms) were acquired using the pulse
sequences reported in the literature.®' Pulses were 2.6 us for 'H, 4 us for
3C and 5.6 ps for °N. The inter-scan delay was set to 155 in all the
experiments. The number of scans used for the acquisition of 2D >N '3C
NCA and "N "3C NCO experiments was 4096 and 128 for ANSII-AlumOH
and rehydrated freeze-dried ANSII, respectively. Each N—C correlation
experiment collected on ANSII-AlumOH was acquired for 6 days while the
2D "3C-'3C DARR (number of scans equal to 656) required 8 days of
acquisition (additional experimental information is reported in Supple-

mentary Table 2).

No significant protein desorption was observed to occur by spinning the
sample at 14 kHz as proved by the comparison of the 1D {'H}-'3C cross-
polarization spectra collected just after sample preparation and after the
whole NMR characterization: in the two 1D {'H}-"3C cross-polarization
spectra the signal intensity is approximately the same (Supplementary Fig.

1).
All the spectra were processed with the Bruker TopSpin 3.2 software
package and analyzed with the program CARA.>?
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