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Abstract: Visual cognitive strategies in construction hazard recognition (CHR) signifies prominent
value for the development of CHR computer vision techniques and safety training. Nonetheless,
most studies are based on either sparse fixations or cross-sectional (accumulative) statistics, which
lack consideration of temporality and yielding limited visual pattern information. This research
aims to investigate the temporal visual search patterns for CHR and the cognitive strategies they
imply. An experimental study was designed to simulate CHR and document participants’ visual
behavior. Temporal qualitative comparative analysis (TQCA) was applied to analyze the CHR visual
sequences. The results were triangulated based on post-event interviews and show that: (1) In the
potential electrical contact hazards, the intersection of the energy-releasing source and wire that
reflected their interaction is the cognitively driven visual area that participants tend to prioritize; (2)
in the PPE-related hazards, two different visual strategies, i.e., “scene-related” and “norm-guided”,
can usually be generalized according to the participants’ visual cognitive logic, corresponding to the
bottom-up (experience oriented) and top-down (safety knowledge oriented) cognitive models. This
paper extended recognition-by-components (RBC) model and gestalt model as well as providing
feasible practical guide for safety trainings and theoretical foundations of computer vision techniques
for CHR.

Keywords: construction hazard recognition (CHR); temporal qualitative comparative analysis
(TQCA); visual patterns; computer vision; construction safety

1. Introduction

Hazard recognition is the first step to prevent accidents [1]. In recent years, computer
vision-based construction hazard recognition (CHR) technology has attracted widespread
interest of researchers [2], such as identifying and tracking physical elements (including
temporary structures, machine and materials, etc.) [3–5], and capturing unsafe behaviors
of workers [6,7]. In fact, the basic logic of computer vision technology algorithms for the
purpose of identifying hazards is mostly based on humans’ psychological process of hazard
cognition [8].

However, there is still a distance to achieve applying computer vision technology
instead of manual inspection for CHR in construction safety management. The hazard
recognition performed by humans is a high-level cognitive process [8,9]. Construction
workers detect sensory signals from the environment, selectively pay attention to them,
and match the perceived information with safety knowledge to make judgments about the
presence of hazards [10]. This means that construction workers can determine potential
hazards that may occur in the future based on their observation and understanding of
the current scene. However, this is a challenge for computer vision because it requires
computers to have similar cognitive abilities as humans, i.e., to understand the meaning of
scenes and generate new information by association to drive reasoning and recognition
of unknown sets of potential hazards [2]. As a consequence, in order to further promote
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the development and application of computer vision technology in construction safety
management, it is necessary to fully understand humans’ cognitive processes and strategies
of CHR.

The nature of the visual search process is an important and typical physiological
activity for hazard recognition [11]. Previous studies have tried to characterize the visual
patterns during CHR through a series of eye-movement indicators [1]. Among them, the
most commonly used are area-of-interest (AOI)-based indicators such as fixation times [12],
duration of fixation [13] and fixation space density [14]. Although these studies have
demonstrated the existence of patterned commonalities in people’s visual behaviors and
extended the understanding of visual patterns, relying only on descriptive statistics of
common features is still insufficient to describe the specifics of visual patterns. Because
visual patterns represent dynamic visual processes that last for a certain amount of time,
rather than transient states. In recent years, researchers have attempted to describe visual
patterns by recording changes in the spatial location characteristics of visual fixations
and thus generating visual scan paths [15,16], which holds promise for studying the
human cognitive processes and strategies implied by visual patterns. However, due to
the deficiencies in the analytical methods employed in these studies in terms of the ability
to process visual sequence data, they focused only on cross-sectional data and selectively
or forcibly ignored the temporal nature of visual patterns, or have stuck to the stage of
making overall comparisons of visual sequences, resulting in a lack of sufficient details
to identify and interpret the visual patterns implied in these sequences [16,17]. This also
presents a significant gap for researchers to further exploring the cognitive strategy that
motivate people to choose to perform certain visual patterns. Therefore, more in-depth
studies and appropriate visual sequence analysis methods are needed to help decipher
visual patterns and thus further explore visual cognitive strategies of CHR.

In summary, the core research questions of this paper are: (1) What are the visual
patterns employed by those who successfully identify hazards during their visual search
in CHR? (2) Why are such visual patterns employed and what cognitive strategies do
they imply?

The research objectives are (1) to design and conduct an eye-tracking experiment
with real construction scenes pictures as the CHR experimental background to document
the participants’ visual sequences during their CHR processes; (2) to introduce TQCA
method with the analytical capability for temporality which allows for the inclusion of
sequence conditions, and apply it in the visual sequences analysis to identify the visual
patterns for CHR; (3) to interpret the visual patterns from both quantitative and qualitative
perspectives and explore the visual cognitive strategies of CHR implied by these visual
patterns. Further, the practical contributions of the findings to computer vision and safety
training for CHR as well as the theoretical contributions to visual cognitive psychology
theories are discussed.

The rest of the paper is structured as follows: Section 2 illustrates the existing research
gaps for the study. Section 3 lays out the methodology and the experimental design.
Section 4 presents the results and the data analyses. Section 5 discusses how the results
complement the research gaps and clarify the contributions of this study. Finally, the last
section summarizes the main findings of this study, notes its limitations and suggests the
scope for future research.

2. Literature Review
2.1. The Development of Computer Vision in CHR: Grounded in Human Cognitive Mechanisms

In the last decade, the application of computer vision in construction safety man-
agement has become a hot frontier of research [2], with algorithms mostly grounded in
cognitive psychology models [8]. The template matching model (TM) claims that individ-
ual things can be compared with established criteria to obtain results; the recognition-by-
components model (RBC) argues that the whole can be described and identified based on
the relationship and interaction between its local components [18]. A good example is the
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discrimination of human behavior and posture in construction sites. First, the presence
of a person can be determined based on elements such as head, limbs, etc. (RBC). Then,
the presence of hidden hazards can be judged by comparing human posture and wear
with safety norms (RBC + TM), for example, identifying unsafe behaviors and abnormal
postures based on skeletal movements [19,20] and determining whether workers are wear-
ing personal protective equipment (PPE) such as helmets and safety belts [7,21,22]. Even
though such algorithms are computationally efficient and reliable, most of them discrimi-
nate low visual complexity hazards with a fixed perspective, which is difficult to adapt to
complex and dynamic construction scenarios.

Some studies claim that hazards can be identified by specifying some distinguishing
features, which is also connoted by feature matching models (FM) [18]. Such studies extract
and compare scene components (people [23], materials [24], and machinery [25]) with the
template or features described by the norm to determine the presence of hazards [26]. For
instance, research has been implemented to identify machinery and materials in construc-
tion sites by features (e.g., histograms of oriented gradients and colors (HOG + C)) [23],
calculate distances and compare them to thresholds to identify the hazards. Another
example is the determination of hazards based on the dynamic interaction of objects under
spatial-temporal motion, such as the movement of excavators [27] and the spatial proximity
to people (Kim, Liu et al., 2019). Although such studies take into account the temporal and
dynamic nature and broaden the approaches of safety management, the accuracy of hazard
recognition remains a major concern. The main reasons for this include: (1) the lack of
basic data for training algorithmic models; and (2) the reliance on inefficient and expensive
manual annotation (components of hazards, etc.) for the generation of available data [28].
In addition, selecting the appropriate content in many safety regulations with their inherent
complexity and then accurately mapping it to the appropriate specific components of the
construction scenario is quite time-consuming and difficult [29,30].

It has been found that human attention is cognitively driven to differentially allocate
between visual areas and shift over time. The lack of such a mechanism means that
computers cannot learn and utilize human attentional cues, which is one of the important
factors limiting the development of computer vision technology for CHR [31]. On the
other hand, computer vision for CHR that lays the foundation of the above cognitive
models usually judges only based on the existing observable scene components, and
cannot combine the association and inference of possible future states to further infer
whether the existing scene has the possibility of hazard occurrence. Therefore, how can
interactions between components and transitional states between scenes be identified? How
to determine the possible hazards of the current state in the future based on associations?
Understanding how humans solve these problems in the cognitive process would provide
important implications for the further development of computer vision algorithms for CHR.

The completeness model suggests that humans can recognize objects with the same
components and structure based on the relationship of the components and the degree to
which the relationship “deviates from the prototype” or “average” [18]. In other words,
computer vision techniques for hazard recognition need to integrate concepts such as com-
ponents, local/global features and “prototypes” to be fully effective. Therefore, research in
the construction industry needs to further complement the mechanism of human cognitive
processes for hazards based on these models.

2.2. Methodological Deficiencies and Limitations in CHR Visual Patterns Studies

Many studies of construction industry have reached a consensus to consider hazard
recognition as a visual search task [14]. By documenting visual behaviors during hazard
recognition [32], it is possible to study construction workers’ visual strategies for CHR and
improve the utilization ability of attentional cues [31], thus further complementing the
logical basis for the development of computer vision techniques and the improvement for
safety training. However, synthesizing current research, this research direction still faces
three main dilemmas.
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Firstly, most previous studies have generalized the characteristics and commonalities
of visual patterns through descriptive statistics of AOI-based eye movement indicators,
such as fixation count [12,33], fixation duration [14,34], and the heat map [35]. For example,
studies have attempted to use fixation-related indicators to measure participants’ attention
allocation [36] and situational awareness [37]. However, these studies were insufficient to
describe the specific content of visual patterns and ignored the temporal nature of visual
cognitive processes, making them fail to accurately answer the fundamental question of
what visual patterns people employed in performing visual cognitive tasks. On the one
hand, visual patterns represent a dynamic visual process that lasts for a certain amount
of time, rather than a transient state or a static segment. Therefore, relying on holistic
indicators that lacks the key attribute of temporality cannot adequately express or define
the substance of the visual pattern. On the other hand, quantitative analysis based on the
full amount of raw visual data faces problems such as excessive noise, limited analytical
power and applicability, so previous studies have mostly used qualitative methods such
as descriptive summary and comparison to slice, sample or analyze visual processes as
a whole [13]. This has also led to the inability of existing studies to capture the temporal
nature of visual scanning paths, whose results were limited by statistical analysis of cross-
sectional data [16] and indicators.

Secondly, the robustness of these AOI-based eye-movement indicators is vulnerable to
the impact of the accuracy of AOI definitions. Many studies only labelled AOIs according to
expert opinions or the subjective opinions of researchers, which implies a further decrease
in these indicators’ reliability and validity of the studies [16]. In order to overcome the
subjectivity problem of traditional AOI pre-definition methods, some studies have also at-
tempted to adopt data-driven AOI definition methods, such as fixation clustering [16,38,39].
However, the AOI based on data-driven determination may be affected by factors such
as subjects’ cryptic recognition ability and time-varying attention, leading to potential
unpredictable accumulation of errors, thus making the blurring of AOI boundaries and the
robustness of the associated indicators questionable.

Finally, although analyzing visual search patterns based on temporal and spatial
sequences in visual scanning paths has been demonstrated to be a valid and appropri-
ate approach and has potential in helping to understand the cognitive process of visual
search [16,17], current research on visual sequences in visual scanning paths is still rela-
tively superficial. The essence of visual scanning paths sequence analysis is to analyze the
visual transition sequences between AOIs within a certain time range in a longitudinal
manner. By using characters to represent the AOI where the fixations are located, the ex-
pression of visual scanning path can be simplified as strings, which allows for quantitative
analysis based on fixed visual sequences [16,40]. For example, Xu, Chong et al. performed
an overall similarity analysis between the visual sequences of participants who successfully
identified hazards with those who failed and found that successful participants followed a
similar visual pattern of hazards searching, i.e., had similar visual sequences [16]. Although
this implied that the mental representations and cognitive strategies were of significant
research interest, the research did not involve the specific content of the sequences. Studies
limited to overall cross-sectional comparisons of sequences cannot help address specific
hazard scenarios due to the lack of ability to interpret why people adopt specific visual
cognitive strategies, thus failing to provide substantial assistance in the design of safety
training and the development of hazard recognition aids such as computer vision-based
safety management techniques.

In fact, one of the main reasons for the above dilemma lies in the lack of appropriate
analytical methods that can be applied to visual sequence analysis incorporating temporal-
ity. Current research has gradually recognized the importance of temporality for the study
of visual patterns and attempted to address this issue. For example, Chong, Liang [17] used
neural networks to pre-analyze the basic visual searching sequences of two hazards, namely
“potential electrical contact” and “struck-by hazards”, obtained several visual sequence
fragments (the character strings formed by fixation transfer sequence between AOIs) with
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different weights, and finally used it as basic conditions for the subsequent crisp-set QCA
configuration analysis to summarize the visual search patterns in the corresponding hazard
scene. Despite the advancement of visual path research, there are still two unavoidable
problems: (1) The sequences contain different lengths of time, which reduces the possibility
of identifying reliable CHR visual patterns; (2) QCA requires the selection conditions and
cases with equal weights, but the calculation of neural networks gives different weights
to visual sequence segments (conditions), which violates QCA’s basic requirements for
conditional equality, leading to the results with individual bias. Therefore, it is necessary to
adopt more advanced analysis approaches to extend the limited analysis and interpretation
capabilities of visual sequences.

3. Methodology
3.1. Technical Route

As shown in the study framework in Figure 1, this study was conducted in two
parts. First, an experiment of a hazard recognition task was designed and tested using an
advanced eye-tracking device to record participants’ visual behavior data. Subsequently,
a TQCA method was used to analyze the data from the visual behavior sequences in an
attempt to generalize the visual strategies for hazard recognition.
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3.2. Experimental Design
3.2.1. Experimental Protocol

We conducted a hazard recognition experiment in which participants were asked to
determine whether the observed pictures of construction scenes were hazardous or safe.
All photo material used in the study was collected from construction sites. A total of
60 sets of construction site pictures (60 for hazardous conditions and 60 for safe conditions,
120 in total) were obtained from a pre-developed database that compiled pictures of scenes
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showing hazardous situations and after rectification (safety). The formal experiment was
divided into two parts. Part A: observe 120 pictures that appeared in random order
in sequence and complete the judgment according to the paradigm shown in Figure 2;
Part B: observe and respond again to 3 pre-selected dangerous and 3 safe pictures, all
6 pictures were selected from the 120 pictures in Part A. A 5-min break was set between
Part A and Part B to relieve participants’ possible eyestrain. Furthermore, and then,
the answers of Part A and Part B were compared for consistency to aid in identifying
unreliable participants.
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A total of 85 Han Chinese male construction workers with an average age of 42.2
were recruited from construction sites in Beijing, whose ages ranged from 21 to 60 years.
All participants participated in industry-specific safety training and were educated in
hazard recognition, and the visual process of 69 workers was completely recorded. Further,
14 workers’ data were ultimately excluded to ensure data quality, as their responses were
considered unreliable. When judging the scenes shown in the pictures as dangerous or
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safe, these 14 individuals chose the same response result for more than 90% of the pictures,
which could be due to the non-serious response attitude or limited comprehension of
the experimental rules. Therefore, the researchers finally selected a sample of 55 male
participants for visual behavior analysis. All participants had normal or corrected normal
vision with similar work experience in construction projects. This study was approved by
the local ethics committee of Tsinghua University (No. 201914). All participants provided
written informed consent and received monetary compensation.

3.2.2. Explanation of the Experimental Protocol

This proposal is closer to the real conditions of the construction scenario. Since
construction workers generally live and work on construction sites for a long time, they
have prior observation and comprehension of the construction site without having to
be familiar with the environment when performing hazard recognition. However, the
120 pictures selected for this study were from different construction projects in which the
participants had never participated. If the participants were directly asked to recognize
hazards in the unfamiliar environment, they would have to spend some time familiarizing
themselves with the construction scene first after seeing each picture, which might reduce
the effectiveness of the visual search sequence obtained from the experiment. As a result,
we designed the experiment by utilizing the psychological principles of “working memory”
and “priming effect” to give the participants a certain initial impression of the construction
site by quickly showing 120 pictures, avoiding the bias caused by spending a long time
observing the environment. After that, we selected three pictures with hazards from
the 120 pictures for Part B, and let the participants answer under the condition that they
were initially familiar with the construction scene. It is worth emphasizing that after the
completion of Part A, the participants were not given any information about the correctness
of their responses, so the reliability of the responses and experimental data in Part B were
not affected by Part A.

In addition, this study relied on a large systematic experiment, and the data sources
needed in this study were focused on Part B, that is, Part A was not significant for this
study. Therefore, for this experiment, the real purpose of Part A was to help the participants
become familiar with the construction scenario rather than to use the answers and data from
Part A for subsequent analysis or for comparison. In this experiment, the purpose of asking
the participants in Part A to answer was to make them concentrate on the construction
scenes and memorize them, so as to avoid any possible negligence after being directly told
to “just browse”. In summary, the above design can help us to draw conclusions closer to
the real construction scene.

In Part B, because of the vague impression of the scenes left by the first observation,
when participants were asked to observe again, they claimed to perform the hazard recog-
nition task in a more detailed and strategic manner. Examination of the video recordings of
visual behavior confirmed the reliability of this statement. In 1974, based on experiments
simulating short-term memory impairment, Baddeley and Hitch came up with the concept
of working memory as the ability to store information for short periods of time and use the
information for cognitive activities such as processing, manipulation, or reasoning when
cognitively required [39]. In fact, working memory also belongs to short-term memory, but
it emphasizes the association of short-term memory with the job in which the person is
currently engaged. In this experiment, the content of short-term memory kept changing
and showed some systematicity due to the need of the hazard recognition task. On this
basis, short-term memory formed a continuous system over time, i.e., working memory.
The visual cognitive strategy was a manifestation of this system, which effectively helped
the participants to complete the visual search task [41].

On the basis of “working memory” and “short-term memory”, we can further derive
the “priming effect” in psychology. The priming effect refers to a psychological phe-
nomenon in which the perception and processing of a stimulus becomes easier because of
the previous influence of the stimulus. Some researchers believe that the priming effect
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is a manifestation of implicit memory. Accurately speaking, a direct priming effect was
involved in this experiment because the stimuli presented before and after were identical.
It can be inferred that the working memory formed in Part A had a reinforcing effect on
the visual behavior and strategy in Part B, which achieved the purpose of helping the
participants to be familiar with the construction scene previously and reduce the bias of
the visual search sequence.

3.3. Post-Experiment Verification

After the experiment was completed, the researchers interviewed the participants.
All participants were asked to review the scenes they judged as hazardous in Part B
and describe their observation process as well as the basis of their judgment in detail.
For consistency validation, the experimenters recorded and organized the participants’
responses, and then carefully studied the participants’ observation process and visual
hotspot diagrams. A total of 55 samples showed high consistency between visual behavior
and personal representations.

3.4. Data Analysis
3.4.1. Sequence Generation

Eye movement data were collected using Tobii Pro Fusion, which recorded at a
sampling frequency of 120 Hz. Prior to recording, Tobii Pro Fusion was connected to
Tobii Pro Lab software, an integrated software used to design and perform the experiment
process and analyze the eye movement data, thus performing calibration to ensure that the
camera on the eye-tracking device (Tobii Pro Fusion) accurately tracked the participant’s
eyes. The Tobii Pro Lab software has a live viewing function that allows scenes recorded
by the Tobii Pro Fusion to be viewed and tagged in real time. Thus, the full course of
the participant’s visual trajectory and fixations will be recorded in time and easily found
during replay.

The raw eye-movement data processing is performed in the Tobii Pro Lab, which
allows direct viewing and analysis of the visual behavior data recorded by Tobii Pro Fusion.
Finally, for each hazard, the location data of all mapped fixations are output sequentially,
and their coordinates are expressed in pixels. The researchers define the locations and
ranges of the 3 AOIs based on the descriptions of each hazard in the database, and name
them A, B and C. Based on the position of its coordinates in relation to the AOI, it is possible
to determine whether the gaze point is located inside the AOI. Based on the coordinates of
a fixation in relation to the inclusion of the AOI area in the picture, it can be determined
whether it is located inside the AOI. Visual scan paths are generated and represented as a
fixed sequence of AOIs. Specifically, the scan path is a string that sequentially shows the
AOIs that the observer gazes at in chronological order, i.e., each fixation that makes up the
visual sequence is represented by the letter corresponding to the AOI to which it belongs.

West et al. suggested two forms of fixation sequences to suit different research fo-
cuses [42]. The extended sequence represents each gaze point as a letter to form a string,
while the collapsed sequence replaces consecutive strings composed of the same letters
with a single letter to highlight transitions between AOIs (e.g., the extended sequence
“AABB” can be collapsed to “AB”). Following West’s suggestion, this study adopted col-
lapsed sequences in an attempt to generalize the visual pattern, i.e., using the first fixation
that falls within an AOI to generalize all subsequent fixations within the same AOI, which
implies that de-duplication will be required in the subsequent data preparation.

3.4.2. TQCA Method

In recent years, there has been an increasing interest in the study of configuration,
namely “multidimensional constellations of conceptually distinct characteristics that occur
together” [43]. Typically, such studies focus on a process, i.e., a series of activities that unfold
over time [44]. Qualitative comparative analysis (QCA) is considered a good solution for
analyzing such problems and has been spread and applied in several disciplines, describing
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how a system can reach a certain outcome from different initial conditions through different
or multiple paths [45]. Therefore, QCA method is widely used with rapid development.
However, QCA has often been criticized for its static nature and limitations, as time
course and change are essential to understanding the complex phenomena of a case [46].
Traditional QCA assumes that the conditions are equivalent, and variables as well as cases
are “frozen in time”. Researchers try to combine the QCA method with timeliness, and
De Meur, Rihoux [47] listed five solutions to deal with time sequence in QCA, of which
the relatively mature method is the temporal qualitative comparative analysis (TQCA)
proposed by Caren and Panofsky [48]. To sum up, TQCA is an extension of QCA that is
applicable to study the causal conditions occurring in the sequence [49].

In this study, we believe that TQCA is the appropriate method for this study, because
(1) TQCA extends the analytical capability for temporality while retaining the advantages
of the traditional QCA method, which makes TQCA advantageous in applying to model
generalization and integrated synthesis of complex processes involving multiple conditions
and time sequences (e.g., the CHR process in this study) from both quantitative and quali-
tative perspectives; (2) based on the TQCA analysis of the participants’ visual searching
paths, the visual search configurations with high commonality could be identified, thus
helping to address the research question of “What are the visual patterns of construction
workers during CHR?”; (3) TQCA allows for the inclusion of sequence conditions in the
analysis and preserves the integrity of the sequence conditions in both the analysis process
and output results, which helps the researcher to interpret the content of the visual patterns
in order to further explore and generalize cognitive strategies.

In order to conduct sequences analysis in the TQCA method by existing QCA analysis
software and algorithms, this study encoded the observed sequence of any two AOIs
as a sequence condition variable [44] and generated 6 temporal sequence conditions.
Specifically, if the participant observed A first and then B, then condition “AB” was coded
as “1” and “BA” was coded as 0, and vice versa. However, it should be noted that if
there was no observed AOI in A and B, which means no sequence exists between A and
B, so “AB” and “BA” were both coded as 0. In this way, all observation sequences of any
participant were uniquely determined without the possibility of duplication or omission.
In addition, the new sequence truth table generated was able to be analyzed by existing
QCA analysis tools, such as fsQCA3.0.

This study, mainly composed of two parts including necessity and sufficiency analysis
that formed the basis of configuration path analysis, used fsQCA3.0 software for TQCA
analysis. Necessity means that when the result is produced, a condition always occurs.
Sufficiency refers to the explanatory power of a condition in explaining the occurrence
of a result [50]. Consistency indicates the ability of a condition to lead to an outcome. In
the necessity analysis phase (conditional necessity test), a condition can be considered
necessary for an outcome when it satisfies a minimum threshold of consistency (≥0.9) [51].
In the sufficiency analysis phase (configuration analysis), the quality of the visual pattern
can be evaluated in terms of PRI (proportional reduction of inconsistency, explaining the
consistency of subset relations) between 0 and 1, based on the output provided by the QCA
method [52]. In general, a grouping with a PRI value above 0.75 represents an acceptable
and effective pattern [51].

For the final result, QCA can produce three types of solutions: complex, parsimonious,
and intermediate. This study uses intermediate solutions for a complete representation
of the visual pattern in the hazard recognition process. It should be noted that in order to
avoid possible interference of the results by chance observation cases caused by individual
participant bias and considering the size of the sample size (55 cases), this study set the
minimum acceptable frequency cutoff threshold set at 2 cases per configuration and the
minimum acceptable PRI consistency cutoff threshold at 0.75. Configurations that do not
meet these requirements will be neglected.
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4. Results
4.1. Descriptive Statistics

As shown in Table 1, 3 pictures selected from the 120 pictures correspond to 3 hazards
respectively, and the 3 hazards belong to 2 hazard types. Hazard 1 (Figure 3), whose visual
heat map is shown in Figure 4, is associated with potential electrical contact, while Hazard 2
(Figure 5) and Hazard 3 (Figure 6) are associated with the failure of personal protective
equipment (PPE failure). Table 1 illustrated the basic information about 55 participants’
performance in the recognition of 3 hazards. Most participants would choose to search the
hazard in a sequential visual path, which presents a relatively higher average accuracy
compared to those participants that response immediately capture only 1 or even less AOI.
According to the sequence presence in the visual path, the participants were categorized as
“sequence presence” group and “sequence absence” group in each hazard. For example,
90.91% of the participants made their judgments by observing multiple AOIs in Hazard #1,
which implies that there exists the sequence between AOIs in their visual scanning path.

Table 1. Statistics of participants’ performance in the recognition of three hazards.

Hazard Type Hazard Group Number Percentage Accuracy

Potential Electrical
Contact Hazard #1

Sequence Presence 50 90.91% 80.00%
Sequence Absence 5 9.09% 60.00%

ALL 55 100.00% 78.18%

PPE Failure

Hazard #2
Sequence Presence 43 78.18% 95.35%
Sequence Absence 12 21.82% 66.67%

ALL 55 100.00% 89.09%

Hazard #3
Sequence Presence 35 63.64% 91.43%
Sequence Absence 20 36.36% 90.00%

ALL 55 100.00% 90.91%
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4.2. Hazard #1: Potential Electrical Contact

The first category of hazard was potential electrical contact, as shown in Figure 3,
which was recorded in safety inspection standards database as “construction site power
distribution system does not meet the requirements of three-level power distribution and
two-level leakage protection”. The area of interest (AOI) “A”, denoted as AOI-A thereafter,
is the distribution box; the AOI-B is the electrical wire connected to the box, and the
AOI-C is the component connecting the box to the wall. The three AOIs A/B/C and the
observation sequences between them were tested for necessity as condition variables, as
shown in Table 2. Both A and B are necessary conditions for correct identification of the
hazard, that is the core area in the visual scan path. No observation sequence between
AOIs could be regarded as necessary sequence that can guiding to correct identification
performance. Participants focused on the distribution box (A) or the electrical wires (B),
and thus, successfully identified the hazardous “potential electrical contacts”. However,
knowing only which of the AOIs A/B, or even C were observed provides limited clues
about how the decisions of the presence of safety hazards were made. Further study of the
visual patterns between them is worthy and necessary to be conducted.

Table 2. Results of necessity tests (Hazard #1).

Outcome Variable: 1

Conditions Tested Consistency Coverage

A 0.953 0.788
B 0.953 0.804
C 0.256 0.687

AB 0.395 0.739
AC 0.186 0.727
BA 0.535 0.852
BC 0.209 0.642
CA 0.047 0.500
CB 0.023 1.000

Table 3 shows 7 visual search configurations of 55 participants’ hazard recognition
process. For instance, Configuration #3 includes three visual search conditions: AC, BA, BC.
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According to Boolean operations, when all 3 sequential conditions were true simultaneously,
a unique configuration, i.e., BAC, could be derived. A total of 6 participants adopted this
visual configuration (N = 6), which reaches a PRI consistency of 83% (a configuration is
considered effective with PRI consistency >75%). Configurations containing more than (not
including) two participants will be considered non-contingent. Therefore, Configurations
#1 #2, #3, #4 were included in the subsequent configuration analysis to summarize visual
pattern solutions.

Table 3. The visual scan path configuration (Hazard #1).

Configuration
Sequence Conditions

Outcome N PRI Consistency Effective?
AB AC BA BC CA CB

#1 (CBA) 0 0 1 0 1 1 1 1 1.00 Y
#2 (BA) 0 0 1 0 0 0 1 17 0.94 Y
#3 (BAC) 0 1 1 1 0 0 1 6 0.83 Y
#4 (AB) 1 0 0 0 0 0 1 18 0.78 Y
#5 (-) 0 0 0 0 0 0 0 5 0.60 N
#6 (ABC) 1 1 0 1 0 0 0 5 0.60 N
#7 (BCA) 0 0 1 1 1 0 0 3 0.33 N

TQCA was performed to summarize the corresponding visual patterns, as shown in
the Table 4. The results presented two main paths for potential electrical contact hazards,
namely AB and BA. A total of 81.4% of these participants adopted these configurations and
85.3% of these participants correctly identified hazards. Particularly, 37.2% participants
adopted configuration BA and 94.1% of these participants correctly identified hazards.

Table 4. Intermediate solution to correct recognition of Hazard #1.

Intermediate Solution
Frequency Cutoff: 3; Consistency Cutoff: 0.75

Solutions Configurations Raw Coverage Unique Coverage Consistency

#1 AB AB 0.326 0.326 0.78

#2 BA
BA 0.372 0.372 0.941

BA&BC&AC 0.116 0.116 0.833

Overall solution coverage: 0.814
Overall solution consistency: 0.853

Note: Raw coverage: total share of the outcome that is explained by a configuration. (The total proportion of participants adopting the
solution). Unique coverage: unique share of the outcome that is explained by the configuration. (The unique proportion of participants
adopting the solution). Overall solution coverage: the extent to which the cases within the dataset correspond to the relationships in the
solution [53]. (The sum of the proportion of participants corresponding to all solutions). Overall solution consistency: a measure of fitness
for the entire set of configurations, which makes it analogous to R-squared in regression [54]. (The overall correct rate of all participants
corresponding to all patterns in the table).

As shown in Figure 4, it was salient that workers tend to allocate priority attention
to the intersection between energy-releasing source and wires. However, it is worth
noting that according to the description in the safety inspection standards database, the
distribution box seems to be an area containing more dangerous information. According
to the results of post-experiment interview, participants believe that this area is the most
common trigger area for safety hazards such as short circuit or electrical fire in engineering
practice. Both AB and BA strategies can focus on this field in a limited time.

4.3. Hazard #2 and Hazard #3: Failure of Personal Protective Equipment

Numerous literature and statistics/reports indicate that a large part of unsafe behav-
iors that lead to accidents can be mainly summarized as failure of personal protective
equipment (PPE) [2,30,33]. Although safety rules require workers to wear PPE on construc-
tion sites, such as helmets and safety harnesses when working at heights, studies have
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repeatedly shown that a significant number of injuries in the construction industry are due
to workers not wearing their PPE.

4.3.1. Hazard #2

The first PPE failure hazard was recorded in safety inspection standards database as
“during the hanging basket construction of outdoor glass curtain wall, the workers did not
wear safety helmet as required”, as shown in Figure 5.

In this hazard scenario, the AOI-A is the area above the worker’s chest, which contains
the information that the worker is not wearing a helmet and is the core area of this hazard;
corresponding to the AOI-A, the AOI-B is the area below the worker’s chest, which provides
the information to determine the location and status of the worker; the AOI-C is the area of
the outdoor glass curtain wall hanging basket operation, which implies a certain risk of
falling objects to the workers below it. The results of condition necessity test are shown in
Table 5. No necessary AOI and sequence condition was identified. Participants’ attention
was relatively evenly dispersed among the three AOIs.

Table 5. Results of Necessity Tests (Hazard #2).

Outcome Variable: 1

Conditions Tested Consistency Coverage

A 0.755 0.925
B 0.653 0.970
C 0.816 0.976

AB 0.408 1.000
AC 0.327 1.000
BA 0.143 0.875
BC 0.265 1.000
CA 0.327 0.941
CB 0.306 1.000

The visual patterns between these AOIs were further analyzed in the following con-
figuration analysis. According to the Table 1, 78.18% of the participants chose to make
judgment by observing multiple AOIs. The truth table (Table 6) shows all the visual se-
quences obtained from the visual tracking results. For example, Configuration 4 indicated
that six participants (N = 6) adopted the “CA” visual sequence configuration with the
consistency (reflecting the correct rate of hazard recognition) of 0.83. Similarly, the Con-
figuration 7 of “ACB” (the unique sequence determined by the combination of the three
sequence conditions that were all coded as “1”: AB, AC and CB) was adopted by four
participants, corresponding to a 100% correct rate of hazard recognition.

Table 6. The visual scan path configuration (Hazard #2).

Configuration
Temporal Sequence Condition

Outcome N PRI Consistency Effective?
AB AC BA BC CA CB

#1 (-) 0 0 0 0 0 0 0 12 0.67 N
#2 (ABC) 1 1 0 1 0 0 1 7 1.00 Y
#3 (CAB) 1 0 0 0 1 1 1 6 1.00 Y
#4 (CA) 0 0 0 0 1 0 1 6 0.83 Y
#5 (AC) 0 1 0 0 0 0 1 4 1.00 Y
#6 (BC) 0 0 0 1 0 0 1 4 1.00 Y
#7 (ACB) 1 1 0 0 0 1 1 4 1.00 Y
#8 (CBA) 0 0 1 0 1 1 1 4 1.00 Y
#9 (AB) 1 0 0 0 0 0 1 3 1.00 Y

#10 (BA) 0 0 1 0 0 0 0 2 0.50 N
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TQCA analysis was performed, and the results of the intermediate solution are shown
in the Table 7. Although the analysis results seem to present eight different visual path
configurations, post-experimental interviews revealed that participants who correctly
identified hidden hazards almost always did so based on the recognition of the non-
helmeted hazard but differ in the most likely accident scenarios they envisioned, that are
potential injuries from falling from platforms and from falling objects caused by the hanging
basket or the objects it carries. Combining this information with a closer examination at the
eight configurations, their key difference lies in the judgment of the AOI-A of this hazard.
Accordingly, they could be grouped into two specific strategies.

Table 7. The visual scan path configuration (Hazard #2).

Intermediate Solution
Frequency Cutoff: 2; Consistency Cutoff: 0.75

Solutions Configurations Raw Coverage Unique Coverage Consistency

#1

AB 0.061 0.061 1.000
ABC 0.143 0.143 1.000
ACB 0.082 0.082 1.000
AC 0.082 0.082 1.000

#2

CA 0.102 0.102 0.833
CBA 0.082 0.082 1.000
CAB 0.122 0.122 1.000
BC 0.082 0.082 1.000

Overall solution coverage: 0.755.
Overall solution consistency: 0.974

The first strategy corresponds to the AB/ABC/ACB/AC configuration, in which
participants will first target the area where the person is located, i.e., AOI-A, during the
observation process, and focus on whether the construction workers wear personal protec-
tive equipment such as helmets in accordance with safety regulations, and then observe
the surrounding environment and other components to complete a comprehensive judg-
ment of the hazard. The second strategy corresponds to configuration CA/CBA/CAB/BC.
Because of the existence of hanging baskets and high work situations in this scenario,
participants’ feedback will first associate the potential risks of high work and falling objects,
and then focus on workers who are not wearing helmets, thus completing the identification
of hazards.

4.3.2. Hazard #3

The second PPE failure hazard was recorded in safety inspection standards database
as a “violation of safety operation regulations due to the absence of safety belts on workers
performing work at heights”, as demonstrated in Figure 6.

In this hazard scenario, the AOI-A is the area where the workers working at height on
the scaffold are located, contains the information that the workers are not wearing safety
belts, which is the core components constituting this hazard; the AOI-B is the top area of
the scaffold constituting the working environment at height, which is directly adjacent
to the workers in space, and contains the clues for judging the location and status of the
workers; the AOI-C is the middle support area of the scaffold, which helps determine the
stability and structural soundness of the scaffold. The condition necessity test results were
shown in Table 8.
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Table 8. Results of necessity tests (Hazard #3).

Outcome Variable: 1

Conditions Tested Consistency Coverage

A 0.940 0.922
B 0.660 0.917
C 0.040 1.000

AB 0.200 0.833
AC 0.040 1.000
BA 0.440 0.957
BC 0.040 1.000
CA 0.000 0.000
CB 0.000 0.000

The AOI-A is the only necessary basic AOI condition of the outcome, which contains
the locations where worker in the construction site scene. This indicates that the area where
worker is located is a necessary station in the visual scan path and the worker’s behavior
or state is the primary area of attention allocation when identifying human-related FFH
(fall from heights) hazards. The participants’ attention showed a very clear decreasing
trend among the three AOIs, with PPE Failure in AOI-A, and the information of working at
heights was contained in AOI-B receiving more attention. According to Table 1, 63.64% of
the participants chose to make their judgments by observing multiple AOIs. Table 9 shows
all the visual sequences obtained from the visual tracking results.

Table 9. The visual scan path configuration (Hazard #3).

Temporal Sequence Conditions

Configuration AB AC BA BC CA CB Outcome N PRI Consistency Effective?

#1 (BA) 0 0 1 0 0 0 1 0.95 0.95 Y
#2 (-) 0 0 0 0 0 0 1 0.90 0.90 Y
#3 (AB) 1 0 0 0 0 0 1 0.83 0.83 Y
#4 (BAC) 0 1 1 1 0 0 1 1.00 1.00 Y

TQCA intermediate solution was shown in the Table 10. There are two main strategies:
the first is the A–B sequence, which means a quick search of the human location area in
the scene first, followed by a combination of environmental information to determine the
existence and severity of hazards. The second strategy is B–A sequence, which means
firstly forming a general impression of the overall scene, considering people as one of the
elements in the scene in this stage, but not focusing on them first; then observing the state
of people in the scene to make a comprehensive judgment. Corresponding to this hazard
scene, that is, firstly identify and determine the working environment of scaffolding as a
high working environment, and then combine with the objective fact that workers are in
this environment without wearing safety belts, and make the judgment that hazard exists.

Table 10. Intermediate solution to correct recognition of Hazard #3.

Intermediate Solution
Frequency Cutoff: 12; Consistency Cutoff: 0.75

Solutions Configurations Raw Coverage Unique Coverage Consistency

#1 AB 0.200 0.200 0.833

#2 BA 0.400 0.400 0.952

Overall solution coverage: 0.600
Overall solution consistency: 0.909
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5. Discussions
5.1. Practical Contribution: Visual Cognitive Strategy for Hazard Recognition

The results shows that most participants chose the observation pattern of observ-
ing multiple AOIs in sequence before making judgments, presenting a high response
accuracy rate.

5.1.1. Potential Electrical Contact Hazards

As shown in Table 4, participants mainly adopted two strategies when observing
potential electrical contact hazards: 32.6% of participants followed the observation pattern
of “charged body (A)—wire (B)—connection between charged body and electric wire (here-
inafter referred to as the intersection)”; 48.8% of participants conformed to the observation
pattern of “wire (B)—energy-releasing source (A)—intersection”, which was followed by
48.8% of the participants.

It is worth noting that in the two different visual paths, the areas of charged objects
(A) and wires (B) are both necessary conditions for participants to successfully recognize
hazards. However, the results of heat maps and post-experiment interviews with partic-
ipants showed that they were more concerned about the intersection of (A) and (B). On
construction sites, the most common electrical fires come from the connection of energized
wires to equipment [55,56], which is the intersection in the Hazard #2 scene. Interest-
ingly, the interview results indicate that both groups of construction workers who adopted
different observation sequences expressed confidence in this strategy and efficiency in
choosing to focus on the intersection interface in this scenario. Although this common
tendency provides specific guidance for interpreting construction workers’ recognition
process of potential electrical contact hazards, it seems to be inconsistent with the priority
areas of concern (e.g., charged bodies, ground wire) that have been generalized in previous
studies [17,57]. The reason is probably that the participants in this study are all experi-
enced construction workers, whereas these previous studies used alternative groups in the
selection of participants, such as civil engineering students, who did not have as much
experience as workers with work experience [17,58].

Therefore, the current research results show that when recognizing unknown scenes
with potential electrical contact hazards, compared with energy-releasing source, giving
priority to the intersection that considers the focus of attention among the components is
more consistent with the cognitive patterns of safety-experienced construction workers,
which supplements and revises the visual path generalized in previous visual research.
Computer vision technology should pay more attention to the definition and feature extrac-
tion of the intersection areas to enhance the hazards recognition ability and efficiency in
potential electrical contact hazard scenarios, as this may reflect the interaction between the
two common components of energy-releasing source and wires. As RBC and gestalt model
suggests that humans can identify hazards based on the spatial relationships of different
elements and considering the extent to which they “deviate from the prototype” [18].
Further development and refinement of corresponding computer vision auxiliary technol-
ogy aiming at hazard monitoring, such as the detection of the integrity of the insulation
portion of the wire envelope, and the detection of abnormal heat generation, will occur in
conjunction with thermal imaging technology [59].

5.1.2. PPE-Related Hazard

Based on the results of data analysis, combined with post-experiment interviews,
there are two strategies for participants to observe and recognize Hazards #2 and #3:
(1) “Construction worker-PPE-construction work environment”. The corresponding spe-
cific visual search paths are shown in Solution #2-1 in Table 7 and Solution #3-1 in Table 10.
(2) “Construction operating environment (association of potential hazards)—construction
workers-PPE”. The corresponding specific visual search paths are shown in Solution #2-2
shown in Table 7 and Solution #3-2 shown in Table 10.
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Safety training provides workers with the knowledge base and long-term memory of
safety regulations that guide workers to the most likely interpretation and identification of
a given scenario and generate perceptual goals. Construction workers are searching for
hazards in accordance with this paradigm, which is the “top-down” model in psychol-
ogy. The human-object-environment strategy described above is also consistent with the
requirement in [OSHA] [60] that safety training prioritize whether workers working at
heights are wearing safety devices. When the background (objects, features or groups in
the scene) is consistent with the perceptual target, the effect of hazard recognition can be
achieved [18]. In these two PPE-related hazard scenes of this study, the correct answer
rate of construction workers using this paradigm in the two PPE hazard scenarios both
exceeded 80%.

Even though the purpose of safety training is to reinforce long-term knowledge and
enhance the effect of “top-down” inspection, due to the heavy construction workload, work-
ers’ general perception starts from trivial signs and follows “heuristic” reasoning [61,62] to
determine whether there are hazards, which is the “bottom-up” dominant cognitive model.
This conforms to what psychology describes as the spontaneous interchange of “bistable
perception” [63], which unconsciously shifts attention to prominent visual features of
potential importance [64,65] that is, hazards closely related to workers [66]. This observa-
tion mode can be vividly described as “scene association type”. Although this bottom-up
cognitive model may lay the foundation for understanding people’s selection of AOI, it is
not sufficient to complete the visual searching cognitive process, especially in the dynamic
construction site with high complexity. In such scenarios, potential hazards may come from
many different and unintended areas. Therefore, the completion of the cognitive process
also requires the supplement of associations with the current scene. Human perceptual
mechanisms discard redundant information [67] and use existing information such as
common sense, knowledge and experience, combined with their expectations of the current
situation [68], to associate and discover missing information [18]. For example, under
Hazard #2 and Hazard #3, when they quickly focus on the workers from the observation of
the scene in hazard search tasks, they will generate expectations of the safety of the workers,
that is, the workers should be protected by PPE. When further observations reveal that
PPE is in a state of absence, they will make the judgment that workers are in a hazardous
state, and the cognitive process of hazard recognition will be completed. This model can be
summarized by “norm-guided”.

Interestingly, the results of the current study show that both strategies correspond to a
fairly high correct rate of hazard recognition, without presenting a clear superiority or infe-
riority. However, it can be confidently concluded that the high accuracy rate corresponding
to the normative interpretation means that the hazard recognition strategies taught in
the safety training are effective, which verifies the positive effect of safety training on
safety management. Safety training enables individuals to recall the requirements of safety
regulations in construction scenarios, and consciously perform corresponding safety in-
spection and CHR. It is worth noting that although the “scene-associative” visual cognitive
strategy appears to be less efficient than the “norm-guided” approach in targeting hidden
areas, they both exhibit high levels of correctness, suggesting that the “scene-associative”
may have potential implications for safety training. Specifically, the scenario-associative
strategy is more reflective of worker experience, and although there may be significant
internal individual variability, the overall consistent strategy presented helps to examine
inappropriate instructional content that may be contrary to subjective human experience
and habits in traditional construction safety training design [69]. Quality safety training
content should include hands-on activities for visual exploration of the environment, or at
least activities that provoke reflection on the possible sources of hazards, rather than merely
conveying guiding information about visual exploration behavior that meets the normative
guidance and requirements. Visual research can record reasonable and effective hazard
recognition experience with common features through the cognitive strategies reflected in
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the visual sequence, which provides a rich source of content design for safety training to
enhance its positive contribution to safety management [70,71].

In addition, these two strategies also have enlightening significance for the devel-
opment of computer vision in hazard recognition. For example, the paradigm of human
interpretation of safety specifications and the top-down visual cognitive strategy can be
referred to learn how to accurately map the content in safety specifications with inherent
complexity in specific scenarios [30], thus enhancing the computer’s ability to learn and
understand safety regulations. The large amount of data recorded in vision research, after
certain screening to optimize the quality of the data, can be used for the learning and
training of computer vision algorithms [31], thus training computers to predict possible
future hazardous states of the current scene, which may be significant for safety manage-
ment. This is because what can be seen and recorded is the world composed of objects
and surfaces, but humans can make perceptions and associations about the meaning of the
observed visual attributes. The human cognitive system uses heuristic problem-solving
shortcuts to make inferences about the received information for generating perceptions of
the world rather than exhaustive algorithms [40,41]. In the current application paradigm
of computer vision, searching for the presence of a feature is faster than for the absence
of a feature [18], which is also the reason why a static scene with potential hazards may
be more difficult to be recognized by computer vision than a dynamic scene. However,
with the help of appropriate cues, things objectively absent in a scene can be interpreted as
present but hidden, thus allowing for the simulation of human associative abilities. Vision
research may provide such cues and learning basis for computer vision algorithms, such
as the visual behavior corresponding to the visual cognitive strategy summarized in this
study, which will bring leap-forward improvement for the hazard recognition ability of
computer vision.

5.2. Theoretical Contribution

Constrained by the limitations of the analysis method, the construction industry
study failed to accurately capture the temporal sequential visual patterns of CHR. This
study introduces the TQCA method to summarize the visual sequence configurations
with high identification correctness among all participants’ visual data, and summarize
their strategies in combination with post-experiment interviews. The QCA method is
highly applicable in revealing the influence of complex relationships among multiple
antecedents on the results, given its ability to integrate the advantages of qualitative and
quantitative analysis. On this basis, TQCA further extends the temporal dimension. By
standardizing the encoding and analysis of visual sequences, TQCA substantially reduces
the uniformity defects and substantial information loss caused by simple clustering [16]
and neural network methods [17] used in previous studies, and also avoids the prob-
lems of excessive redundancy and complexity caused by quantitative methods such as
recurrence quantification analysis [72] or multi-match (a vector-based multidimensional
approach) [73–75].

This study extends and deciphers the mechanism of applying RBC and gestalt model
to the construction hazard recognition. Construction industry research has long considered
hazard as a combination of individual components (human, machine, object, etc.) [76],
but the “intersection” identified in this study, as one of the interaction patterns between
components, is an important cue emphasized by RBC and gestalt model. Similarly, the
association of potential hazards formed by construction practitioners based on their obser-
vation of current scenarios and safety knowledge or experience is an important paradigm
for the embodiment of gestalt model in the cognitive behavior of specific hazard recogni-
tion. Such an interpretation expands the specific paradigm of the application of the RBC
and gestalt model in the process of CHR, providing concrete examples of the interaction
between components and their possible role in the human cognitive process. Therefore,
this implies that computers should consider more abstract spatial topological relationships
such as interactions among components or clues to various potential hazard scenarios they
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imply, in addition to the traditional identification of people, machines, and objects when
identifying hazards in the future. In addition, these findings expand the perspective of
construction safety training bring potential for improving the reliability of safety training
on construction site.

6. Conclusions

This study aims to identify the temporal visual patterns exhibited by construction
workers during their visual searching process and to explore the cognitive strategies of
CHR reflected by these identified visual patterns through an eye-tracking experiment with
real construction scene pictures as the background for CHR. The results show that: (1) In
the potential electrical contact hazards, the intersection of the energy-releasing source and
wire that reflected their interaction is the cognitively driven visual area that participants
tend to prioritize; (2) in the PPE-related hazards, two different visual strategies, i.e., “scene-
related” and “norm-guided”, can usually be generalized according to the participants’
visual cognitive logic in the recognition of PPE hazard, corresponding to the bottom-
up (experience oriented) and top-down (safety knowledge oriented) cognitive models.
This research furnishes a novel paradigm for the identification of visual patterns and the
interpretation of CHR strategies from a cognitive perspective, as well as complements
the RBC and gestalt model in visual cognitive theory, thus contributing to provide viable
practical guidelines for the design and improvements of construction safety trainings and
theoretical foundations of computer vision techniques for CHR.

There are still some limitations of this study that need to be considered. First, the
hazard scenes were presented on the monitor in the form of 2D pictures, and although the
material was derived from photos of the construction site, there was a gap between the
perception and the real construction site. Second, the types of hazards involved in this
experiment were limited to three. However, there are many types of hazards involved in
construction projects, even including combinations of multiple hazard types. Therefore, the
visual recognition strategies obtained in this study may not be applicable to other hazard
types. Third, two parts of experiments, A and B, were designed in this study. However,
the observation time of 3 s per picture in Part A was not sufficient to form a reliable visual
strategy. Although this design utilized principles such as priming effects and working
memory (short-term memory), it could be improved in subsequent studies. In the end,
the practical implications of this study including the development of hazard recognition
devices and employee safety training need further demonstration.

Based on the above limitations, this study suggests four potential valuable directions
for future research. First, introduce virtual reality or augmented reality technologies
into the research field of visual search sequence. Future studies may consider trying to
use immersive and realistic reproduction of 3D construction scenes for the study if the
technology allows. As a result, the data obtained from the study will be more realistic
and reliable. Next, continue to expand the types of hazards involved in the experiments.
Future studies are recommended to select more hazard scenarios and sample datasets to
confirm the results and further explore the relationship between different hazard types as
well as hazard recognition strategies. Then, in future studies, longer observation times for
individual hazard scenes could be considered, thus, allowing participants to form strategies
in a single observation. At last, researchers need to verify the practical implications of
our findings through further experiments. For example, researchers are recommended
to develop hazard recognition devices based on the visual cognitive strategies and select
sample construction project to explore the practical value of this study for employees’
safety training design.
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