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Viral infections result in millions of deaths in the world today. A thorough analysis of virus-host interactomes may reveal insights
into viral infection and pathogenic strategies. In this study, we presented a landscape of virus-host interactomes based on protein
domain interaction. Compared to the analysis at protein level, this domain-domain interactome provided a unique abstraction of
protein-protein interactome. Through comparisons among DNA, RNA, and retrotranscribing viruses, we identified a core of human
domains, that viruses used to hijack the cellular machinery and evade the immune system, which might be promising antiviral drug
targets. We showed that viruses preferentially interacted with host hub and bottleneck domains, and the degree and betweenness
centrality among three categories of viruses are significantly different. Further analysis at functional level highlighted that different
viruses perturbed the host cellular molecular network by common and unique strategies. Most importantly, we creatively proposed
a viral disease network among viral domains, human domains and the corresponding diseases, which uncovered several unknown
virus-disease relationships that needed further verification. Overall, it is expected that the findings will help to deeply understand

the viral infection and contribute to the development of antiviral therapy.

1. Introduction

Viral infections result in millions of deaths each year. AIDS
hasbecome one of the leading killers worldwide and the influ-
enza has always been a headache of public health organiza-
tions. Governments around the world annually invest billions
of dollars to investigate the mechanism of viral infections,
potential targets for treatment, and innovative vaccines. It is
widely accepted that viral infection and pathogenesis mainly
depend on their ability to interact with human proteins
through a complex network of protein-protein interactions
(PPIs). For humans, eukaryotic cells express a large group of
proteins to develop normal function through a highly con-
nected and two-side network, which exhibits robustness
against random attack and a high sensitivity to targeted
subversion [1, 2]. The smart virus takes advantage of this char-
acteristic to evolve an efficient strategy of hijacking central

proteins and interfering with the regulated network, aiming
to complete its own life cycle [3, 4]. This perturbation often
damages the host cellular networ, and thus causes severe
diseases, like the occurrence of cancers [5, 6]. Rozenblatt-
Rosen et al. have confirmed the hypothesis that genomic vari-
ations and virus proteins may lead to cancer in similar ways,
such as Notch signalling and apoptosis, by examining sys-
tematically host interactome network perturbations caused
by DNA tumor viruses [7]. A thorough analysis of virus-host
interactomes may reveal insights into viral infection and
pathogenic strategies and help identify novel drug targets [8]
and decipher the molecular aetiology of some complex
diseases [9]. With the help of high-throughput experiments
[10-12] such as yeast-two hybrid screens or literature mining,
researchers have collected many virus-host PPIs, generating
invaluable virus-host PPI databases [13, 14] and tried to
provide a global view of human cellular processes controlled
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TABLE 1: Statistics of intraviral, intrahost, and interspecies PPIs in databases.

Database Number of Number of Number of Number of Number of
PPIs proteins intrahost PPIs intravirus PPIs interspecies PPIs

BIND 20479 14098 5364 684 1109

BioGrid 349696 43462 62805 7 569

DIp 70127 24351 2866 164 405

HPRD 39198 9673 39198 0 0

InnateDB 8359 3862 5959 0 0

IntAct 234264 59238 41315 582 570

MINT 26239 10741 21686 445 1248

NCBI_HHPID 2582 1462 0 0 2582

PHISTO 14928 3253 0 0 14928

VirHostNet 11426 5602 6610 1650 3113

by viruses [8]. However, we found that this global analysis
ignored the structural details of individual proteins and their
interaction interfaces, which limited our comprehensive
understanding.

It is well established that many PPIs are mediated by pro-
tein domain pairs. The domain, a stable part of protein struc-
ture, evolves and functions independently. The domain is
usually used to combine with other domains to form a mul-
tidomains protein [15], which functions through interacting
with domains from other proteins. Itzhaki et al. [16, 17]
indicated that domain-domain interactions (DDIs) actually
reflected an evolutionary conservation; that is, the same DDI
might occur in different organisms and many PPIs might also
be attributed to a limited set of DDIs. DDIs underlying herpes
virus-human PPI networks have showed that viral domains
tend to interact with human hub domains [17]. Therefore,
DDIs, as the building blocks of PPIs, provide an attractive
abstraction of protein network and capture the dynamics of
interactions in the cellular system.

In this study, we developed an integrated pipeline to
construct a virus-host interactome based on protein domain
pair, where we hoped to present novel insights that might not
be provided in the binary protein interaction networks.
Therefore, we performed topological and functional analysis
of this interactome. Moreover, we attempted to map somatic
mutations to human domains and gain novel associations
between viruses and diseases.

2. Materials and Methods

2.1. Used Dataset. We downloaded literature-curated binary
PPIs in July 2012, from ten public databases: the Biomolecular
Interaction Network Database (BIND) [18], the Database of
Interaction Proteins (DIP) [19], the Human Protein Reference
Database (HPRD) [20], IntAct [21], the Molecular INTerat-
cion database (MINT) [22], Virus-Host Network (VirHost-
Net) [14], HIV-1, Human Protein Interaction Database
[23], the Biological General Repository for Interaction
Datasets (BioGrid) [24], InnateDB [25], and Pathogen-Host
Interaction Search Tool (PHISTO) [26] (Table 1). We col-
lected intravirus, virus-host, and intrahost PPIs from these

databases and only physical PPIs were remained. Since not all
databases used the uniform IDs, such as Uniprot [27] or Gen-
Bank [28], we removed redundant PPIs based on the protein
sequences in the same species. The protein sequences were
retrieved from Uniprot, GenBank, Ensembl [29], and DIP,
according to each database’s ID type. There were 135,231
intrahost PPIs among 44,078 proteins, 13,058 virus-host PPIs
between 674 viral proteins from 94 viruses, and 2,388 host
proteins (See Supplementary Table 1 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2014/867235).

We downloaded the DDI dataset from Integrated
Domain-Domain Interaction Database (IDDI) [30], which
included three structure-derived DDI datasets (3DID [31],
iPfam [32], and PInS [33]) and twenty computationally
predicted DDI datasets. It has developed a novel scoring
scheme to measure the reliability of each DDI by considering
their prediction scores, independencies among the twenty
datasets, and the confidence levels of each prediction method
in the datasets. It currently contains 204,705 unique DDIs
between 7,351 distinct Pfam domains, where 6,768 inter-
actions are from 3D structure-derived datasets.

2.2. Virus-Host Interactome Network Based on Domain Inter-
actions. All proteins in the PPI dataset were scanned by the
Pfam scan utility and HMMER 3.0 with default parameters
against Pfam-A models obtained from Pfam (v.26.0) [34].
Then, we mapped the PPIs to DDIs according to the following
rule: if two interacting proteins contained domains docu-
mented as interacting (e.g., DDIs from IDDI database), where
one domain located in one protein and the other in the
interacting partner, the interaction of these two proteins
could be attributed to this domain pair.

We integrated all the structure-derived DDIs and top 30%
of predicted DDIs in consideration of the reliability and quan-
tity. Additionally, DDIs were further filtered to exclude those
domain pairs that were reported as non-interacting by the
Negatome database [35]. Therefore, there are 9,598 intrahost
DDIs among 2,084 domains, 1851 intravirus DDIs among 839
domains, and 269 virus-host DDIs between 87 viral domains
from 49 viruses and 144 host domains (Supplementary
Table 1).
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2.3. Topological Analysis in the Host DDI Network. The degree
or connectivity of one domain node in a graph is the number
of edges that are linked to this domain node, which stands for
a local centrality measure. The betweenness of one domain
node v in a graph is a global centrality measure which is
defined by the number of shortest paths going through this
node between any pairs and normalized by twice the total
number of protein pairs in the graph (n* (n—1)/2, supposing
there are n nodes in the graph). The equation used to calculate
the betweenness centrality of the node v, b(v), is as follows:

3 1 gij (V)
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where g;; is the number of shortest paths going from node i
to j and g;;(v) is the number of shortest paths from i to j that
pass through the node v. A domain with high degree or
betweenness centrality is characteristic of a hub or bottleneck
in an interaction network and often is critical to this network
[36]. In the intrahost DDI network, all domains could be
divided into two parts: one that would be targeted by viruses
(targeted domains) and the other that would not be targeted
(nontargeted domains). We plotted distributions of degrees
and betweenness centralities for these two types of domains,
respectively. If the distributions of targeted domains were
more biased towards high degree and betweenness centrality
domains than the distribution for nontargeted domains, then
we hypothesized that viruses had evolved to interact with hub
and bottleneck domains in the host DDI network.

The average shortest path length, also called characteristic
path length, is defined as the average of all the shortest path
lengths between the nodes in the graph. It measures the effi-
ciency of information transport on a network. The local clus-
tering coefficient measures the probability that the adjacent
vertices of a vertex are connected, and the clustering coeffi-
cient of a network is the average local clustering coefficient
of all vertices of the network. Simply, the local clustering
coefficient of a node v is calculated as

2 |E|

cc_k(k—l)’ 2
where E is the edges between neighbors of v and k is the
degree of v. Thus, a large clustering coefficient means that
neighbors of a node tend to cluster together. We used the R
package igraph [37] to compute these network topological
parameters. Self-interactions were not taken into account in
these interactions.

2.4. Functional Analysis of Domain Sets. To analyze the func-
tional impact of host domains targeted by viruses, we con-
ducted an enrichment analysis of GO [38] terms. The mapp-
ing of Pfam-A domains to their GO functions is obtained
from pfam2go in the GO website (http://www.geneontology
.org/external2go/pfam2go). Using all Pfam-A domains of the
human’s proteome as universe, we sought to find enriched
functional terms associated with viral infection and infection
mechanisms using R and Bioconductors topGO package [39].
We used the weight algorithm of topGO, which eliminated

local similarities and dependencies between GO terms in
the GO graph during the analysis. Statistical significance
level was set to 0.05. All three GO terms (biological process,
molecular function, and cellular component) were scanned to
identify the terms having significant association with each
studied host domain set.

2.5. Compiling a Comprehensive List of Disease, Disease-
Associated Genes (Domains), and Mutations. The Ensembl
variation database imports variation data (SNPs, CNVs,
genotypes, phenotypes, etc.) from a variety of sources (e.g.,
dbSNP) [29]. For humans, it also integrates variants from
HGMD-PUBLIC [40], OMIM [41], and COSMIC [42]
datasets, in which variants are linked to human genes and the
corresponding diseases. It includes germline variants and
somatic variants, and the latter are all from COSMIC. More-
over, the Ensembl classify the variants into different classes
and calculate the predicted consequence(s) of each amino
acid substitution on each protein by using PolyPhen-2 pro-
gram, where score 1 means the most damaging [43]. We
extracted missense (SNPs, in-frame short inserts and dele-
tions) and truncating (frameshift indels and stop gain) muta-
tions with related proteins and diseases from the Ensembl
variation 69 dataset. The protein IDs from Ensembl to
UniprotKB were converted based on the protein sequences.
And mutations on the proteins that could not be converted
were discarded. For proteins that contained nonsynonymous
somatic mutations, we generated a cumulative somatic muta-
tion score for each protein after normalizing scores for
protein length. All proteins with at least one nonsynonymous
somatic mutation were ranked by the normalized cumulative
scores, where TP53 ranked the highest. Statistical significance
assessment of overlap between gene sets was performed with
Fisher’s exact test. And gene sets’ GO pathway analysis was
performed by DAVID [44].

Likewise, by mapping all disease-associated mutations to
the corresponding domains after Pfam scan utility scanning,
a total of 210,887 mutations, including 177,493 missense and
33,394 truncating mutations, were obtained in 3,906 domains
associated with 3,531 clinically distinct disorders. Insertions
and deletions were mapped to domains using the starting
position of the mutations. We also ranked these domains
according to their normalized cumulative score, where the
domain was normalized by dividing by the cumulative length
of all occurrences of the domain within proteins, with VHL,
NOD, and P53 having the highest scores. Among these, 118
domains from 220 proteins with 3,832 mutations were tar-
geted by viruses.

3. Results

We built the virus-host interactomes by screening domain
interactions between virus-host PPIs, and then we studied the
network distribution, performed topological and function
analysis, and speculated the association between viruses and
diseases (Figure 1). According to the type of genome and the
method of replication, we partitioned all the viruses into three
categories: DNA viruses, RNA viruses, and retrotranscribing
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FIGURE 1: Workflow of the construction and analysis of virus-host interactomes.

viruses, as well as different families and genera according to
the taxonomy database annotation from NCBI. Noticeably,
delta virus was excluded because it belongs to a satellite virus,
which is not divided into DNA, RNA, or retrotranscribing
viruses by the taxonomy database. Table 2 shows the statistics
of virus-host interactome according to three viral categories.

3.1. Domain and DDI Distributions. First, we examined the
distribution of domains and DDIs in virus-host interactomes.
Table 3 lists viral domains occurring in at least three species
and host domains targeted by at least three species, as well as
virus-host DDIs occurring in at least three species. For viral
domains, it showed that most domains were unique, and no
domain was overlapped among three categories of viruses,
indicating that viruses tended to use their own protein
domains to mediate cross-species PPIs. The most frequent
domains were PF00527 and PF00098, which were conserved
among five species from Papillomaviridae and Retroviridae
family, respectively. For host domains, we observed that six
domains were targeted by all three categories of viruses:
one RNA recognition motif, two kinase phosphorylation-
related, and three immunity-related domains (Table 3). It is
not surprising that viruses target these domains. For example,
PF00069 (protein kinase domain) is involved in a process
called phosphorylation and functions as an on/off switch for
many basic cellular processes. When viruses invade the host,
they have to modify cell physiology, metabolic pathway, and
regulatory networks to gain control of fundamental pro-
cesses, such as transcription, cell cycle, and apoptosis. A well-
characterized example was provided by the HIV-1 Tat protein,
which used the phosphorylation of human CDKO9 to stabi-
lize the interactions between Tat (PF00539, transactivating

TABLE 2: Statistics of intravirus, virus-host PPIs, and DDIs.

DNA RNA  Retrotranscribing

virus  virus virus
Number of PPIs 1188 1046 10820
Number of viral proteins 266 101 303
Number of human proteins 615 579 1633
Number of DDIs 107 31 130
Number of viral domains 45 21 20
Number of human domains 68 18 85

regulatory protein Tat) and CDK9 (PF00069) and then to
help promote productive elongation of HIV mRNA [45, 46].
Consequently, CDK9 was required for HIV to hijack host
transcription machinery during its replication, and its
inhibitors might become novel and specific antiretroviral
agents [47, 48]. For virus-host DDIs, it revealed that only a
few were the same among different viral species, and so they
were also more likely to be unique (Table 3).

Then, we put the virus-host DDIs in the context of human
interactome and investigated that some conserved DDIs not
only mediate interactions within host but also in the virus-
host interface. Table 4 lists ten of them, which appeared in
human interactome most frequently. We identified 35, 4, and
41 conserved DDIs for DNA, RNA, and retrotranscribing
viruses, respectively, but no overlapped DDIs existed among
them. In fact, viral domains probably competed with human
domains to interact with their human domain partners. For
instance, Epstein-Barr virus early antigen protein BHRFI acts
as a host B-cell leukemia/lymphoma 2 (Bcl-2) homolog and
may competitively interact with the human protein VRK2,
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TABLE 3: Distributions of domains and DDIs.

Virus Numl?er*;)f Number of NumlA)e.r of  Number of Description

species genera families types
PF00527 5 3 1 1 E7 protein, early protein
PF00098 5 3 1 1 Zinc knuckle
PF00511 4 3 1 1 E2 (early) protein, C terminal
PF00508 4 3 1 1 E2 (early) protein, N terminal
PF00073 3 1 1 1 Picornavirus capsid protein
PF00423 3 2 1 1 Haemagglutinin-neuraminidase
Host Number*(a)f Number of Numl.oe.:r of  Number of Description

species genera families types
PF00069 10 7 6 3 Protein kinase domain
PF07686 7 5 5 3 Immunoglobulin V-set domain
PF00018 6 4 3 2 SH3 domain
PF00129 6 5 3 3 Class I histocompatibility antigen, domains alpha 1 and 2
PF02319 5 3 2 2 E2F/DP family winged-helix DNA-binding domain
PF07716 5 4 2 2 Basic region leucine zipper
PF07714 5 4 3 3 Protein tyrosine kinase
PF00076 5 3 3 3 RNA recognition motif
PF06623 4 3 3 3 MHC_I C-terminus
PF00134 3 2 2 2 Cyclin, N-terminal domain
PF00397 3 3 1 1 WW domain
PF00870 3 2 2 2 P53 DNA-binding domain
PF00240 3 2 2 2 Ubiquitin family
PF03066 3 2 2 2 Nucleoplasmin
PF00017 3 2 1 1 SH2 domain
PF00170 3 3 3 2 bZIP transcription factor
PF00605 3 2 2 2 Interferon regulatory factor transcription factor
Virus-host DDI Number*of Number of Numl.ae.r of - Number of Number of intrahosts

species™ genera families types
PF00527-PF02319 4 2 1 1 0
PF00508-PF07716 4 3 1 1 0
PF00511-PF07716 4 3 1 1 0
PF00098-PF00397 3 3 1 1 1
PF00098-PF00069 3 1 1 1 0

TABLE 4: Conserved DDIs between interspecies and intrahost.
Virus-host DDI Numbfer of Number of Numl:.Je.r of Number of Number of
species genera families types intrahosts

PF00069-PF00069 1 1 1 1 390
PF00017-PF07714 1 1 1 1 253
PF00018-PF00018 2 1 1 1 203
PF00017-PF00017 1 1 1 1 203
PF00018-PF00017 1 1 1 1 176
PF07714-PF00017 1 1 1 1 170
PF00017-PF00018 2 1 1 1 150
PF07714-PF07714 1 1 1 1 145
PF00018-PF07714 1 1 1 1 144
PF07714-PF00018 2 1 1 1 102
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FIGURE 2: Cumulative degree and betweenness centrality distributions. Host domains that are targeted by viruses (targeted) have a higher
degree and betweenness centrality than the domains that are not targeted by viruses (nontargeted): (a) degree distribution and (b) betweenness
centrality distribution. These findings are statistically significant by Wilcoxon rank sum test. The cumulative frequency at a particular value
of degree or centrality is the percent of domains whose degree or centrality are less than this particular value.

which is involved in preventing premature death of the host
cell during virus production [49]. These two interactions
could be attributed to the PF00452 (apoptosis regulator pro-
teins, Bcl-2 family) found in both virus and human, and the
PF00069 in human. A little surprisingly, although some DDIs
such as PF00069-PF00069 were derived from the most intra-
host PPIs, only one virus evolved the ability to use it to cross
the interspecies barrier. In addition, the numbers of viral
domains shared with host ones were 16, 2, and 5 for DNA,
RNA, and retrotranscribing viruses, respectively. Along with
the evolution, large DNA viruses capture DNA sequences
from their host that encodes complex functional domains and
integrates them into their own genomes [50], and then DNA
viruses acquire the ability to finely tune the metabolism of
infected cells by competitive interactions. It seems like this
strategy allows some DNA viruses not to affect host cellular
networks immediately but induce chronic infections at last.
We also noticed that retrotranscribing viruses owned more
conserved DDIs than RNA viruses because of the additional
retrotranscribing process and the research bias in HIV.

3.2. Viruses Target Human Hub and Bottleneck Domains.
Many studies have showed that viral proteins tend to interact
preferentially with hub and bottleneck proteins in the human
interactome network [8, 26, 51, 52]. This is consistent with
the parsimonious use of viral genetic materials to control the
host biological networks effectively. Similar results were also
observed in the virus-host DDI network. As Figure 2 shows,
compared with nontarget host domains, viral target domains

are distinct in two ways: it is more significantly connected
to other host domains; it is in a more central position in the
context of human interactome.

For the viral target domains, we examined top ten hub and
bottleneck domains with highest degrees and betweenness
centralities (Table 5). All the domains were involved in some
fundamental functions, such as transcriptional regulation or
signal transduction. Nine of them were overlapped between
hub and bottleneck domains. For example, protein kinase
domain/RNA recognition motif ranked first/third both in the
degree and betweenness centrality and were targeted by all
three groups of viruses, implying these two domains’ indis-
pensability. As described before, the protein kinase domain is
a structurally conserved protein domain containing the
catalytic function of protein kinases, and the human genome
encodes about 518 protein kinase genes [53]. The RNA-
recognition motif (RRM) is one of the most abundant protein
domains in eukaryotes. It has been estimated that up to 1% of
human genes encode proteins that contain one or more RRMs
[54]. RRM-containing proteins are involved in many post-
transcriptional gene expression processes (e.g., mRNA and
rRNA processing, RNA export and stability) [55]. Viruses
such as dengue virus, vaccinia virus, and HIV-1 have evolved
different mechanisms to bind host RRM-containing proteins
to facilitate their genomes replication or mRNA translation
[56-58]. We further compared degree/betweenness centrality
distributions of the host domains targeted by DNA, RNA, and
retrotranscribing viruses (Figure 3). Average degrees of viral
target domains were five to eight times higher than the
average degree of the human interactome, and average
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TaBLE 5: Top 10 hub and bottleneck domains.

Betweenness

Pfam  Degree Description Pfam . Description
centrality
PF00069 464 Protein kinase domain PF00069 0.136 Protein kinase domain
PF00400 214 WD domain, G-beta repeat PF00400 0.035 WD domain, G-beta repeat
PF00076 186 RNA recognition motif (RNP domain) PF00076 0.031 RNA recognition motif (RNP domain)
PF00018 166 SH3 domain PF00018 0.020 SH3 domain
PF00105 144 Zinc finger, C4 type (two domains) PF00240 0.018 Ubiquitin family
PF00271 133 Helicase conserved C-terminal domain PF00071 0.012 Ras family
PF00240 133 Ubiquitin family PF00046 0.011 Homeobox domain
PF00169 117 Pleckstrin homology domain PF00271 0.011 Helicase conserved C-terminal domain
PF00104 116  Ligand-binding domain of nuclear hormone receptor PF00105 0.010 Zinc finger, C4 type (two domains)
PF00071 114 Ras family PF00169 0.010 Pleckstrin homology domain
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Mean betweenness 0.00046236 0.005249081 0.01225039 0.004835537
Mean shortest path length 3.458701 2.274363 2.110294 2.331112
Mean clustering coefficient 0.2916235 0.2276997 0.2186335 0.265649

(c) Topological analysis of the DDI network

FIGURE 3: Cumulative degree and betweenness centrality distributions among DNA, RNA, and retrotranscribing viruses. Host domains that
are targeted by DNA, RNA, and retrotranscribing viruses, respectively, have an approximate degree and betweenness centrality: (a) degree
distribution and (b) betweenness centrality distribution. These findings are statistically significant by Fligner-Killeen (median) test. The
cumulative frequency at a particular value of degree or centrality is the percent of domains whose degree or centrality are less than this
particular value. (c) Topological analysis of the human domains and of the human domains targeted by viruses in the human interactome.
The mean degree, the mean betweenness centrality, the mean shortest path length, and mean clustering coefficient are given first for all the
human domains, then for the human domains targeted by DNA, RNA, and retrotranscribing viruses.



betweenness was 10 to 26 times higher. Other deeper network
analysis showed that the average shortest length of viral target
domains was lower than the human interactome, while the
clustering coefficient was nearly identical. But no significant
difference was observed between the three categories of
viruses (Figure 3). Therefore, as a general hallmark, all viruses
tended to interact with targets and cellular pathways that were
highly interconnected and central, as well as relatively close to
each other in order to amplify their effects on host cellular
system.

In addition, we compared the degree of viral domains
in virus-host DDI network. Figure 4 shows that there are
significant differences. The degrees of viral domains were
heterogeneous. Retrotranscribing viruses had the most host
targets, and followed by DNA viruses and RNA viruses.
The largest connectivity of retrotranscribing virus domain
(PF00539, Tat) was 40, while it was only 3 and 15 for RNA (e.g.,
PF00073, picornavirus capsid protein) and DNA virus
domain (PF00226, DnaJ domain), respectively. It is expected
that the connectivity of retrotranscribing viruses is much
higher than the other two. On one hand, retrotranscribing
viruses have small genomes encoding a few domains. They
have to hit multiple cellular targets to perform a sufficient
number of tasks during the entire viral life cycle. A good
example of such multitasking domains is provided by
PF00469 (Nef) of HIV-1, which downregulates the expression
of the surface MHC-I molecules, CD4, and interleukin-2
receptor [59, 60]. On the other hand, many researches put
so much focus on HIV, which belongs to retrotranscribing
viruses. Therefore, there were much more HIV-human PPI
data, which contribute to much more DDI relations.

3.3. Functions Enriched in Human Domains Interacting with
Viruses. We divided host domains into the following sets:
domains targeted by any virus (overall set), domains by DNA
viruses (DNA set), domains by RNA viruses (RNA set), and
domains by retrotranscribing viruses (retro set), as well as
domains by different families, genera, and species. We com-
puted overrepresented GO terms of host domains in above
sets. Overall, we found 19 unique enriched GO (Biological
Process) terms (Table 6). All enriched GO terms for each set
are available in Supplementary Table 2 for further analysis.
We concluded that viruses adapted to attack domains gener-
ally involved in host’s transcription, cell cycle, apoptosis, and
immunity modulation. They manipulated host’s transcrip-
tional machinery to proliferate during infection. Meantime,
they needed to evade or suppress host’s immunity defense.
For example, we noticed that “immune response” and “anti-
gen processing and presentation” were targeted by multiple
species, multiple genera, multiple families, and even multiple
categories of viruses (Table 6). Indeed, when viral pathogens
enter into the human body, the human cells recognize their
invasion through pattern-recognition receptors (PRRs) [61]
and mount strong antiviral responses, including innate and
acquired immunity. However, viral pathogens evolve several
methods to elude host immune responses. From Table 3, we
know that PF00129 and PF06623 are targeted by all three cat-
egories of viruses, such as EBV, HIV-1, and influenza A virus.

BioMed Research International

1.0

Cumulative frequency
o o
(o) o
1 1

e
G
1

0.6

T T
20 30

Virus domain degree in virus-host DDI network

P value = 6.783e - 0.6
—o— DNA
—a— RNA
—o— Retrotranscribing

FIGURE 4: Cumulative degree distribution of viral domains among
DNA, RNA, and retrotranscribing viruses. In the virus-host DDI
network, we compared the connectivity of viral domains from DNA,
RNA, and retrotranscribing viruses. The finding is statistically sig-
nificant by Fligner-Killeen (median) test. The cumulative frequency
ata particular value of degree is the percent of domains whose degree
are less than this particular value.

These two domains are both found in the region of the MHC
class I molecules, which can present foreign antigens such as
viral peptides to T cells responsible for cell-mediated immune
responses, for example, HLA-B*27:05 (MHC class I gene)
is able to recognize RRIYDLIEL epitope in the EBNA-3C
of EBV and SRYWAIRTR epitope in the nucleoprotein of
influenza A viruses [62]. However, the killer Ig-like receptor
(KIR)3DLI cannot recognize EBV-HLA-B*27:05 complex
[62], and if the substitution of R2G or W4Y or WA4F in the
wild-type epitope SRYWAIRTR of influenza virus occurs,
it will result in a substantial reduction of recognition to
cytotoxic T lymphocytes (CTLs) [62, 63]. Unlike EBV and
influenza, HIV-1 has developed a different mechanism to
evade host defense, for example, by downregulating the
expression of surface MHC-I molecules [59].

Our analysis also highlighted an interesting mechanism
“double-strand break repair via nonhomologous end joining”
(Table 6), which was enriched by DNA viruses and retro-
transcribing viruses. In eukaryotic cells, cells usually possess
two major pathways to repair double-strand DNA breaks:
homologous recombination (HR) and nonhomologous end
joining (NHE]) [64, 65]. Therefore, the DNA repair machin-
ery acts as an intrinsic cellular defense. At the same time, it
recognizes viral genetic materials as damaged DNA and
restricts viral proliferation [65]. In vitro assay shows DNA-
dependent protein kinase (DNA-PK), which plays an impor-
tant role in NHEJ [65]. Our dataset demonstrated that
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TaBLE 6: Enriched GO (biological process) terms of domain sets.
GO ID GO term Numbf:r of Number of Numl.ae.r of Number of Overall
species genera families types
GO0:0006303 Double-strand break repair via nonhomologous end joining 2 2 2 2 1
GO:0006351 Transcription, DNA-dependent 2 1 1 1 1
GO0:0006468 Protein phosphorylation 8 4 2 1 0
GO0:0006355 Regulation of transcription, DNA-dependent 4 2 2 1 0
G0:0007165  Signal transduction 1 0 0 0 0
GO0:0045892 Negative regulation of transcription, DNA-dependent 1 0 0 0 0
GO0:0007264 Small GTPase mediated signal transduction 1 1 1 0 0
GO0:0006464 Cellular protein modification process 0 1 0 0 0
GO:0006508 Proteolysis 2 1 2 0 0
GO:0051726 Regulation of cell cycle 1 1 1 1 1
GO:0006955 Immune response 8 6 3 2 1
GO0:0046907 Intracellular transport 1 1 0 0 0
GO0:0007050 Cell cycle arrest 2 1 1 0 0
GO0:0042981 Regulation of apoptotic process 3 2 2 1 1
GO0:0023052 Signaling 0 1 0 0 0
GO0:0019882 Antigen processing and presentation 6 5 3 3 1
GO0:0006352 DNA-dependent transcription, initiation 1 1 0 0 0
GO:0006606 Protein import into nucleus 1 1 1 1 0
GO0:0051056 Regulation of small GTPase mediated signal transduction 1 1 0 0 0

SV40-LTag could interact with human Ku70 protein, whose
dimer acted as regulatory subunit of the DNA-PK com-
plex through PF00226 (DnaJ domain) targeting PF02735
(Ku70/Ku80 beta-barrel domain) or PF03730 (Ku70/Ku80 C-
terminal arm), which indicated that SV40 might benefit from
the cellular DNA-damage signalling. Much remains to be
learned about how SV40 infection activates DNA-damage
signalling and uses it to facilitate viral propagation. HIV-1
evolves a similar strategy to protect itself and to promote its
replication. Its integrase (IN) interacts with N-terminal part
of Ku70 (PF02735) to protect IN from the Lys-linked
polyubiquitination proteasomal pathway and to assist IN
integration activity during viral assembly, independent of
Ku70/80 heterodimerization [66]. Other GO functions, such
as “protein phosphorylation,” “regulation of transcription,
DNA-dependent,” and “regulation of apoptotic process,” are
also manipulated by at least 2 species or families (Table 6),
uncovering important pathways in the progression of viral
infection.

3.4. Viral Disease Network. Complex biological systems and
cellular networks may underlie most relationships from
genotype to phenotype. Understanding genotype-phenotype
relationships requires that phenotypes be viewed as man-
ifestations of network properties, rather than simply as
the result of individual gene variations. Some studies have
proved that missense point mutations and in-frame short
indels associated with the corresponding human disorders
are enriched on the interaction interfaces of proteins [67]. The
idea that abnormal alteration (disruption or enhancement) of
specific protein interactions can lead to human diseases

complements canonical gene loss/perturbation models and
provides new clues on mechanisms underlying human dis-
eases [67]. Interestingly, if a virus targets a human disease
susceptibility protein competitively, especially an interaction
interface, what will happen? We can presume that this virus
may cause the similar diseases like some specific mutations in
this protein. This can be used to uncover new disease
phenotype associated with infection viruses with genomic
approaches.

To systematically investigate the extent to which viral
proteins globally targeted host proteins causally implicated in
cancer, we first compared viral target proteins against a gold
standard set of 487 high-confidence causal human cancer
genes in the COSMIC Classic Genes set identified by Cancer
Gene Census [42]. Viral targets were found to be enriched
among this COSMIC Classic Genes significantly (P < 2.2e —
16, odds ratio = 3.95; Figure 5). In another way, we compiled
~310,000 non-synonymous somatic mutations for ~17,000
human genes. Depending on the PolyPhen-2's variation
effect score for each nonsynonymous mutation in each gene,
we got a normalized cumulative score for each protein. We
picked up the top protein from those ones belonging to the
same gene according to ranking. Then we selected the top
1000 genes to compare with our viral targets and COSMIC
classic genes (Figure 5). It's shown that the cross section of
three parts covered 53 genes, in which top 10 were included in
the top 20 of ranked genes (Supplementary Table 3). Pathway
analysis of the 53 genes revealed that 20 genes could be
implicated in the GO pathway linked to “regulation of apop-
tosis” (GOTERM BP FAT, P,y = 4.8x10™). Other GO terms
also covered plausible contributors to cancer pathogenesis,
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FIGURE 5: Viral targets enriched in cancer-related genes. Venn diagram of overlaps among viral target proteins, cancer genes, and a set of top
1000 genes through somatic mutation analysis. P value is based on Fisher’s exact test.

such as “regulation of cell proliferation” Consequently, many
human cancers might not only arise from mutations of
disease susceptibility genes, but also from viral infections,
which just used these disease susceptibility genes as their
direct or indirect targets.

Further, we constructed a domain-cancer network with
3,906 domains and 3,531 relevant diseases by mapping vari-
ations to domains on the corresponding disease proteins.
And these domains containing at least one nonsynonymous
somatic mutations were also ranked according to their
normalized cumulative scores (Supplementary Table 4). We
examined that viral target domains were enriched in cancer-
related domains (P = 3.015 x 10~° with Wilcoxon rank sum
test). Undoubtedly, viruses tended to target cancer-related
domains. Compared with overall disease-related domains, it
was shown that the hub and/bottleneck domains (top 10%
of nodes with highest degrees and betweenness centralities)
ranked higher by their normalized cumulative score (P =
3.817 x 107 and P < 2.2 x 107'® with Wilcoxon rank sum
test, resp.), meaning that hub or bottleneck domains might
preferentially relate with human cancers, and cancer-related
domains equally had more interaction partners than non-
cancer domains in DDI networks.

A striking aspect was to link viruses, human genes/
domains, and the corresponding diseases to determine
whether the relationships could interpret known pathogenic
mechanisms and to predict novel potential associations
between viruses and virally implicated diseases. Here, we
focused on the construction of disease network between
HCV and somatic mutations that led to cancer in different
tissues (Figure 6). 10 HCV domains mainly targeted Helicase
_C domain, which was a conserved C-terminal domain on

helicases and helicase related proteins, and was also respon-
sible for dsRNA recognition. We put these three viral targets
in the context of human interactome and found that Heli-
case_C was able to bind other 87 host domains related with
cancer in 28 tissues. It was noticed that many host domains
such as Helicase_C and FAT were associated with liver cancer.
As we all know, HCV is a hepatitis virus and can result in
permanent liver damage and hepatocellular carcinoma
(HCC). At the same time, HCV infection has also been asso-
ciated with numerous extrahepatic manifestations, including
renal, dermatologic, hematologic, and rheumatologic systems
[68]. Our results suggested that HCV might be connected to
several cancers that had not been previously reported (Fig-
ure 6).

4. Conclusion

In conclusion, we presented a global landscape of virus-host
interactomes from a domain-centric view. In contrast to the
analysis at protein level, our virus-host DDIs, considered as
the building blocks of interactomes, provided an attractive
abstraction of PPI networks and reduced the bias of the
analysis in PPI networks because the number of retrotran-
scribing viruses accounted for more than 70% in PPI datasets,
whereas it dropped to less than 50% in DDIs. In the virus-host
interactomes, we observed that viruses use unique domains to
interact the same host partners with fundamental functions.
Meanwhile, viruses used conserved DDIs occurring in host
interactomes to mediate the interspecies interaction. On the
topological side, results showed that viruses preferentially
interacted with hub and bottleneck domains in the context of
host interactomes, which was consistent with PPI network.
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The degree and betweenness of three categories of viruses
were significantly different. On the functional side, we found
that viruses perturbed the host cellular network by both
common and unique strategies. Most importantly, we linked
the viral infection and caner and then observed that genomic
variation and viral protein interaction might alter local
and global properties of host cellular networks to induce
pathological states in the similar way. Then, we constructed
a virus-disease network to uncover several cancers that had
notbeen previously associated with viral infections. However,
our findings should be interpreted with caution, since virus-
host interactomes were still a little limited. First, many
proteins in virus-host PPI network had no domain assigned,
because Pfam-A model did not cover the complete protein
domain universe. Second, we used a putative strategy to map
PPIs to DDIs, since very few virus-host PPIs were obtained
crystallographically. Overall, our results will help deeply to

identify molecular mechanism associated with viral infection
and contribute to better strategies for antiviral therapy.
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