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Abstract: CsPbClxBr3-x nanocrystals were prepared by ligand-assisted deposition at room tempera-
ture, and their wavelength was accurately adjusted by doping TbCl3. The synthesized nanocrystals
were monoclinic and the morphology was almost unchanged after doping. The fluorescence emission
of CsPbClxBr3-x nanocrystals was easily controlled from green to blue by adjusting the amount of
TbCl3, which realizes the continuous and accurate spectral regulation in the range of green to blue.
This method provides a new scheme for fast anion exchange of all-inorganic perovskite nanocrystals
in an open environment at room temperature.

Keywords: room temperature assisted recrystallization; nanocrystalline; spectrum control

1. Introduction

All inorganic cesium lead halide perovskite CsPbX3 (X = Cl, Br and I) quantum dots
have excellent optoelectronic properties, such as excellent defect tolerance, long carrier life,
a large absorption cross-section, high photoluminescence quantum yield, narrow emission
peak, and adjustable emission in the visible spectrum range. It has a good application
prospect in optoelectronic devices [1–3]. In 2015, Protesescu et al. first proposed the
thermal injection method for the preparation of inorganic perovskite quantum dots [4].
By discarding the supernatant and re-dispersing in toluene or n-hexane to form a sta-
ble CsPbX3 nanocrystalline colloidal solution, perovskite nanocrystals with controllable
morphologies, including quantum dots, nanowires, nanosheets, and nanorods, can be
prepared [5–9]. However, this method requires the preparation of cesium oleate precursors,
followed by rapid injection of lead halide precursors at high temperatures. The synthesis
method requires high-temperature heating and inert gas protection, which greatly limits
the application of perovskite quantum dots in practical applications.

In 2016, Li et al. prepared CsPbX3 nanocrystals by room-temperature ligand-assisted
deposition (LARP), which is different from thermal-injection synthesis [10]. The pro-
cess involves dissolving perovskite precursors, oleic acid, oleamine, etc., in a polar N,
N-dimethylformamide (DMF) solvent, rather than the ODE used in the thermal injection
method, and gradually adding a certain amount of the precursor solution to toluene or
n-hexane under intense agitation. The salts commonly used in LARP methods are PbX2 and
CsX. The mixing of the two solvents causes instantaneous monomer supersaturation, which
triggers nucleation and growth of perovskite nanocrystals. Because the LARP process is
performed in the air with a simple agitator opening, it can be scaled up to produce per-
ovskite nanocrystals on a large scale, even up to the grade of gram [11,12]. In addition, the
optical properties of CsPbX3 nanocrystals prepared by the room-temperature precipitation
method are close to those prepared by the thermal injection method, although the reaction
temperature is low and there is no inert atmosphere to protect the nanocrystals [13–16].
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Different from traditional semiconductor quantum dots, the average size of CsPbX3
nanocrystals (NCs) is usually larger than 10 nm, larger than its exciton Bohr radius, so it is
difficult to achieve continuous fluorescence emission only through size adjustment [17–19].
Thanks to the unique anion exchange characteristics and high ion mobility of CsPbX3
nanocrystals, fluorescence emission wavelength tuning of full visible-spectrum emission
can be achieved by exchanging nanocrystalline halogen ions (Cl, Br or I) [20–23]. However,
the traditional anion exchange reaction using PbCl2 needs to undergo complex pretreat-
ment, excessive ligand-induced degradation of nanocrystals, and incomplete ionization
of PbCl2 salts. These will result in unpredictable fluorescence shifts and cannot be tuned
quantitatively and accurately [24]. For example, if excessive oleamine (OLA) is used,
CsPbBr3 NCs will be partially or completely converted to Cs4PbBr6 NCs [25]. The addition
of alkyl ammonium bromide in the anion exchange process will also lead to the unexpected
evolution of the CsPb2Br5 perovskite phase. In this regard, the key to accurate emission
control of CsPbX3 NCS is to establish a programmed and accurate anion exchange route
with high halide ion reactivity to prepare pure phase CsPbX3 NCs [26]. In the anion ex-
change process, some efforts have been made to improve the reactivity of halides. Benzoyl
halides and trimethylsilyl halides are electrophilic reagents. They show high reactivity
in the anion exchange reaction by destroying halogen bonds, releasing halide ions, and
promoting the substitution of halide components in CsPbX3 NCS, although these reagents
are toxic [27,28]. The environmentally friendly metal halide solid MX2 (M = Zn, Ni and Mg)
is also used as a halide source to achieve rapid anion exchange at room temperature [29,30].
The inorganic halide salt greatly simplifies the reaction process and speeds up the reaction
rate. However, in the process of inorganic halide exchange, with the opening of rigid halide
octahedron structure around lead, partial cation exchange of metal cations to lead is likely
to occur. Different from the traditional anion exchange method, in 2019, Liu et al. dissolved
ZnX2 in water, and the prepared ZnX2 aqueous solution was used as the halide source
in anion exchange. The fluorescence emission peak position of CsPbX3 nanocrystals can
be adjusted continuously and accurately in the whole visible spectrum [25]. However,
due to the introduction of water, the nanocrystals will inevitably dissociate. In 2020, Pan
et al. introduced a NiCl2 solution into the CsPbBr3 reaction medium, where the emission
wavelength was in the range of 508–432 nm and its PLQY reached 89%. However, Ni2+

inevitably entered the Pb lattice, resulting in changes in the structure, thus affecting its
optical properties and uncontrollable factors for accurately regulating the fluorescence
spectrum band [30].

All-inorganic mixed halide perovskite is often used to obtain blue LEDs with shorter
emission wavelengths. For example, Zheng and his collaborators recently reported the
preparation of all-inorganic CsPb(Cl/Br)3 Perovskite blue led by the thermal injection
method, and obtained perovskite lead with a luminous wavelength of 470 nm and efficiency
of 6.3% [31]. In this study, we reported the successful synthesis of CsPbClxBr3-x nanocrystals
at room temperature by an improved supersaturated reprecipitation method by introducing
different amounts of TbCl3 solution into the reaction medium. The fluorescence emission
peak position of the synthesized CsPbClxBr3-x nanocrystals is adjustable in the range
of 431 nm to 512 nm and has good phase/chemical stability. Experiments show that
the fluorescence emission of CsPbX3 nanocrystals can be accurately and continuously
regulated like traditional semiconductor nanocrystals, making perovskite nanocrystals
more competitive in lighting and display applications.

2. Experiments
2.1. Experimental Materials

The experimental materials include cesium bromide (CsBr, analytically pure, pu-
rity 99.5%); PbBr2 (analytically pure, purity 99.0%), terbium trichloride, hexahydrate
(TbCl3.6H2O, analytically pure, purity 99.9%); Oleic acid (purity 85%); Oleylamine (80~90%
purity); N,N-dimethylformamide (DMF, analytically pure, 99.5%); and toluene, all of which
were not further purified.
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2.2. Synthesis of CsPbClxBr3-x Nanocrystalline

The all-inorganic perovskite CsPbBr3 was synthesized by room-temperature supersat-
uration recrystallization. Under the condition of magnetic stirring and heating, 0.4 mmol
CsBr, 0.4 mmol PbBr2, 1 mL oleic acid, and 0.5 mL oleylamine were dissolved in 10 mL
DMF as the sources of Cs, Pb, and Br. Only 1 mL of the PbBr2/CsBr solution was slowly
injected into 10 mL of toluene under ultrasonic conditions. After a few seconds, bright
green light emission was observed under UV irradiation of 365 nm.

Synthesis of CsPbClxBr3-x nanocrystals: Firstly, 1 mmol TbCl3.6H2O was dissolved
in 1 mL DMF as a Cl source under magnetic stirring. Then 5, 10, 20, 40, and 80 µL TbCl3
solutions were added dropwise, followed by 1 mL of the above-mentioned PbBr2/CsBr
mixture solution and 10 mL of toluene. The process was carried out under ultrasound.
After a few seconds, green and blue light emission was observed under the irradiation of
an ultraviolet ray at 365 nm. The nanocrystals with the addition of 5, 10, 20, 40, and 80 µL
TbCl3 solutions represent CsPbCl0.33Br2.67, CsPbCl0.6Br2.4, CsPbCl1Br2, CsPbCl1.5Br1.5, and
CsPbCl2Br1, respectively.

2.3. Purifications

The nanocrystals synthesized at room temperature were centrifuged at 3000 r/min
for 5 min, and the supernatant was retained. Then, the supernatant was centrifuged at
11,000 r/min for 15 min, and 3 mL toluene was added to the resulting precipitate, which
was further centrifuged at 11,000 r/min for 15 min. The precipitate was retained, and
finally it was dispersed into 3 mL toluene for optical performance testing and morphology
characterization.

2.4. Characterizations

X-ray powder diffraction image (XRD) shows CuKα emission (λ = 1.5418 A) assisted
by the Bruker Smart-Apex-II X-Ray Single-Crystal Diffractometer. Transmission Electron
Microscope Hitachi H-800 (acceleration voltage of 200 kV) is used for transmission electron
microscope image photography. UV-Vis absorption spectra were characterized by the
Shimazu -3600 UV-NIR spectrophotometer. The Horiba Fluoromax-4 steady-state and
transient fluorescence spectrometer measured the emission spectrum and fluorescence
lifetime. X-ray photoelectron spectroscopy (XPS) was measured by the Thermo ESCALAB
250XI spectrometer with Al Ka excitation (1486.6 eV).

3. Results and Discussions

As can be seen from Figure 1, the diffraction peaks 15.081, 21.498, 30.698, 37.603, and
43.692 of CsPbClxBr3-x nanocrystals with different halogen components correspond to (001),
(110), (−200), (121), and (−202) crystal planes of CsPbBr3 (PDF#18-0364) standard card,
respectively. Therefore, the nanocrystals possess the crystalline structure of monoclinic bulk
CsPbBr3 (PDF#18-0364) [30]. With the increase of Cl− ion content, the above diffraction
peaks gradually move to a large angle, which is caused by the lattice shrinkage caused by
the replacement of Br− (1.96 Å) ions with a larger radius to smaller Cl− (1.81 Å) ions [32,33].
For the CsPbX3 NCs, monoclinic is a metastable structure, the formation of which is
thermodynamically controlled. In the room-temperature ligand-assisted deposition, the
reaction temperature is rather low that the total energy is insufficient to overcome the
barrier to crystallizing into the tetragonal phase as can be obtained in the hot-injection
approach. The existence of the stable metastable phase at low temperature is attributed to
the capping ligands (OLA) on the surface of the as- prepared NCs, which lower the surface
energy [34].
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Figure 1. XRD patterns of CsPbClxBr3-x nanocrystals with different halogen components.

Figure 2a,b shows TEM images of CsPbBr3 and CsPbCl1Br2 nanocrystals prepared
by supersaturated recrystallization at room temperature. It can be seen from the figures
that CsPbBr3 and CsPbCl1Br2 nanocrystals maintain uniform distribution and exhibit
good monodispersion properties. The size of most of them is about 20 nm, showing
high dimensional uniformity, and their morphology almost does not change before and
after doping.
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Figure 2. (a) TEM images of CsPbBr3 nanocrystals and (b) CsPbCl1Br2 nanocrystals.

From the XPS spectrum of Figure 3a–e, the characteristic peaks of Cs 3d, Pb 4d, Pb
4f, Br 3d, and Cl 2p can be clearly observed, among which the characteristic peak of Cl
2p appears, further indicating that the characteristic peak of Tb3+ still does not appear
in the crystal lattice position of bromine successfully incorporated by the chloride ion
under the detection limit of XPS measurement. This means that Tb3+ will not be mixed
into the lattice position of CsPbClxBr3-x. This not only avoids the pollution of metal
ions when metal halides are used as the halogen source, but also solves the problems
of incomplete ionization and toxicity of Pb ions when PbCl2 is traditionally used as the
halogen source [35].
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Figure 3. (a) The XPS spectrum of CsPbCl1Br2 nanocrystals; (b) XPS spectra of Cs 3d in CsPbCl1Br2 nanocrystals; (c) XPS
spectra of Pb 4f in CsPbCl1Br2 nanocrystals; (d) XPS spectra of Cl 2p in CsPbCl1Br2 nanocrystals; (e) XPS spectra of Br 3d in
CsPbCl1Br2 nanocrystals.

In order to observe the influence of chloride ion doping on the band gap of CsPbClxBr3-x
nanocrystals, we measured the absorption spectra of CsPbClxBr3-x nanocrystals after
adding different amounts of TbCl3, as shown in Figure 4a. It can be seen from the figure
that, with the increase of TbCl3 addition, the absorption edge of CsPbClxBr3-x moves
towards the short-wavelength direction, which is mainly caused by the increase of the
band gap of CsPbClxBr3-x nanocrystals as Cl− replaces Br−, corresponding to the blue
shift of the fluorescence emission peak position [36]. As shown in Figure 4b, fluorescence
emission can be adjusted from 512 nm to 431 nm only by changing the content of doped
TbCl3.The nanocrystals can be controlled continuously and accurately from green light to
blue light, and the half-peak width of the emission spectrum is very narrow, ranging from
18.1 nm to 34.1 nm. As shown in the inset of Figure 4c, with the increase of TbCl3 addition,
the luminescence of the corresponding CsPbClxBr3-x nanocrystals under ultraviolet light
gradually changes from green to blue. After two weeks, the luminescence brightness
of the colloidal dispersion of CsPbX3 nanocrystals remained basically unchanged. The
corresponding CIE color coordinates are (0.066, 0.732), (0.066, 0.732), (0.094, 0.166), (0.142,
0.076), (0.154, 0.057), and (0.169, 0.061), respectively. Interestingly, we found similar results
when using EuCl3 as the chlorine source, which could be seen in Figures S1 and S2.

As can be seen in Figure 4d, the change of halogen components will lead to the
change of average fluorescence lifetime. The overall performance is as follows: With the
increase of Cl− ion content, the fluorescence lifetime will be shortened, and the band gap
corresponding to halogen ions is negatively correlated with the attenuation lifetime [37].
When fitting the fluorescence decay lifetime spectrum of CsPbClxBr3-x, it is found that the
fluorescence decay process of the sample conforms to the double exponential decay, and its
average fluorescence lifetime is calculated by the following formula:

τav =

(
α1τ

2
1 + α2τ

2
2
)

(α1τ1 + α2τ2)
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Among them, τi and αi are the weight coefficient and fluorescence lifetime coefficient
of PL curve life, respectively. The fluorescence lifetime of CsPbBr3 nanocrystals is up to
65.5 ns. By fitting the fluorescence attenuation lifetime spectrum of CsPbClxBr3-x, it is
found that its fluorescence attenuation process conforms to the three-exponential decay,
and its average fluorescence lifetime is calculated by the following formula:

τav =
α1τ

2
1 + α2τ

2
2 + α3τ

2
3

α1τ1 + α2τ2 + α3τ3

The fluorescence lifetime of CsPbCl0.33Br2.67, CPbCl0.6Br2.4, CsPbCl1Br2, CsPbCl1.5Br1.5,
and CsPbCl2Br1 were 56.9 ns, 38.7 ns, 17.9 ns, 8.7 ns, and 4.3 ns, respectively. The lumines-
cence data of CsPbClxBr3-x nanocrystals can be seen in Table 1.
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Figure 4. (a) Ultraviolet absorption spectra of CsPbClxBr3-x nanocrystals with different halogen components; (b) the
fluorescence emission spectra of CsPbClxBr3-x nanocrystals with different halogen components (from left to right are
CsPbCl2Br1, CsPbCl1.5Br1.5, CsPbCl1Br2, CsPbCl0.6Br2.4, CsPbCl0.33Br2.67, and CsPbBr3). (c) The CIE diagram of different
halogen components of CsPbClxBr3-x nanocrystals. The illustration shows the photos of the synthesized CsPbClxBr3-x

nanocrystals under the ultraviolet lamp; (d) fluorescence lifetime diagrams of CsPbClxBr3-x nanocrystals with different
halogen components.
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Table 1. Luminescence data of CsPbClxBr3-x nanocrystals based on different halogen components.

The Sample The Emission Peak Full Width at Half Height Mean Fluorescence Lifetime CIE Coordinates

CsPbBr3 512 nm 18.1 nm 65.5 ns (0.066, 0.732)
CsPbCl0.33Br2.67 486 nm 23.1 nm 56.9 ns (0.075, 0.269)
CsPbCl0.6Br2.4 480 nm 20.7 nm 38.7 ns (0.094, 0.166)

CsPbCl1Br2 463 nm 34.1 nm 17.9 ns (0.142, 0.076)
CsPbCl1.5Br1.5 450 nm 32.3 nm 8.7 ns (0.154, 0.057)

CsPbCl2Br1 431 nm 27.3 nm 4.3 ns (0.169, 0.061)

4. Conclusions

In this paper, CsPbClxBr3-x nanocrystals were directly synthesized by doping with
TbCl3 at room temperature in an open environment. The synthesized CsPbClxBr3-x
nanocrystals belong to the monoclinic phase and maintain uniform distribution, showing
good monodispersion properties. The size of most of them is about 20 nm and their mor-
phology almost does not change before and after doping. By adjusting the amount of TbCl3,
the fluorescence emission was accurately adjusted from green to blue. This provides a new
scheme for fast anion exchange of perovskite nanocrystals with all-inorganic cesium-lead
halide in an open environment at room temperature and has practical application value in
the fields of light-emitting diodes, solar cells, and photodetectors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11092390/s1, Figure S1: Photo of CsPbClxBr3-x nanocrystals under ultraviolet light
(from left to right, CsPbBr3, CsPbCl0.15Br2.85, CsPbCl0.27Br2.73, CsPbCl0.4Br2.6, CsPbCl0.82Br2.18,
CsPbCl1.16Br1.84 and CsPbCl1.5Br1.5, respectively). Figure S2: Fluorescence emission spectra of
CsPbClxBr3-x nanocrystals with different halogen components (from left to right, CsPbCl1.5Br1.5,
CsPbCl1.16Br1.84, CsPbCl0.82Br2.18, CsPbCl0.4Br2.6, CsPbCl0.27Br2.73, CsPbCl0.15Br2.85 and CsPbBr3,
respectively).
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