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Introduction
Exposure to chemicals mixtures during pregnancy has been 
associated with perinatal complications and adverse fetal devel-
opment, such as preterm birth and low birth weight.1–14 Most 
epidemiologic studies, however, are informed by single-pollut-
ant statistical models, particularly linear and logistic regression 
models, that do not capture the complex exposure profiles in 
real-life scenarios among pregnant mothers.2,15 As researchers 
move beyond the “one chemical at a time” analysis to evaluate 
mixture effects,2,16–18 several challenges related to collinearity 
among individual chemicals and providing easily interpretable 
analysis results have arisen.16,19,20

To combat the challenge of collinearity, several frequen-
tist approaches such as least absolute shrinkage and selection 
operator and principal component analysis were developed to 
reduce collinearity by discarding correlated variables that are 
less impactful.16,19 In the context of environmental epidemiol-
ogy, it is difficult to justify the discarding of chemical variables 
because variables within a class of chemical mixture often 
share similar biologic pathways. Bayesian methods,21 on the 
other hand, are gaining attention in the field of environmental 

What this study adds

In the field of environmental epidemiology, analysis and inter-
pretation of mixture effect are statistically challenging due to 
collinearity among chemicals. We introduced a novel BFA 
approach and demonstrated that the precision of the estimates 
for the mixture-effect is improved in BFA compared with 
BKMR and MLR. BFA also provided the specific contributions 
of individual chemicals on the mixture, which demonstrated the 
advantage in providing a clear and easy-to-understand interpre-
tation of the effect estimates.
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Background: Studying the effects of gestational exposures to chemical mixtures on infant birth weight is inconclusive due to 
several challenges. One of the challenges is which statistical methods to rely on. Bayesian factor analysis (BFA), which has not been 
utilized for chemical mixtures, has advantages in variance reduction and model interpretation.
Methods: We analyzed data from a cohort of 384 pregnant women and their newborns using urinary biomarkers of phthalates, phe-
nols, and organophosphate pesticides (OPs) and serum biomarkers of polychlorinated biphenyls (PCBs), polybrominated diphenyl 
ethers (PBDEs), perfluoroalkyl substances (PFAS), and organochlorine pesticides (OCPs). We examined the association between 
exposure to chemical mixtures and birth weight using BFA and compared with multiple linear regression (MLR) and Bayesian kernel 
regression models (BKMR).
Results: For BFA, a 10-fold increase in the concentrations of PCB and PFAS mixtures was associated with an 81 g (95% confidence 
intervals [CI] = −132 to −31 g) and 57 g (95% CI = −105 to −10 g) reduction in birth weight, respectively. BKMR results confirmed the 
direction of effect. However, the 95% credible intervals all contained the null. For single-pollutant MLR, a 10-fold increases in the con-
centrations of multiple chemicals were associated with reduced birth weight, yet the 95% CI all contained the null. Variance inflation 
from MLR was apparent for models that adjusted for copollutants, resulting in less precise confidence intervals.
Conclusion: We demonstrated the merits of BFA on mixture analysis in terms of precision and interpretation compared with MLR 
and BKMR. We also identified the association between exposure to PCBs and PFAS and lower birth weight.
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epidemiology as an approach to address the challenges with-
out discarding variables. They provide a more explicit quanti-
fication of uncertainty than conventional measures, such as p 
values, by modeling parameters as probability distributions.22 
Moreover, Bayesian methods have the ability to improve the 
precision of parameter estimates in the presence of collinearity 
among variables in mixtures compared with traditional meth-
ods.10,15,23,24 This is typically achieved by combining Bayesian 
techniques with regularization, shrinkage, and prior informa-
tion about model parameters. However, Bayesian procedures 
tend to increase the computation time and complexity of the 
analysis.

Factor analysis modeling, also known as latent variable 
modeling, is widely used in the field of psychology to man-
age collinearity for characteristics that are difficult to directly 
measure25–27 and can be extended to a Bayesian framework. 
Using latent constructs to linearly quantify the combined 
effects of an unmeasured variable, like a chemical mixture, is 
an appealing way to address collinearity challenge, although 
providing interpretable estimates. However, apart from a pub-
lication by Ferrari and Dunson, Bayesian factor analysis (BFA) 
has not been used in this context.28 Accordingly, we aimed to 
illustrate the potential benefits of BFA to estimate the associ-
ation between chemical mixtures and birth weight using data 
from the Health Outcomes and Measure of the Environment 
(HOME) Study, a birth cohort from Cincinnati, Ohio, estab-
lished to study the health impact of various chemical and their 
mixtures.29 We also compared our BFA results with two estab-
lished methods, multiple linear regression (MLR) and Bayesian 
Kernel Machine Regression (BKMR) to assess collinearity 
reductions and interpretability.

Methods

Health outcomes and measures of the environment study

The HOME Study is a prospective birth cohort of pregnant 
mothers and their infants established in 2003 at the Cincinnati 
Children’s Environmental Health Center, Ohio.29 The primary 
goal of the HOME Study is to examine the impact of environ-
mental toxicants on child health. Pregnant mothers who were 
>18 years old and at 16 ± 3 weeks of gestation and living in a 
residence built before 1978 were recruited from seven prenatal 
clinics and hospitals.29 Out of the 468 women initially enrolled 
in the study, we excluded 67 women who dropped out before 
delivery, three stillbirths, nine sets of twins, and five participants 
missing covariate data. Therefore, 384 mothers who deliv-
ered singleton live births, provided biologic samples and had 
complete sociodemographic information were included in our 
analysis.

Biomarkers of environmental chemical mixtures

We collected blood and urine samples from participants at 
approximately 16- and 26-weeks gestation.29 The Centers 
for Disease Control and Prevention Environmental Health 
Laboratories used gas and liquid chromatography-mass spec-
trometry to measure the concentrations of environmental 
chemical biomarkers in serum and urine samples as previously 
described.29

With the specific goal of estimating the effect of exposure to 
environmental chemical mixtures on infant birth weight, we 
consulted existing literature on birth outcomes to identify poten-
tial environmental chemical mixtures to investigate.10,13,14,30–32 A 
total of seven classes of chemical mixtures were identified: poly-
chlorinated biphenyls (PCBs), polybrominated diphenyl ethers 
(PBDEs), phthalates, organochlorine pesticides (OCPs), organo-
phosphate pesticides (OPs), phenols, and perfluoroalkyl and 
polyfluoroalkyl substances (PFAS). PCBs, PBDEs, and OCPs are 

lipophilic and were lipid standardized. Phthalate metabolites, 
phenols, and OPs were creatinine standardized to account for 
urine dilution. In addition, to preserve the sample size of our 
analysis, we further restricted our analysis to biomarkers that 
are widely detected in the population (>80% detected above 
the limit of detection). Furthermore, to keep the modeling 
approaches consistent between all chemical classes and mitigate 
issues with the excessive dimensionality33 in regression analysis, 
we selected a total of 35 biomarkers to be included in our final 
analysis (Table 1). For PCBs, PBDEs, OCPs, and PFAS, we used 
samples measured at 16 weeks to maintain consistency across 
measures. For phthalates, OPs, and phenol biomarkers, we aver-
aged concentrations in samples collected at 16 and 26 weeks 
to represent the overall concentrations. For all biomarkers, 
measurements below the limit of detection were replaced using 
single imputation according to Lubin et al.34 The imputed val-
ues were sampled from a truncated lognormal distribution with 
the mean and standard deviation of the concentration of the 
chemical variables. The detection limit of each specific chemical 

Table 1.

Names and abbreviation of environmental chemical mixtures 
and the associated individual chemical biomarkers from preg-
nant women for HOME study, 2003–2006, Cincinnati, OH, n = 384

Mixture group Individual chemical biomarkers

PCBs PCB 118
PCB 138
PCB 153
PCB 170
PCB 180

PBDEs PBDE 28
PBDE 47
PBDE 99
PBDE 100
PBDE 153

OCPs DDE
DDT
T_NONA
OXYCHLOR
HCB

OPs DMDTP
DETP
DEP
DMTP
DMP
DEDTP

Phthalates ΣDEHP*
MBzP
MnBP
MiBP
MEP

Phenols BPA
MPB
BP3
PPB
TCS

PFAS PFHXS
PFNA
PFOA
PFOS

*Weighted molar sum of the DEHP metabolites calculated from: Mono-(2-ethylhexyl) phthalate 
(MEHP), Mono(2-ethyl-5-oxohexyl) phthalate (MEHHP), Mono(2-ethyl-5-oxohexyl) phthalate 
(MEOHP), Mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), expressed in units of ng/mL of 
MECPP (308 g/mol).
BP3indicates benzophenone-3; DDT, dichlorodiphenyltrichloroethane; DETP, diethylthiophosphate; 
DMDTP, dimethyldithiophosphate; DMP, dimethyl phosphate; DMTP, dimethyl thiophosphate; HCB, 
hexachlorobenzene; MBzP, mono-benzyl phthalate; MiBP, mono-iso-butyl phthalate; MnBP, mono-n-
butyl phthalate; OXYCHLOR, oxychlordane; T_NONA, trans-nonachlor.
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was set as the upper bound value for imputation. The concen-
trations of these biomarkers were log10 transformed to reduce 
the effects of right skewness in the distribution and to assist 
with the interpretation of the results. The regression coefficients 
are interpreted as the change in birth weight for every 10-fold 
increase in the chemical concentrations.

Outcome variable

Infant birth weight, measured in grams (g), was abstracted from 
the medical records and examined as a continuous variable. To 
examine fetal growth, we adjusted for gestational age and mea-
sured in weeks.14 An alternate way would be to use gestational 
age-specific birth weight z-scores. However, its interpretation is 
not straightforward as it reports effect measures in the unit of 
standard deviation, which results in different absolute amounts 
of weight across the gestational age spectrum.35

Covariates

A direct acyclic graph was drawn to select confounders based 
on the relationship among potential covariates, the selected five 
classes of environmental chemical mixtures and birth weight 
(eFigure 1; http://links.lww.com/EE/A141). Exposures to lead 
and tobacco smoke have been documented to have effects on 
infant birth weight.30,36 Therefore, we included the biomarker 
measurements of lead and cotinine as covariates. Additional 
covariates in the statistical models included maternal age at 
delivery, infant sex, race, marital status, maternal education, 
maternal BMI, and annual household income. We excluded 
maternal BMI from the covariates in the analysis of lipophilic 
chemicals to avoid duplicate adjustment since the concentra-
tions were already lipid-adjusted, which is directly related to 
BMI.37 The effect of gestational duration on birth weight has 
been documented to be nonlinear,14 therefore, we used the cubic 
spline approach for the adjustment of gestational age using the 
“splines” package in R.38

Analytic approach

The primary analytic approach for this study was BFA to esti-
mate the mixture effect of environmental chemicals on birth 
weight. We also compared our results with BKMR, and addi-
tionally, two bridging methods that can be viewed as the inter-
mediate step bridging MLR and BFA. Individual pollutant MLR 
model was used as a sensitivity analysis because it is the most 
commonly used method in the literature of environmental epide-
miology for continuous outcomes. It also serves as a benchmark 
for comparison with the more advanced methods.39 BKMR is 
a combinatorial method of Bayesian approach and nonlinear 
approximation methods that is gaining attention in the field of 
environmental epidemiology.23,40,41

Approach 1—Bayesian factor analysis

We used BFA to assess the association between each class of 
mixture and birth weight, although adjusting for covariates. 
A total of seven BFA models for the seven specific chemical 
classes were examined. We did not include a BFA model with 
all chemical classes simultaneously because dimensionality 
increases dramatically when more variables are included in the 
model and result in low statistical power with small sample 
size. We used the confirmatory factor analysis approach for the 
purpose of generating regression coefficients that can be inter-
preted with respect to a specific class of chemical mixture.42,43 
Bayesian techniques were used for regularization and easier 
interpretation of the parameter estimates. Each class of mixture 
is represented by a latent variable illustrated by the following 
set of equations:

Y Z Cz c y= + + +β β β0 ∈
�

(1)

X Zi i i xi= + +β γ ∈ � (2)

for i=1, ..., k, where k is the number of chemicals in the mixture, 
and where β0 , βi  are the Y-intercepts, βz  is the regression coef-
ficient for the latent variable for each mixture class of chemicals, 
Z is the latent variable representing each mixture class of chem-
icals, βc  is the vector of regression coefficients of covariates, C 
is the vector of confounders such as age and household income, 
Xi  is the ith individual chemical within the class of mixture Z .  
is the factor loading score of the ith chemical on mixture Z ,  
and ∈y  and ∈xi  are the normally distributed random errors. 
For parameters βz  and βc , we assigned uninformative nor-
mal priors with variance equal to 1,000. For y intercepts β0 ,  
βi , and random errors εxi , we used the default priors in R 
package “blavaan.”44 The variance of Z was set to be 1.0 for 
identifiability.44

Markov Chain Monte Carlo (MCMC) sampling was accom-
plished with the R package “blavaan”44 and “rstan”45 to gen-
erate samples from a posterior to estimate parameters of the 
interest. For each BFA model, the number of iterations were 
determined experimentally to achieve convergence assessed by 
the measure of the potential scale reduction factor. As a result, 
a total of 40,000 iterations were run for samples with 2,000 
burn-in iterations.

Approach 2—Bridging methods between BFA and MLR

To examine the mathematical relationship between MLR and 
BFA, we included two additional bridging methods to obtain 
regression estimates that can be viewed as the intermediate steps 
bridging MLR and BFA. As previously shown in Equations 1 
and 2, BFA can be conceptually broken down into three hier-
archical steps. The first step estimates the latent variable Z for 
each study participant, which is denoted by the symbol Ẑ . The 
second step computes the parameter estimates βẑ  for the effect 
of the latent variable. The third step applies Bayesian prior distri-
butions on the parameter estimates. Therefore, the first bridging 
method was factor analysis (FA) using the R package44 “lavaan.” 
The second bridging method was “MLR with extracted factor 
score,” which is MLR incorporating the estimated latent vari-
able Z obtained from the FA model in the absence of individ-
ual chemicals, although adjusted for covariates as the following 
equation:

Y Z Cz c y= + + +β β β0
ˆ

ˆ ∈
� (3)

where β0  is the Y intercept, Ẑ  is the estimated factor score, βẑ  
is the regression coefficient for the estimated factor score, βc  is 
the vector of regression coefficients of covariates, C is the vector 
of confounders, and ∈y  is the random error. By comparing the 
different regression estimates from the sensitivity analyses, we 
can observe the gradual differences in the precision of estimates.

Approach 3—Bayesian Kernel machine regression

The BKMR model can be described using the following equation:

Y h X Cbkmr bkmr c bkmr= + ( ) + +β β ∈ � (4)

where βbkmr  is the Y-intercept, h X( ) is the vector of expo-
sure-response functions for each individual chemical within 
the specific class of mixture, βc  is the vector of regression 
coefficients of covariates, C is the vector of confounders, and 
∈bkmr  is the random error in the model. The exposure-re-
sponse functions for each individual chemical were determined 
by employing Gaussian kernel functions nonparametrically 

http://links.lww.com/EE/A141
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based on the available data structure.23 Since the exposure-re-
sponse functions were determined based on the data, the pri-
ors for the parameters of each individual chemical were also 
specified differently according to the exposure-response func-
tions with details explained by Bobb et al.46 Similar to BFA, 
Markov Chain Monte Carlo (MCMC) sampling was also used 
in BKMR to generate samples from posterior distributions for 
the estimation of the parameters and the dose-response curves 
illustrated by the cross-section views of the exposure-surface 
functions. The posterior samples were sampled from a total 
of 20,000 iterations, which is determined experimentally to 
achieve convergence assessed by the measure of the poten-
tial scale reduction factor. The variable selection feature of 
“bkmr” R package46 was not used in our primary analysis 
since we intended to retain all chemicals in the class in the 
BKMR model to compare with other methods. A separate 
analysis of BKMR using the variable selection feature was 
also used to assess the impact of such feature on the analysis 
results.

Sensitivity analyses—MLR

We used MLR as our sensitivity analyses to assess the asso-
ciation between each individual chemical and birth weight, 
although adjusted for covariates. We also used MLR to assess 
the association between each individual chemical and birth 
weight, although adjusted for both covariates and copollutants 
within that class of chemicals.

Results

Descriptive statistics

The study participants consisted of 384 mother-singleton new-
born pairs. Due to various degrees of the missingness that could 
not be imputed (missingness due to incomplete biospecimen 
collection or insufficient volumes for chemical assays instead 
of measurements below limit of detection), the sample sizes 
for our analysis were 360 for OPs mixture, 366 for phthal-
ates mixture, 284 for PBDEs mixtures, 237 for OCPs mixtures, 
310 for PCBs mixtures, 296 for phenols mixtures, and 307 for 
PFAS mixtures. Mothers who participated in the study were 
mostly White (62.5%), married (65.6%), and had at least a 
bachelor’s degree (60.1%). The mean infant birth weight was 
3,352 g with a standard deviation of 632 g. The infant sex 
ratio was roughly 1.18 to 1 (54.2% female to 45.8% male). 
Sociodemographic characteristics that were associated with 
birth weight included maternal age, household income, and 
maternal BMI (Table 2). Infant birth weight tended to decrease 
with increasing maternal age and increased with increasing 
household income and maternal BMI (eTable 1; http://links.
lww.com/EE/A141).

A high degree of correlation was detected among chemicals 
within the same class (Figure  1). For example, all PCB con-
geners displayed correlation coefficients in the range of 0.51 
(PCB 118 and PCB 180) to 0.99 (PCB 170 and PCB 180) with 
each other.

BFA analysis results

We ran seven BFA models for the seven different classes of 
chemical mixtures. The class-specific regression coefficients of 
each class of the mixture and loading of the individual conge-
ners on the mixture were evaluated by BFA. PCBs and PFAS 
displayed associations with birth weight reduction and every 
10-fold increase in the concentration of the mixture (Figure 2). 
Specifically, the regression coefficients were −81 g (95% confi-
dence intervals [CI] = −132 to −31 g) for PCBs and −57 g (95% 
CI = −105 to −10 g) for PFAS.

In addition to the mixture-specific effect estimates, we 
also estimated the loading coefficient of individual chemicals 
within the class of chemical mixtures, denoted by the quantity 
from Equation 2 (Figure 2). This provides a relative measure 
of importance for these individual chemicals because it mea-
sures how much influence each individual chemical variable 
contributes to the overall latent mixture variable.43 For the 
PCB mixture, we observed that PCB 170 and PCB 180 had a 
stronger impact on the overall latent mixture than PCB 153, 
PCB 118, and PCB 138. For the PFAS mixture, we observed 
that perfluorohexanesulfonic acid (PFHXS) and perfluorooc-
tanoic acid (PFOS) had a stronger impact on the overall latent 
variable compared with perfluorononanoic acid (PFNA) and 
perfluorooctanoic acid (PFOA). The BFA results of the other 
chemicals are represented in eFigure 2; http://links.lww.com/
EE/A141.

We also observed a slight decrease in birth weight with every 
10-fold increase in the concentration of OCPs mixture at −16 g 
(95% CI = −66 to 34 g) and phenols mixture at −21 g (95% 
CI = −71 to 28 g). A slight increase in birth weight was associ-
ated with every 10-fold increase in the concentration of PBDEs 
mixture at 25 g (−18 g, 69 g), phthalates mixture at 49 g (95% 
CI = −3 to 99 g), and OPs mixture at 8 g (95% CI = −40 to 54 g). 
However, all the credible intervals of OCPs, phenols, PBDEs, 
phthalates, and OPs were imprecise and contained the null value 
of zero.

Bridging methods results comparing BFA with MLR

We provide detailed comparisons of regression estimates for 
PCBs and PFAS and their 95% confidence interval across 

Table 2.

Distribution of birth weight in relation to participant character-
istics among women in the HOME study, 2003–2006, Cincinnati, 
OH

 n (%)
Birth weight (g) 

mean ± SD

All participants 384 (100%) 3,352 ± 632
Maternal age   
  <25 89 (23.2%) 3,066 ± 608
  25–29 109 (28.0%) 3,447 ± 623
  30–34 123 (32.0%) 3,454 ± 579
  35+ 63 (16.4%) 3,391 ± 674
Education   
  Bachelor’s degree or higher 233 (60.1%) 3,403 ± 664
  Some college or 2-y degree 94 (24.5%) 3,272 ± 573
  High school diploma or some high school 57 (14.8%) 3,270 ± 577
Race   
  White 240 (62.5%) 3,484 ± 635
  Black 117 (30.5%) 3,128 ± 538
  Other 27 (7.0%) 3,148 ± 680
Marital status   
  Married, living with partner 252 (65.6%) 3,454 ± 637
  Not married, living with partner 53 (13.8%) 3,200 ± 551
  Not living with partner 79 (20.6%) 3,128 ± 596
Household income   
  <$25,000 98 (25.5%) 3,123 ± 515
  >$25,000 and <$50,000 83 (21.6%) 3,392 ± 685
  >$50,000 and <$100,000 139 (36.2%) 3,472 ± 670
  >$100,000 64 (16.7%) 3,390 ± 559
Infant sex   
  Male 176 (45.8%) 3,473 ± 686
  Female 208 (54.2%) 3,249 ± 565
Maternal BMI   
  Underweight or normal 161 (41.9%) 3,309 ± 582
  Overweight 130 (33.9%) 3,381 ± 629
  Obese 93 (24.2%) 3,385 ± 718

BMI indicates body mass index; CI, confidence intervals.

http://links.lww.com/EE/A141
http://links.lww.com/EE/A141
http://links.lww.com/EE/A141
http://links.lww.com/EE/A141
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different methods (Figure  3). We observed that when collin-
earity between the individual chemicals is present, copollutant 
adjustments in MLR results in less reliable parameter estimates 
and poorer precision for both PCBs and PFAS. Small sample 
size also played an important role. For PCB 153, for example, 
we observed that for single pollutant MLR, the precision inter-
val of the estimators was −99 g (95% CI = −143 to 147 g). After 
copollutant adjustments, the precision interval of the estima-
tors inflated to −418 g (95% CI = −1645 to 808 g). When using 
the bridging methods for PCBs, the precision interval obtained 
from MLR with extracted factor score was −24 g (95% CI = −89 
to 42 g), which represents a range of 131 g for 95% CI. The 
precision interval obtained from FA was −43 g (95% CI = −110 
to 10 g), which represents an absolute range of 120 g for 95% 
CI. And finally, the precision interval obtained from BFA was 
−81 g (95% CI: −132 to −31 g), which represents an absolute 
range of 101 g. For PFAs, the precision interval obtained from 
MLR with extracted factor score was −58 g (95% CI = −117 to 
−13 g), which represents a range of 104 g for 95% CI. The pre-
cision interval obtained from FA was −57 g (95% CI = −115 to 

−16 g), which represents an absolute range of 99 g for 95% CI. 
And finally, the precision interval obtained from BFA was −57 g 
(95% CI = −105 to −10 g), which represents an absolute range 
of 95 g.

Therefore, Figure 3 illustrates that the precision of the regres-
sion estimates increased when more conceptual steps of BFA 
were performed. This demonstrates BFA can provide a more 
precise measure of mixture effects when multiple correlated 
copollutants are in the model.

BKMR analysis results

The dose-response function between individual PCBs and 
PFAS chemicals and the change in birth weight using BKMR 
are shown (Figure 4), as is the overall association between the 
chemical mixtures and birth weight (Figure 5). Exposure to PCB 
congeners and PFAS congeners both displayed inverse associa-
tions with birth weight. It is apparent that as the concentration 
quantile of PCB congeners and PFAS congeners increases, then 
the mean estimate of birth weight decreases. The confidence 

Figure 1.  Pearson correlation coefficients between environmental chemical biomarkers. The color intensity of shaded circles indicates the magnitude of the 
correlation. Blue indicates a positive correlation, although red indicates a negative correlation.
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intervals of the estimates at the extreme ends were the widest 
due to the smaller sample sizes. The BKMR results for the rest of 
the chemicals are in eFigures 3 and 4; http://links.lww.com/EE/
A141. All regression estimates obtained from BKMR had 95% 
interval estimates that were imprecise and contained the null. A 
separate BKMR analysis using the variable selection feature was 
also conducted to examine the influence of different variables in 
the model (eTable 2; http://links.lww.com/EE/A141). According 
to the results, all individual variables from the seven different 
classes of chemicals were included in each BKMR model, giving 
the same results as the BKMR when variable selection is not 
used. This is reasonable because each class of chemical mixture 
is selected based on its similar chemical structures. All individual 
chemicals within the mixtures have high correlation with one 
other. Therefore, the model selection did not drop any variables 
to improve the parameter estimates. The posterior inclusion 
probability for each chemicals are given in eTable 2; http://links.
lww.com/EE/A141.

Sensitivity analysis results
When the biomarkers were analyzed one at a time in MLR 
although controlling for covariates, then PCB 170, PCB 180, 
and PCB 153 from the PCBs mixture, PBDE 153 from the PBDE 
mixture, dichlorodiphenyldichloroethylene (DDE) from the 
OCPs mixture, mono-ethyl phthalate (MEP) from the phthalate 
mixture, diethyl phosphate (DEP), dimethyl phosphate (DMP), 
and diethyl dithiophosphate (DEDTP) from the OPs mixture, 
bisphenol A (BPA), methylparaben (MPB), and triclosan (TCS) 
from the phenol mixture and all biomarkers from the PFAS mix-
ture displayed negative associations with birth weight (Table 3). 
All the associations, however, contained the null value of zero.

The regression coefficients and the variances associated with 
the regression coefficients were both inflated in magnitude 
after adjusting for copollutants within the same mixture class 
(Table 3). Some individual chemicals even showed a reversal in 
the direction of effect estimates. For example, in the single pol-
lutant model, a 10-fold increase in the concentrations of PCB 

Figure 2.  The associations between every 10-fold increase of the latent mixture of PCBs (A), the latent mixture of PFAS (B) and birth weight (represented by 
coefficient β) and the factor loadings of the individual congeners onto the latent mixture (represented by coefficient γ) among mother-child birth pairs in the 
HOME Study estimated by BFA adjusted for covariates including cubic-spline gestational age, maternal age, maternal education, race, marital status, household 
income, infant sex.

http://links.lww.com/EE/A141
http://links.lww.com/EE/A141
http://links.lww.com/EE/A141
http://links.lww.com/EE/A141
http://links.lww.com/EE/A141
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170 was associated with a change in birth weight of −118 g 
(95% CI = −348 to 111 g). In the model adjusted for copol-
lutants, a 10-fold in the concentrations of PCB 170 is associ-
ated with a change in birth weight of 1,267 g (95% CI = 97 to 
2,437 g). These results show that with the presence of collinear-
ity, MLR is inadequate for mixture analysis because variances 
associated with parameter estimates would inflate to extreme 
values, resulting in unreliable and imprecise estimates.

Discussion
Most of the previous mixture analysis of the HOME Study on 
perinatal outcomes focused on reducing collinearity among 
individual chemicals. For example, Woods et al10 used a hierar-
chical Bayesian approach to reduce collinearity in the data and 
generated comprehensive estimates of multiple individual chem-
ical congeners. Kalloo et al32 used both nonparametric (k-means 
clustering) and parametric approaches (principal component 
analysis) to generate effect estimates associated with mixtures 

in conjunction with collinearity reduction. Additionally, numer-
ous papers on the effects of mixtures on other childhood 
outcomes utilized innovative statistical methods to reduce 
collinearity.41,47–53 Yet, few paid attentions to the challenge of 
interpretability.

We evaluated whether BFA improves precision and interpret-
ability when estimating the health effects of prenatal exposure 
to chemical mixtures, compared with established methods MLR 
and BKMR. Among the three methods, BFA produced the most 
precise effect estimates for the mixture models (Figure 3). The 
improvement in the precision of the estimate was apparent 
for both PCBs mixture and PFAs mixtures. Furthermore, the 
magnitude of the precision improvement was directly related 
to the degree of correlation among the chemicals. PCBs had 
higher correlation among each other compared with PFAs and 
hence had more improvement in precision of the estimates. The 
improvement of precision is achieved by a combination of latent 
variable modeling and Bayesian techniques.26,27 Latent variable 
modeling alone decreases variance greatly, although Bayesian 

Figure 3.  Comparisons of the association between PCBs (A), PFAS (B), and change in birth weight (g) according to different methods: The red bars represent 
the regression estimates β with 95% CI for the single pollutant MLR model adjusted for covariates and copollutants. The green bars represent the regression 
estimates β with 95% CI for the single pollutant model adjusted for covariates but not copollutants. The blue bars represent regression estimates β with 95% CI 
for three different mixture-specific models related to the factor analysis model outlined: (1) MLR with the extracted latent variable, (2) FA, and (3) BFA.
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procedures and prior distributions further stabilize the param-
eter estimates. Meanwhile, BKMR uses nonlinear smoothing 
techniques,23 which resulted in less precise effect estimates com-
pared with BFA. This is due to the additional amount of variance 
introduced by allowing nonlinearity in the kernel approximat-
ing functions. However, both BFA and BKMR performed better 
than the copollutant adjusted MLR models.

MLR showed poor estimate precision and is, therefore, 
inadequate for mixture analysis.15–17 The precision of the MLR 
regression coefficients is drastically reduced after copollutant 
adjustment is made (Table 3). This inflation of variances in the 
regression estimates is directly related to the degree of collinear-
ity present among the exposures.20 Although the single pollut-
ant regression models could generate more precise estimation, 
it provided biased estimates because it assumed the absence of 
the copollutant confounding. Additionally, the effect estimates 

generated in parallel by single pollutant model cannot be simply 
added arithmetically for mixture effects.20

Among the three methods, BFA had the clearest interpretation 
of the mixture effect estimates. It achieved this by simultaneously 
modeling the parameter estimates and error terms as depicted in 
Equations 1 and 2. The regression coefficients generated by BFA 
can be directly interpreted as the mixture-specific regression coef-
ficients. For example, a change in birth weight for every 10-fold 
increase in PCB mixture concentration (consists of PCB 118, 138, 
153, 170, and 180) is associated with a birth weight change of 
−81 g (95% CI = −132 to −31 g). Although a change in birth weight 
for every 10-fold increase in PFAS mixture concentration (consists 
of PFHXS, PFNA, PFOA, and PFOS) is associated with a birth 
weight change of −57 g (95% CI = −105 to −10 g). Additionally, 
the BFA modeling framework can be explicitly defined by 
researchers, making replications and comparisons of results across 

Figure 4.  Dose-response function (95% credible intervals) between every 10-fold increase in concentrations of selected PCB congeners (A) and birth weight 
while fixing other PCB congener concentrations at median values and PFAS congeners (B) and birth weight while fixing other PFAS congener concentrations 
at median values estimated by BKMR adjusted for covariates including cubic-spline gestational age, maternal age, maternal education, race, marital status, 
household income, infant sex.
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studies possible. BFA can also be used flexibly for different types of 
research questions including source-specific mixture studies where 
the latent construct is defined as the exposure source instead of the 
chemical structure, as was in this study.54

The latent variable in BFA is a form of dimensional reduc-
tion method that can capture information of all the individual 
chemicals and produce a single index representing the overall 
exposure of the mixtures.40,54 The Bayesian framework applied 
further restrictions to the parameter estimates to reduce vari-
ance. In this study, an uninformative Gaussian prior with mean 
zero and variance 1,000 were used for the parameter estimates 
in the BKMR and BFA. This means that minimal prior informa-
tion was introduced in our model to influence the final estimates 
and the information of our data dictate our analysis results. 
Therefore, the assumptions made in our Bayesian analysis were 
the same as the non-Bayesian analysis, with the exception that 

BKMR assumes nonlinear relationship while BFA assumes lin-
ear relationship. Mathematically, the amount of variance is 
reduced because only one exposure is modeled instead of all five 
within the mixture. This simplifies the interpretation and pro-
vides a more explicit and specific definition of mixture exposure 
by capturing all information of the individual chemicals instead 
of other dimensional reduction methods where a subset of the 
chemicals is selected.15,20,55,56

BKMR provided graphical outputs clearly depicting the 
dose-response curve. However, the interpretation is challenging 
because BKMR is an extremely flexible model. During the model-
ing procedure, different nonlinear transformations were used for 
each exposure. This is advantageous for detection and charac-
terization of nonlinear effect in the dose-response curves of the 
chemical mixtures. However, when the actual relationship of the 
dose-response is linear, it could introduce additional complexities 

Figure 5.  Difference in birth weight (95% credible intervals) for different percentiles of the concentrations of all PCB congeners (A) and all PFAS congeners (B) 
while centering the effect at median concentrations at zero estimated by BKMR adjusted for covariates including cubic-spline gestational age, maternal age, 
maternal education, race, marital status, household income, infant sex.
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in the model through the flexible approximation functions. 
Furthermore, these approximation functions are dependent on 
the specific data structures of the cohort. This makes direct com-
parisons of analysis results from different cohorts challenging 
unless the characteristics of the cohorts are generally comparable 
and the same assumption of the biologic mechanism is made.

In terms of the interpretation of health effects in our analysis, 
our BFA results were coherent with our BKMR results. Both 
methods found that prenatal exposure to PCBs and PFAS were 
associated with reduced birth weight. Our findings are consis-
tent with previous birth weight studies using the HOME Study 
data, although the magnitude of the effects may vary slightly 
due to a combination of reasons such as different data trans-
formation or standardization techniques.31,32 For example, in a 
single pollutant study, Rauch et al31 found that every 10-fold 
increase in the concentration of selected OPs (∑DAP, ∑DEP, 
∑DMP) was associated with slight negative but less precise 
associations with birth weight. In a mixture study, Kalloo et al31 
used principal component and clustering techniques and found 
that the principal component and cluster with mostly OCPs and 
phenol compounds were associated with a reduction of birth 
weight, although the 95% CI contained the null. Although the 
effect estimate computed by Kalloo et al31 can be attributed to 
certain mixtures such as principal components and clusters, it is 
difficult to interpret the results since the mixture generated were 
dependent solely on the available data. The mixtures identified 
can be very different given different make-up of the study popu-
lation, making direct comparisons of the results difficult.

Although the strength of BFA in estimation precision and inter-
pretability is apparent, BFA has several limitations. BFA assumes 
a linear relationship among the latent mixture, which is informed 
by specific hypothetical causal diagrams and prior distributions 
of the parameters. If the actual relationship among these variables 
deviates significantly from the assumptions, BFA results may be 
biased. Another disadvantage of BFA is the relatively longer com-
putation time needed for achieving model convergences when 
more variables and more sample sizes are supplied. It should 
also be noted that depending on the internal variance-covariance 

  BP3 40 g
(−32 to 111 g)

49 g
(−26 to 123 g)

  PPB 0 g
(−86 to 86 g)

36 g
(−86 to 156 g)

  TCS −11 g
(−103 to 82 g)

−14 g
(−110 to 83 g)

PFAS (n=307)   
  PFHXS −109 g

(−282 to 63 g)
−41 g

(−261 to 179 g)
  PFNA −251 g

(−564 to 63 g)
−160 g

(−557 to 237 g)
  PFOA −114 g

(−339 to 112 g)
22 g

(−265 to 310 g)
  PFOS −194 g

(−429 to 42 g)
−103 g

(−469 to 264 g)

 Total sample size for this analysis was reduced to exclude samples with missing values in one or 
more of the chemical concentrations after the imputation process. The regression coefficients refer 
to the association with every two-fold increase in the chemical concentration.
Adjusted for all covariates including cubic-spline gestational age, maternal age, maternal educa-
tion, race, marital status, household income, infant sex).
BMI indicates body mass index; BP3, benzophenone-3; CI, confidence intervals; DDT, dichlorodi-
phenyltrichloroethane; DETP, diethylthiophosphate; DMDTP, dimethyldithiophosphate; DMP, dimethyl 
phosphate; DMTP, dimethyl thiophosphate; HCB, hexachlorobenzene; MBzP, mono-benzyl phthal-
ate; MiBP, mono-iso-butyl phthalate; MnBP, mono-n-butyl phthalate; OXYCHLOR, oxychlordane; 
T_NONA, trans-nonachlor.

Table 3.

Regression coefficients for the association between individual 
environmental chemical biomarkers (10-fold increases) and 
mean birth weight among women in the HOME study, 2003–
2006, Cincinnati, OH, using MLR

 

β adjusted  
for covariates  

(95% CI)

β adjusted for covariates and  
other chemicals within the  

mixture class (95% CI)

PCBs (n = 310)   
  PCB 118 78 g

(−143 to 286 g)
3 g

(−330 to 336 g)
  PCB 138 37 g

(−202 to 263 g)
505 g

(−235 to 1245 g)
  PCB 153 −99 g

(−344 to 147 g)
−418 g

(−1645 to 808 g)
  PCB 170 −118 g

(−348 to 111 g)
1267 g

(97 to 2437 g)
  PCB 180 −194 g

(−423 to 35 g)
−1461 g

(−2696 to −227 g)
PBDEs (n= 284)   
  PBDE 28 45 g

(−101 to 191 g)
−11 g

(−381 to 360 g)
  PBDE 47 65 g

(−66 to 195 g)
−32 g

(−703 to 638 g)
  PBDE 99 86 g

(−38 to 210 g)
180 g

(−186 to 547 g)
  PBDE 100 17 g

(−105 to 138 g)
24 g

(−497 to 545 g)
  PBDE 153 −74 g

(−189 to 42 g)
−153 g

(−392 to 86 g)
OCPs (n= 237)   
  DDE −111 g

(−358 to 137 g)
−312 g

(−627 to 3 g)
  DDT 102 g

(−66 to 271 g)
179 g

(−20 to 377 g)
  OXYCHLOR 64 g

(−233 to 361 g)
183 g

(−522 to 889 g)
  HCB 101 g

(−284 to 487 g)
132 g

(−358 to 622 g)
  T_NONA 37 g

(−208 to 282 g)
−96 g

(−640 to 448 g)
Phthalates (n=366)   
  ΣDEHP 65 g

(−26 to 157 g)
48 g

(−55 to 150 g)
  MEP −4 g

(−94 to 86 g)
−36 g

(−134 to 62 g)
  MiBP 66 g

(−47 to 181 g)
22 g

(−140 to 184 g)
  MnBP 73 g

(−41 to 187 g)
29 g

(−134 to 192 g)
  MBzP 62 g

(−38 to 162 g)
29 g

(−107 to 165 g)
OPs (n=360)   
  DMDTP 20 g

(−26 to 66 g)
34 g

(−25 to 94 g)
  DETP 38 g

(−23 to 98 g)
34 g

(−34 to 102 g)
  DEP −29 g

(−81 to 24 g)
−19 g

(−81 to 43 g)
  DMTP 17 g

(−58 to 89 g)
35 g

(−69 to 140 g)
  DMP −50 g

(−106 to 7 g)
−81 g

(−157 to −5 g)
  DEDTP −5 g

(−54 to 44 g)
8 g

(−43 to 59 g)
Phenols (n=296)   
  BPA −35 g

(−177 to 108 g)
−32 g

(−177 to 113 g)
  MPB −29 g

(−136 to 78 g)
−69 g

(−222 to 84 g)

(Continued)

Table 3.

(Continued)

 

β adjusted  
for covariates  

(95% CI)

β adjusted for covariates and  
other chemicals within the  

mixture class (95% CI)
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relationship present in the data, researchers may need to try 
different priors and to tune parameters such as the number of 
burn-in iterations and the ratio of adaptive and posterior sam-
ple size for the model to converge successfully. Additionally, our 
study contained limitations that could not be addressed by simply 
employing different methods. For example, some of the chem-
icals analyzed, such as phthalates, may vary during pregnancy. 
Measurement errors may exist in these nonpersistent chemicals 
because of their short half-lives and that measurements taken at 
a specific time may not reflect the actual amount of exposure.57

In terms of the generalizability for our analysis, the sample 
size of the HOME Study is relatively modest to examine mul-
tiple classes of environmental chemical mixtures. However, the 
concentrations of environmental chemicals in the HOME Study 
are similar to those in pregnant women in the US National 
Health and Nutrition Examination Survey at similar time of 
enrollment.58 The estimation of mixture-specific regression coef-
ficients without considering accompanying classes of chemical 
mixture is a limitation of the study. Ideally, a mixture analysis 
method includes all classes of chemical exposures, but computa-
tional burden is a hindrance. In the future, it is possible to com-
bine different variable selection methods in multiple stages to 
enhance the estimation of regression coefficients for chemicals 
from different classes with an increasing sample size.

Conclusion
We examined three different statistical approaches to charac-
terize and quantify the association between birth weight and 
prenatal exposures to seven classes of environmental chemical 
mixtures. We found that PCBs and PFAs displayed strong asso-
ciations with reduced birth weight. We demonstrated the advan-
tages of BFA in estimate precision and interpretability, although 
BKMR excels at visualizing dose-response relationships. 
Therefore, BFA and BKMR can complement each other to pro-
vide a more comprehensive interpretation of the mixture-spe-
cific effect. We also demonstrated the inadequacy of MLR for 
mixture assessment, especially in the presence of collinearity.
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