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Abstract
Background: Early diagnosis of liver metastasis is of great importance for enhanc-
ing the survival of colorectal adenocarcinoma (CAD) patients, and the combined 
use of a single biomarker in a classier model has shown great improvement in pre-
dicting the metastasis of several types of cancers. However, it is little reported for 
CAD. This study therefore aimed to screen an optimal classier model of CAD with 
liver metastasis and explore the metastatic mechanisms of genes when applying this 
classier model.
Methods: The differentially expressed genes between primary CAD samples and 
CAD with metastasis samples were screened from the Moffitt Cancer Center (MCC) 
dataset GSE13 1418. The classification performances of six selected algorithms, 
namely, LR, RF, SVM, GBDT, NN, and CatBoost, for classification of CAD with 
liver metastasis samples were compared using the MCC dataset GSE13 1418 by 
detecting their classification test accuracy. In addition, the consortium datasets of 
GSE13 1418 and GSE81558 were used as internal and external validation sets to 
screen the optimal method. Subsequently, functional analyses and a drug-targeted 
network construction of the feature genes when applying the optimal method were 
conducted.
Results: The optimal CatBoost model with the highest accuracy of 99%, and an area 
under the curve of 1, was screened, which consisted of 33 feature genes. A functional 
analysis showed that the feature genes were closely associated with a “steroid meta-
bolic process” and “lipoprotein particle receptor binding” (eg APOB and APOC3). 
In addition, the feature genes were significantly enriched in the “complement and 
coagulation cascade” pathways (eg FGA, F2, and F9). In a drug-target interaction 
network, F2 and F9 were predicted as targets of menadione.
Conclusion: The CatBoost model constructed using 33 feature genes showed the 
optimal classification performance for identifying CAD with liver metastasis.
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1 |  INTRODUCTION

Colorectal cancer (CRC) was the second-leading cause of 
cancer mortality worldwide in 2018, just behind lung cancer, 
and was the fifth most common cause of cancer deaths in 
China, the trend of which is rising.1 Changes in bowel habits 
and the occurrence of stomachaches and bloody stools are the 
main clinical manifestations of CRC.2 Colorectal adenocar-
cinoma (CAD), which originates from the epithelial cells of 
the colorectal mucosa, accounts for 90% of the occurrences 
of CRC.3 It has been found that for more than 20% of patients 
CAD may metastasize.4 Liver metastasis is the poorest prog-
nostic factor of CAD, and the resection rate for colorectal 
liver metastasis remains at less than 25%.5 Thus, the early 
diagnosis of liver metastasis is extremely important for en-
hancing the survival of CAD patients.

Methods for an early detection of CAD with liver me-
tastasis are lacking. A new method for analyzing the tran-
scriptomic differences between primary CAD and a distant 
metastasis was developed, and FBN2 and MMP3 were identi-
fied as CAD metastasis related genes, which may help predict 
a high-level risk of CAD metastasis.4 Sayagués et al re-
vealed the existence of several dysregulated genes including 
APOA1, HRG, UGT2B4, and RBP4 in CAD with liver me-
tastasis samples in comparison to the primary tumor.6 Qian 
et al identified higher expressions of THBS2, INHBB, and 
BGN in CRC patients with liver metastasis.7 However, a sin-
gle biomarker has generally shown no advantages in the pre-
diction and classification of cancer metastasis samples over a 
combination of biomarkers.

Machine learning a computer-based algorithm, has shown 
high degrees of accuracy and prediction that exceeds the abil-
ities of standard statistical methods to make predictions about 
outcomes in patients.8 Machine learning approaches applying 
different datasets have recently been proposed to improve the 
classification of primary cancers and metastasis samples, as 
well as to predict cancer metastasis.9,10 Tapak L et al have 
found that the random forest (RF) has the highest specific-
ity, the Naive Bayes (NB) has highest sensitivity while the 
traditional machine learning approaches [logistic regression 
(LR) and linear discriminant analysis] had the highest total 
accuracy for metastasis prediction in breast cancer.11 In addi-
tion, the support vector machine (SVM) outperformed other 
machine learning methods for breast cancer survival pre-
diction.11 Montazeri et al have demonstrated Trees Random 
Forest model (TRF) has highest level of accuracy for sur-
vival prediction in breast cancer than SVM, NB, 1-Nearest 
Neighbor (1NN) and Multilayer Perceptron (MLP).12 The 
results of different studies find different methods as the most 
reliable one for disease prediction and it is inconsistency 
about the results comparisons of various machine learning 
algorithms in the classification accuracy of data mining for 
disease prediction.

Although machine learning techniques comparisons are 
widely studied in cancer metastasis such as breast cancer and 
nonsmall cell lung cancer,11,13 there was little on CAD me-
tastasis. In our study, six machine learning approaches (LR,14 
RF,15 SVM, gradient boosting decision tree (GBDT),16 neu-
ral network (NN),17 and categorical boosting (CatBoost) 
18) were applied to construct prediction models for a CAD 
liver metastasis by CAD metastasis related-differentially 
expressed genes (DEGs). Then, the classification accuracy 
of six models were analyzed in training set, and the classi-
fication performances of classier models were validated to 
screen the optimal method. Subsequently, functional analyses 
of feature genes were conducted using this optimal method. 
Finally, the protein-protein interaction (PPI) network and 
drug-target interaction network of feature genes were con-
structed (Figure S1). Thus, this study is aimed at screening 
the feature genes classified as potential biomarkers when 
applying the optimal method, and comprehensively evaluat-
ing the metastatic mechanisms and treatment targets of CAD 
with liver metastasis.

2 |  MATERIALS AND METHODS

2.1 | Data source

Two datasets, GSE13 1418 and GSE81558, downloaded 
from Gene Expression Omnibus (GEO) were used in this 
study. The Moffitt Cancer Center (MCC) dataset GSE13 
1418 was used as the training set, whereas the consortium 
datasets GSE13 1418 and GSE81558 were used as internal 
and external validation sets for the liver metastasis models 
respectively. GSE13 1418 includes 333 CAD and 184 liver 
metastasis samples from the MCC cohort dataset, and 545 
primary CAD and 73 liver metastasis samples from a con-
sortium cohort dataset. The transcriptomic data of GSE13 
1418 were generated from the GPL15048 Rosetta/Merck 
Human RSTA Custom Affymetrix 2.0 microarray platform 
[HuRSTA_2a520709.CDF]. In addition, a total of 23 pri-
mary CAD and 19 liver metastasis samples were analyzed 
from GSE81558. The sequencing platform of GSE81558 
was the GPL15207 [PrimeView] Affymetrix Human Gene 
Expression Array.

2.2 | Data preprocessing

Before data preprocessing, GSE131418_RAW.tar was down-
loaded from GEO using the GEOquery package.19 A series 
of processes including a background correction, normaliza-
tion, and calculation of the genes expressions were conducted 
for the microarray data using the affy package in R.20 Later, 
the annotation files were downloaded and the probe ID was 
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converted into the gene symbol. The probes without corre-
sponding gene symbols were deleted, and the mean of the 
probes mapped to the same gene symbol were calculated as 
the expression value of this gene. For GSE81558, the ex-
pression data of the downloaded Series Matrix File(s) were 
standardized using the robust multiarray average (RMA) 
algorithm. Subsequently, a principal component analysis 
(PCA) was conducted to observe the sample grouping by the 
FactoMineR package in R.

2.3 | Screening of DEGs and 
hierarchical clustering

A modified t-test applying an empirical Bayesian method 
was applied to conduct mRNA transcriptomic differences 
between the primary CAD and CAD with liver metastasis 
groups. The DEGs were then identified under P-value < 0.05 
and |log2 fold change (FC)|> 2. In addition, the ggscatter func-
tion of the ggpubr package in R was used to draw a volcano 
plot of the DEGs, and the gene symbols of the top-30 DEGs 
ranked by |log2 FC| were presented. The pheatmap package in 
R was applied to conduct the hierarchical clustering.

2.4 | Construction of liver metastasis 
prediction models

The count data of the DEGs were transformed into log2(x + 1) 
formatted data, and a binary label value of “1” was used for 
classifying the liver metastasis samples, and a value of “0” 
was used for classifying the nonmetastasis samples. For each 
group, 80% of the samples were divided into a training set 
using the train_test_split machine learning method in Python 
(version 0.21.2),21 whereas 20% of the samples were divided 
into the test set.

Before the model construction, the recursive feature elim-
ination (RFE) algorithm based on the sklearn.feature_selec-
tion method was applied to the feature selection. Machine 
learning models, ie LR, based on the sklearn.linear_model; 
RF and GBDT, based on sklearn.ensemble; an SVM, based 
on sklearn.svm; and NN, based on sklearn.neural_network, 
were constructed (Data S1). Another CatBoost machine 
learning model was constructed using the Catboost package 
(version 0.16.5).22

2.5 | Validation of prediction models and 
screening of optimal model

The consortium datasets GSE13 1418 and GSE81558 were 
used as the internal and external validation sets for the pre-
dicted models above respectively. First, the feature DEGs 

were input into the six well-trained or constructed liver me-
tastasis models described above. The expression values of the 
feature DEGs in the samples were utilized as an eigenvalue 
to classify and identify CAD samples with or without liver 
metastasis. The risk of liver metastasis in the samples of the 
validation sets was predicted by assessing the accuracy and 
AUC values, which were used to evaluate the prediction and 
classification capability of the six models.

Following the construction and data validation of the 
six models, the model with the highest AUC value in both 
the training and validation sets was screened as the optimal 
model. The feature genes in the optimal model were chosen 
for the following analysis.

2.6 | Functional enrichment analysis of 
feature genes

Kyoto Encyclopedia of Genes and Genomes (KEGG) is 
a database offering a biological interpretation of the ge-
nome function through KEGG pathway mapping, and links 
genomic information to more ordered information of biologi-
cal functions.23 Gene Ontology (GO) is a annotation database 
supplying gene functions from three ontologies, namely, the 
biological process (BP), cellular component (CC), and mo-
lecular function (MF) ontologies.24 In this study, the clus-
terProfiler tool (version 3.12.0) was used to conduct the GO 
terms and KEGG pathway enrichment analysis.25 The sig-
nificant enrichment results were chosen with a cut-off of P 
value < 0.05 and count ≥ 2.

2.7 | Construction of PPI network

The Search Tool for the Retrieval of Interacting Genes 
(STRING) database provides available sources on protein-
protein associations for 5,090 organisms.26 In our study, 
STRING (version 11.0, http://www.strin g-db.org/) was 
used to predict interactions of the feature genes with a PPI 
score of 0.4 (medium confidence), disable structural pre-
views inside network bubbles, and hide disconnected nodes 
in the network. The pairs obtained were then visualized 
in a PPI network using Cytoscape software.27 In addition, 
subnetwork mining of the PPI network was conducted by 
applying MCODE under a degree cut-off of 2, node score 
cut-off of 0.2, K-core of 2, and depth from seed of 100 as 
the parameters.

2.8 | Drug target prediction of feature genes

The drug-gene interaction database is an open resource used to 
excavate information of a drug-gene interaction and druggable 
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genome.28 In our study, DGIdb 3.0 (www.dgidb.org) was used 
to predict the small drug molecules that interact with the fea-
ture genes. The drug-target interactions reported in previous 
papers and by the FDA were then obtained. Finally, the drug-
target interaction network was constructed using Cytoscape.

3 |  RESULTS

3.1 | Basic statistical information of 
GSE131418 and GSE81558

Information regarding the total number of samples, the 
probes, the annotated probes, and the gene symbols of 
GSE13 1418 and GSE81558 are shown in Table 1. There 

were 60 607 and 49 395 probes in the raw expression ma-
trix of GSE13 1418 and GSE81558 respectively. After an-
notation, a total of 47 408 probes involved in 24 495 genes 
were obtained from the GSE13 1418 dataset, and a set of 46 
879 probes related to 18 835 genes were obtained from the 
GSE81558 dataset.

After data preprocessing, boxplots of the normalized ex-
pression values and PCA plots of the samples in the MCC 
cohort (Figure S2), CON cohort (Figure S3), and GSE81558 
(Figure S4) datasets are drawn. The black lines in the mid-
dle of each of these boxplots are nearly straight, indicating 
that the data are normalized well. In addition, a PCA analysis 
of the samples showed that different groups exhibit partial 
differences, but without a significant batch effect. These in-
dicate that preprocessed data are suitable for the following 
analysis.

3.2 | DEGs screened between two groups

Under the threshold of P value < 0.05 and |log2FC|> 2, a 
total of 268 DEGs involving 108 upregulated DEGs and 
23 downregulated DEGs were identified, whereas the ex-
pressions of 24 364 genes were not significantly changed 
between the primary CAD sample and CAD with liver me-
tastasis samples in the MCC cohort dataset (Figure 1). The 
cluster heatmap (Figure 2A) and PCA plot (Figure 2B) of 
the DEGs demonstrated a good discrimination among the 
primary CAD and liver metastasis samples.

T A B L E  1  The basic information of each dataset

Information GSE131418 GSE81558

Total samples 1135 51

MCC/Consortium 517/618 /

Total probe 60 607 49 395

Annotated probe 47 408 46 879

Corresponding gene 
symbol

24 495 18 835

Primary/Liver metastases 
(total)

333 + 545/141 + 56/
(878/197)

23/19

Abbreviation: MCC: Moffitt Cancer Center.

F I G U R E  1  Volcano plot of differentially expressed genes (DEGs) in MCC cohort dataset. The volcano plot was drawn using the ggpubr 
package. The gene symbols of the top-30 DEGs ranked by |log2 FC| are presented. A total of 268 DEGs involving 108 upregulated DEGs and 23 
downregulated DEGs, and 24,364 non-DEGs between primary CAD and liver metastasis samples. The X-axis represents the change in fold of the 
genes, and the Y-axis represents the p value. The red square represents upregulated DEGs, the blue circle represents downregulated DEGs, and the 
black triangle represents nondifferential genes

http://www.dgidb.org
http://GSE131418
http://GSE81558
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http://GSE81558
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F I G U R E  2  Clustergrams of DEGs in primary CAD and liver metastasis samples. (A) The pheatmap of DEGs. The pheatmap package in R was 
applied to conduct hierarchical clustering. (B) PCA plot of DEGs drawn using the FactoMineR package in R. In the PCA plot, Dim 1 is presented on the 
x-axis and Dim 3 is presented on the y-axis. The cluster heatmap and PCA plot of the DEGs showed a good discrimination among the primary CAD and 
liver metastasis samples. Red indicates upregulated DEGs, whereas blue indicates upregulated DEGs. LM, liver metastasis; PC, primary cancer

T A B L E  2  The values of the classification performance of six machine learning models for predicting liver metastasis of the colorectal 
adenocarcinomas

Models Features
Accuracy 
(MCC) AUC (MCC)

Accuracy 
(Con)

AUC 
(Con)

Accuracy 
(GSE81558)

AUC 
(GSE81558)

LR 25 1 1 1 1 0.97619 1

NN 131 1 1 0.996672 0.999934 1 1

SVM 131 0.991597 1 0.996672 0.999967 0.97619 1

RF 21 0.991597 1 0.995008 0.998755 0.97619 1

GBDT 38 0.983193 1 0.993344 0.999017 0.97619 0.997712

Catboost 33 0.991597 1 0.993344 0.998132 1 1

Note: The MCC Cohort of GSE131418 was used as training set, while Consortium Cohort of GSE131418 and GSE81558 were used as internal and external validation 
sets for liver metastasis models, respectively.
Abbreviation: LR: logistic regression; NN: neural network; SVM: support vector machine; RF: random forest; GBDT: gradient boosting decision tree; Catboost: 
categorical boosting; MCC: Moffitt Cancer Center; con: Consortium.
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3.3 | Performance evaluation outcomes and 
validation results

The numbers of feature DEGs, the accuracy, and the AUC 
of the ROC values of six models based on data from the 
training set, and internal and external validation sets, are 
presented in Table 2. The accuracy of each model in the 
training set ranged from 0.983193 to 1, and the AUC of 
each model reached up to 1 (Figure 3A). In the internal 

validation sets, the accuracy and AUC of each model were 
similar (Figure 3B). In the external validation sets, the ac-
curacy and AUC of the NN and Catboost models all reached 
up to 1 (Figure 3C). Overall, the accuracy and AUC of the 
NN and Catboost models for the different datasets were 
relatively higher than those of the other models. However, 
we failed to use an NN to screen the feature genes because 
all DEGs were input into this model. Thus, the Catboost 
model was considered optimal.

F I G U R E  3  ROC curves of six models. (A) ROC curves of six models constructed using the training set. (B) ROC curves of six models 
constructed using internal validation set. (C) ROC curves of six models constructed using external validation sets. The dashed grey line represents a 
line of equality or random chance. ROC, receiver operating characteristic
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3.4 | Optimal Catboost model

In the Catboost model, the RFE algorithm was used to screen 
the feature genes under different cross-validation scores, and 
a total of 33 feature genes were obtained with the highest 
cross-validation score (Figure 4A). The importance of these 
feature genes was evaluated, and CRP, ALB, COLEC11, 
NKX2-3, HAMP, ART4, and GC showed a higher impor-
tance than the other genes (Figure 4B). The AUC of this 
model reached up to 1, which may be associated with the 
significant difference between the primary CAD samples and 
CAD with liver metastasis samples (Figure 4C).

3.5 | Functions of 33 feature genes

The analysis results of the GO terms showed that the fea-
ture genes were most significantly associated with the BP 
of “acute inflammatory response” (GO:0  002  526), CC of 
“blood microparticle” (GO:0 072 562), and MF of “steroid 

binding” (GO:0 005 496, e.g., APOB and APOC3) (Figure 
5A). Notably, most of the top-8 enriched terms of GO BP, 
CC, and MF were associated with a lipid metabolic process, 
such as the “steroid metabolic process” (e.g., APOB and 
APOC3) and “lipoprotein particle receptor binding” (e.g., 
APOB and APOC3). In addition, the feature genes were sig-
nificantly enriched in the “complement and coagulation cas-
cades” (e.g., FGA, F2, and F9) pathway (Figure 5B).

3.6 | PPI network and subnetwork of 
feature genes

When setting the minimum interaction scores as 0.4, only 
25 of the 33 feature genes had interactions with pairs of the 
other genes (Figure 6A). Thus, the PPI network consists of 
these 25 feature genes and 128 PPI pairs. The majority genes 
(24) in the PPI network were upregulated and only one gene 
(MMP3) was downregulated. The top-10 nodes in the PPI 
network with a high degree were ALB, FGA, F2, GC, PLG, 

F I G U R E  4  Relevant outcomes of optimal Catboost model. (A) Line chart of RFE algorithm used to screen the feature genes under different 
cross-validation scores, and a total of 33 feature genes were obtained with the highest cross-validation score. The X-axis represents the numbers 
of selected feature genes, and the Y-axis represents cross-validation scores. (B) Importance assessment of 33 feature genes. (C) ROC curve of the 
Catboost model. The AUC is 1. ROC, receiver operating characteristic
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CRP, HPX, AMBP, APOC3, and APOB (Table 3). In addi-
tion, two subnetworks were obtained from the PPI network, 
and the one with higher score (9.6) is presented in Figure 6B. 
There were 11 nodes and 48 PPI pairs in this subnetwork, and 
all genes were upregulated.

3.7 | Predicted drug targets of feature genes

Among the 33 feature genes, 31 genes were predicted to 
have drug binding sites. In total, a set of 254 drug-gene pairs 
were identified, in which 125 were obtained from FDA-
approved drugs and 60 were obtained from published papers. 

Specifically, there were 13 feature genes predicted as targets 
of FDA-approved drugs, or of drugs reported in previous 
studies. The drug-gene pairs involving these 13 feature genes 
are presented in a drug-target interaction network (Figure 7), 
in which F2 and F9 as coagulation factor family members 
were predicted as menadione targets.

4 |  DISCUSSION

In this study, we compared six selected algorithms (LR, 
RF, SVM, GBDT, NN, and CatBoost) to create classifiers 
for CAD classification with liver metastasis samples. The 

F I G U R E  5  Functional enrichment analyses of feature genes in optimal Catboost model. (A) Bubble diagram of GO enrichment result. The 
clusterProfiler tool (version 3.12.0) was applied to analyze GO terms. Top-8 enriched terms of GO BP, CC, and MF are presented. (B) KEGG 
enrichment analyses results. The top-10 enriched KEGG pathways are presented. Significant enrichment results were chosen based on a cut-off 
of P value < 0.05 and count ≥ 2. The size of the dot represents the proportion of genes, which is positively associated with the proportion of 
corresponding enrichment items. The change in color from dark blue to red represents a change in p value from low to high. GO, Gene ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function

F I G U R E  6  Interactions of feature 
genes in optimal Catboost model presented 
in a network. (A) Protein-protein interaction 
(PPI) network. (B) Top sub-network 
from PPI network. The upregulated and 
downregulated genes are indicated by red 
and blue respectively. PPI network for 
interactions of DEGs with confidence score 
of > 0.4
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optimal model with the highest accuracy (99%) and AUC (1) 
based on the CatBoost algorithm was screened, and consists 
of 33 feature genes. A functional analysis showed that the 
feature genes were closely associated with a lipid metabolic 
process such as the “steroid metabolic process” (eg APOB 
and APOC3) and “lipoprotein particle receptor binding” (eg 
APOB and APOC3). In addition, the feature genes were sig-
nificantly enriched in the “complement and coagulation cas-
cade” pathway (eg FGA, F2, and F9), revealing the potential 
biomarkers and pathogenesis of CAD with liver metastasis.

According to the comparisons among six classification 
algorithms, the optimal model CatBoost was achieved for 
identifying CAD liver metastases with higher classification 
performance in training set and best reproducibility in vali-
dation set. Although NN classier showed a higher or equal 
classification performance in training, internal and external 
validation sets than CatBoost classier, the feature genes in 
this classier were consisted by all the DEGs (131), while 
there were 33 feature genes in CatBoost classier, which 
meant that the classification ability of 33 feature genes in 
CatBoost was almost equal to 131 feature genes in NN. The 

number of feature gene is also a critical parameter to evalu-
ate the performance of classier, and a method with minimum 
number of feature genes for a classification problem with an 
objective function to maximize the classification accuracy is 
always needed.29 In similar way, SVM classier with 131 fea-
ture genes and lower accuracy in external validation set than 
CatBoost classier was excluded. Futuremore, the LR, RF, and 
Catboost classier with lower accuracy in external validation 
set than CatBoost classier were also excluded.

Except for the number of feature gene, the parameters of 
accuracy and AUC were also used to measure the perfor-
mance of classier in this study. Accuracy may be interpreted 
as the proportion of instances the classifier always classify 
correctly for an given dataset or other data.30 The AUC of a 
classifier is a portion of the area of the unit square and has 
an good statistical property that the classifier will rank a 
randomly selected positive instance higher than a randomly 
selected negative instance.31 Consistently, most researchers 
have applied the combinations of accuracy and AUC to as-
sess predictive ability of classifiers.32,33

CatBoost is a new developed algorithm based on GBDT 
algorithm that can successfully handle categorical features 
with advantage of reducing overfitting on available datasets, 
and outperforms traditional GBDT algorithm to overcome 
the gradient bias with ordered boosting.18 CatBoost also out-
performs other classifiers over different evaluation metrics 
in different analysis purpose.34 A study has indicated that 
CatBoost outperforms other machine learning classifiers LR, 
NB, RF, and SVM for anxiety and depression prediction, 
with an higher accuracy (82.6%) and precision and (84.1%).35 
These findings were in line with our findings. However, it 
is important to note that CatBoost will not work best on all 
supervised classification problems.36

In addition, the underlying biological meaning of 33 fea-
ture genes in CatBoost classier was analyzed. In our study, 
we predicted that APOB and APOC3 were both upregulated 
in CAD liver metastasis samples, and associated with “ste-
roid metabolic process” and “lipoprotein particle receptor 
binding”. Serum lipids are risk factors of numerous types 
of cancers, and has crucial roles in cancer metabolism.37,38 
Apolipoprotein B (APOB) as a lipid binding protein is a 
main component of chylomicrons and low-density lipopro-
teins (LDL).39 ApoB-100, as an isoform of APOB synthe-
sized exclusively in the liver, is required for the production of 
triglyceride-rich VLDL.40 Apolipoprotein C3 (APOC3) is a 
glycoprotein secreted by the liver and intestines, the expres-
sion of which is positively related to energy expenditure and 
energy demand by participating in the plasma triglyceride 
metabolism.41 Similarly, the increasing quartiles of ApoB-
100 and triglycerides are positively associated with the risk of 
CRC.42 In addition, the increased APOB/APOA1 ratio is re-
lated to the nodal metastasis of CRC.43 A rewiring of the lipid 
metabolic programs is necessary for cancer cells to acquire 

T A B L E  3  The nodes in PPI network ranked by degrees

Nodes Degree Betweenness Closeness

ALB 20.0 98.05642 0.85714287

FGA 17.0 29.657936 0.75

F2 17.0 38.40642 0.7741935

GC 16.0 25.370707 0.72727275

PLG 15.0 18.715944 0.6857143

CRP 14.0 22.459524 0.6666667

HPX 14.0 15.992136 0.6666667

AMBP 13.0 5.752381 0.6486486

APOC3 13.0 9.283405 0.6666667

APOB 13.0 11.427056 0.6666667

ITIH4 12.0 6.084199 0.6315789

APOA2 12.0 2.9199135 0.6315789

SERPINA4 11.0 5.1714287 0.61538464

F9 11.0 17.425468 0.6486486

NR1H4 10.0 54.25 0.6315789

C9 9.0 2.8238096 0.58536583

APCS 9.0 2.2032468 0.58536583

SERPINA3 6.0 0.0 0.54545456

SERPINA6 6.0 0.0 0.54545456

TM4SF4 5.0 0.0 0.5217391

CYP2C9 5.0 46.0 0.55813956

HAMP 3.0 0.0 0.5

MMP3 3.0 0.0 0.5

BAAT 1.0 0.0 0.39344263

CYP2C8 1.0 0.0 0.36363637
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more nutrients and energy, and finally survive and develop 
metastases from the primary tumor.44 Thus, we speculated 
that APOB and APOC3 are potential biomarkers for classifi-
cation of CAD with metastasis and without liver metastasis.

Coagulation factor II (F2, FII) or prothrombin has a piv-
otal role in maintaining the vascular integrity by regulating 
the thrombin using prothrombinase.45 Coagulation factor IX 
(F9, FIX) as a vitamin K-dependent glycoprotein is a precur-
sor of a serine protease.46 A fibrinogen alpha chain (FGA) 
encodes the alpha subunit of the fibrinogen. It has been indi-
cated that the levels of fibrinogen and FIX are significantly 
higher in nonmetastatic CRC patients, and are considered 
as a risk factor for venous thromboembolism, whereas the 
expression of FII does not show a significant difference be-
tween nonmetastatic CRC and the controls.47 In our study, 
we found FGA, F2, and F9 to be significantly upregulated 
in CAD with liver metastasis. Although no related studies 
regarding FGA, F2, and F9 in CAD with liver metastasis have 
been reported, prothrombin (F2) expression is increased in 
CAD patients in comparison to normal patients.48 Notably, 
FVII, being in the same family as FII and FIX, was found to 
be upregulated in CRC with liver metastasis in comparison 
with nonmetastasis CRC.49 In addition, thrombin-induced 
pro-coagulant roles can enhance the metastatic potential of 
cancer cells.50 Meanwhile, an overexpression of fibrinogen is 
responsible for the liver metastasis of CRC, and a fibrinogen 
beta chain (FGB) is a diagnostic and therapeutic biomarker of 

CRC with liver metastasis.51 Thus, we inferred that FGA, F2, 
and F9 might be novel biomarkers for identification of CAD 
with liver metastasis.

NK2 Homeobox 3 (NKX2-3) encodes a home-
odomain-containing transcription factor and as a member of 
the Nkx family is applied to determine the tissue differenti-
ation.52 In a previous study, NKX2-3 was screened as a new 
tumor suppressor of CRC.53 Yu et al later found that NKX2-3 
is downregulated in inflammatory bowel-disease-related CRC 
and might be involved in the development of CRC by regu-
lating the Wnt signaling pathway.54 In addition, the reduced 
expression of Nkx2.8 is detected in invasive bladder cancer 
cells while enhancing the cell proliferation.55 Similarly, we 
found that NKX2-3 is downregulated in CAD with liver me-
tastasis. However, few studies on NKX2-3 regarding the liver 
metastasis of various cancers have been reported. Thus, we 
suggest that NKX2-3 might be a potential biomarker for the 
classification of CAD with or without liver metastasis.

Although several feature genes for predicting CAD with 
liver metastasis were screened in this study, and a functional 
analysis and drug prediction of these genes were conducted, 
the experimental verifications of these findings remain lack-
ing. Thus, future research is required.

In conclusion, the CatBoost model showed the opti-
mal classification performance in identifying CAD with 
liver metastasis. The feature genes in the CatBoost model, 
such as APOB, APOC3, FGA, F2, F9, and NKX2-3 were 

F I G U R E  7  Drug-target interaction network. DGIdb 3.0 was used to predict the small drug molecules that interact with the feature genes. The 
blue diamond represents the drug and the red circle represents a gene
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demonstrated to be potential biomarkers for the classification 
and prediction of CAD with liver metastasis samples.
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