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ABSTRACT
The deregulation of lipid metabolism is a hallmark of tumor cells, and elevated 

lipogenesis has been reported in prostate cancer. Metformin, a drug commonly 
prescribed for type II diabetes, displays antitumor properties. Here, we show that 
metformin inhibits lipogenesis in several prostate cancer cell lines. In LNCaP cells, this 
effect parallels the decrease of key lipogenic proteins: ACC (acetyl-CoA carboxylase), 
FASN (fatty acid synthase) and SREBP1c (sterol regulatory element binding protein-1c), 
whereas there is no modification in DU145 and PC3 cells. Despite the relatively high 
level of lipogenic proteins induced by the overexpression of a constitutively active form 
of SREBP1c or treatment with androgens, metformin is still able to inhibit lipogenesis. 
Metformin does not alter the concentration of malonyl-CoA (the fatty acid precursor), 
and it only slightly decreases the NADPH levels, which is a co-factor required for 
lipogenesis, in LNCaP. Finally, we show that the inhibitory effect of metformin on 
lipogenesis is primarily due to a cellular energy deficit. Metformin decreases ATP in 
a dose-dependent manner, and this diminution is significantly correlated with the 
inhibition of lipogenesis in LNCaP and DU145. Indeed, the effect of metformin is 
linked to changes in the ATP content rather than the regulation of protein expression. 
Our results describe a new mechanism of action for metformin on prostate cancer 
metabolism.

INTRODUCTION

Prostate cancer is the second leading cause of death 
by cancer in men. Most prostate cancer-related deaths are 
due to advanced stages of the disease and the formation 
of metastases. Patients with metastatic prostate cancer 
initially respond to anti-androgen therapy for a median 
time of 12 to 18 months [1] and then become resistant to 
the treatment. Unfortunately, chemotherapeutic treatments 
display modest results, with a median survival of 18 months  
in patients treated with docetaxel [2]; therefore, there 
is an urgent need for additional therapy. In the era of 
targeted therapy, there is a growing interest in drugs 
targeting metabolic pathways. The tumor growth phase 
is characterized by a high metabolic demand. Prostate 
tumors activate glycolysis in the advanced stages, 
whereas an increase in lipogenesis is observed during the 

early and late stages of the disease. The deregulation of 
lipid metabolism, or more specifically, the increased rate 
of lipogenesis, is essential to maintain the tumor cells 
growth rate, and inhibitors of lipid synthesis have been 
shown to inhibit cancer cell proliferation [3]. Fatty acid 
synthase (FASN) and acetyl-CoA carboxylase (ACC) 
are two key enzymes that regulate lipogenesis. ACC 
catalyzes the formation of acetyl-CoA into malonyl-CoA, 
the precursor of newly synthesized fatty acids, and its 
activity is negatively regulated by its phosphorylation by 
AMP-activated protein kinase (AMPK). Sterol Regulatory 
Element-Binding Protein 1c (SREBP1c) controls the 
expression of FASN, which catalyzes the synthesis of fatty 
acids from malonyl-CoA. Androgens and the Akt/mTOR 
pathway have been shown to stimulate lipogenesis through 
the direct control of the expression of SREBP1c, FASN 
and ACC.
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Metformin is a widely used anti-diabetic drug 
prescribed to more than 120 million people worldwide 
[4, 5]. In agreement with retrospective epidemiological 
studies, diabetic patients treated with metformin display 
a reduction in their cancer incidence and cancer-
related mortality [6–9]. Metformin inhibits cancer cell 
proliferation and decreases tumor growth in many animal 
models [10–13]. In addition, metformin sensitizes tumor 
cells to classical anti-cancer agents, such as disatinib [14]. 
Metformin alters cancer cell metabolism and it inhibits 
mitochondrial complex 1 and the mTOR pathway, which 
is a major regulator of cell metabolism and proliferation. 
However, the role of metformin on lipid metabolism in 
cancer cells is poorly understood.

Here, we show that metformin exerts a strong 
inhibitory effect on lipogenesis in prostate cancer cells. 
The overexpression of a constitutively active form of 
SREBP1c, as well as androgen treatment, increases the 
expression of FASN and ACC and strongly stimulates 
lipogenesis. Nevertheless, metformin hampers this 
effect. Finally, we demonstrate that metformin does 
not affect the malonyl-CoA or NADPH content but 
instead induces an energy deficiency that impairs 
lipogenesis.

RESULTS

Metformin inhibits lipogenesis in prostate 
cancer cells

We analyzed the effect of metformin on 
lipogenesis in three prostate cancer cell lines (LNCaP, 
DU145 and PC3). The cells were treated with 5 mM 
metformin, and the lipogenesis was quantified by 
measuring the incorporation of [3H] acetate into the 

fatty acids and triglycerides as described in the material 
and methods. Metformin inhibited the lipogenesis in 
the three cancer cell lines, with a stronger effect in the 
LNCaP cells (80% inhibition) after 24 h, and a reduction 
of 75 and 50% was observed in PC3 and DU145, 
respectively (Fig. 1). To confirm these observations, 
we incubated the cells with [3H] glucose, one of the 
precursors of fatty acids. Despite the fact that metformin 
increases glucose uptake in prostate cancer cells [17], 
we showed that it inhibits lipogenesis using the labeled 
glucose (Fig. S1). We also found that phenformin, a 
biguanide and analogue of metformin, strongly inhibits 
lipogenesis (Fig. S2). These results highlight the strong 
inhibitory effect of biguanides on the lipogenesis in 
prostate cancer cells.

Metformin activates AMPK, which phosphorylates 
and inhibits ACC, and metformin downregulates 
mTORC1, which controls the expression of SREBP1c. 
We asked whether the effects of metformin on 
lipogenesis are related to a decrease in the expression 
of these lipogenic proteins. We analyzed the expression 
of SREBP1c, FASN and ACC (Fig. 2A). As expected, 
metformin induces the phosphorylation of ACC at Ser79, 
and it induces a strong decrease in the SREBP1c and 
FASN mRNA and proteins in the LNCaP cells, but it 
did not alter the expression of the ACC proteins after 
24 h (Fig. 2B, 2C). We also analyzed the SREBP1c 
activity via transient transfections of a FASN promoter-
luciferase reporter plasmid containing the SREBP1c 
responsive element. Consistent with the inhibitory effect 
of metformin, we found that the SREBP1c activity was 
drastically reduced in the LNCaP cells treated with 
metformin (Fig. S3).

Interestingly, although we still observed the 
phosphorylation of ACC at Ser79, we did not observe any 
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Figure 1: Metformin inhibits lipogenesis in prostate cancer cells. The cells were treated for 24 h with 5 mM metformin 
before measuring the incorporation of the [3H] acetate into the lipids, as described in the Materials and Methods section. The results are 
representative of four independent experiments, ***p < 0.005.
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significant change in the lipogenic protein expression in 
the DU145 and PC3 cells treated with metformin (Fig. 2B, 
2C and data not shown). These results suggest that the 
anti-lipogenic effects of metformin in DU145 and PC3 are 
not due to the modification of the levels of the key proteins 
in lipogenesis. 

Constitutively active SREBP1c does not 
reverse the anti-lipogenic effects of metformin 
in LNCaP cells

In order to clarify the role of the lipogenic proteins 
in the action of metformin, we expressed a constitutively 
activated form of SREBP1c (SREBP1c CA) in the 
LNCaP cells [18]. As expected, the SREBP1c expression 

strongly stimulates lipogenesis by 8-fold and the 
metformin inhibited this effect (Fig. 3A). The SREBP1c 
CA expression increased the FASN protein level, and 
the metformin did not affect this relatively high level of 
FASN (Fig. 3B). Our results demonstrate that despite a 
high level of FASN expression, the metformin was still 
able to hamper lipogenesis.

Metformin inhibits androgen-induced 
lipogenesis

Androgens control the growth and progression of 
prostate cancer; they stimulate lipogenesis and increase 
the expression of lipogenic enzymes in prostate cancer 
cells [19]. In a more physiological approach, we stimulated 

Figure 2: The effect of metformin on the lipogenic proteins. (A) A simplified schematic representation of lipogenesis. ACC: 
acetyl-CoA carboxylase, FASN: fatty acid synthase, AMPK: AMP activated protein kinase. (B) The cells were treated with 5 mM metformin 
(M) for 24 h, and the mRNA levels of ACC, FASN and SREBP1c were determined as described in the Materials and Methods section. 
**p < 0.01; ***p < 0.005. (C) An immunoblot of the indicated proteins in the cells treated with 5 mM metformin for 24 h (M). The blots 
are representative of three independent experiments.
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lipogenesis using R1881, a non-aromatizable synthetic 
androgen, and asked whether metformin affects the 
androgen-induced lipogenesis in the androgen-sensitive 
cell line LNCaP. The R1881 increased the ACC, FASN 
and SREBP1c protein expression after 48 h (Fig. 4A). 
Accordingly, the lipogenesis was upregulated after 
the addition of R1881 at 1 and 10 nM, but once again, 
the metformin inhibited the lipogenesis induced by the 
androgens (Fig. 4B). Altogether, our results demonstrate 

two different methods by which metformin inhibits 
lipogenesis independent of the level of lipogenic proteins.

Metformin does not affect the malonyl-CoA 
concentration in prostate cancer cells

Malonyl-CoA is a precursor of fatty acids and its 
synthesis depends on the ACC activity, which is rapidly 
inhibited by the phosphorylation of Ser79, and metformin 

Figure 3: Metformin represses SREBP1c-stimulated lipogenesis. (A) LNCaP cells were infected with a control adenoviral 
construct (AdCTL) or an adenoviral construct expressing the constitutive form of SREBP1c (AdSREBP1c CA). After 24 h, the cells were 
treated with 5 mM metformin (M) for 24 h, and the lipogenesis was observed using [3H] acetate as previously described. (B) An immunoblot 
of the key lipogenic proteins in the LNCaP cells treated as described in A. **p < 0.01; ***p < 0.005.
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induces the phosphorylation of ACC on this residue 
(Fig. 2, 3). To obtain insights into the molecular events 
implicated in the rapid action of metformin on lipogenesis, 
we analyzed the malonyl-CoA concentration. A strong 
activator of AMPK, 5-aminoimidazole-4-carboxamide 
ribonucleotide (AICAR), was used as a control to inhibit 
the ACC activity. The AICAR significantly decreased the 
malonyl-CoA concentration, whereas the metformin had 
no effect in the LNCaP and DU145 cell lines (Fig. 5A).

Lipogenesis requires 12 NADPH molecules to 
synthesize 1 fatty acid molecule. In order to determine 
whether metformin alters the NADPH levels, we 
assessed the NADPH content in the prostate cancer cells. 
An inhibitor of glycolysis, 2-deoxyglucose (2-DG), 
significantly decreased the NADPH concentration in the 
LNCaP and DU145 cells. No change in the NADPH was 
observed in DU145, and the metformin induced a slight 
but significant decrease in the LNCaP cells (Fig. 5B). Our 
results indicate that the inhibitory action of metformin is 
not due to the decrease of malonyl-CoA or NADPH.

Metformin induces an energy deficiency state in 
prostate cancer

Lipogenesis is an energy-demanding process, 
which consumes 7 molecules of ATP per molecule of 
palmitate produced [20]. We have shown that metformin 
inhibits complex 1 of the mitochondrial respiratory chain 
and decreases the ATP concentration in prostate cancer 
cells [17]. To evaluate the potential of metformin to affect 
the energetic state of prostate cancer cells, we assessed the 
ATP concentration in the LNCaP and DU145 cells after 
treatment with different concentrations of metformin. The 
metformin induced a dose-dependent decrease in the ATP 
content in both cell lines (Fig. 6A). We then asked whether 
a correlation exists between the inhibition of lipogenesis 

and the decrease in the ATP concentration. Interestingly, 
the decrease in the ATP content was significantly 
correlated with the inhibitory effect of the metformin on 
lipogenesis, with an R2 = 0.775 in LNCaP and 0.798 in 
DU145 (Fig. 6A, 6B).

To highlight the importance of the energetic state 
of the cell in the control of lipogenesis, we treated 
the cells with rotenone, which is a strong inhibitor of 
complex 1 and decreases the ATP content [17]. Similar to 
metformin, increasing the concentration of rotenone (from 
5 to 50 μM) induces a decrease in the ATP concentration, 
which parallels the inhibition of lipogenesis (Fig. S4). 
Together, our results suggest that the effect of metformin 
on lipogenesis in prostate cancer cells is linked to changes 
in the ATP content rather than regulation of the protein 
expression. 

DISCUSSION

The anti-diabetic drug metformin has received 
significant attention lately because of its anti-tumoral 
action [21]. Depending on the cancer cell type, metformin 
induces either cell-cycle arrest, apoptosis or autophagy. 
These cellular effects are associated with major alterations 
in the cellular metabolism. Metformin acts as a calorie-
restriction agent, which forces cells to adapt their 
metabolism to minimize energy-consuming reactions 
and optimize energy-producing pathways. For example, 
metformin, through the inhibition of mTOR, decreases 
protein synthesis, thus providing a mechanism of action 
for metformin in the inhibition of cancer-cell proliferation 
[22]. Similarly, the inhibition of lipogenesis may also be 
implicated in the anti-proliferative effects of metformin. 
Indeed, lipogenesis plays a major role in cell proliferation 
because it generates lipids for the formation of the neo-
synthetized membranes of rapidly dividing cells. The 

Figure 4: Metformin inhibits androgen-stimulated lipogenesis. (A) An immunoblot of the lipogenic proteins in the LNCaP cells 
treated with 1 or 10 nM R1881 for 48 h and 5 mM metformin for 24 h. (B) The LNCaP cells were treated for 48 h with 1 or 10 nM R1881 
and then with 5 mM metformin for 24 h before the quantification of the lipogenesis. **p < 0.01; ***p < 0.05.
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increase in lipogenesis is associated with a poor prognosis, 
tumor growth and aggressiveness, especially in prostate 
cancer [23].

Targeted therapies using FASN inhibitors, such 
as C75, decrease the cancer cell proliferation and tumor 
growth and may offer new therapeutic opportunities 
for cancer [24, 25]. Androgens drive prostate cancer 
carcinogenesis and progression, even in androgen-
independent tumors where the androgen receptor signaling 
remains active. Interfering with the androgen receptor 
pathway is the gold standard for androgen-sensitive 
tumors and castration-resistant prostate cancer (CPRC). 
Drugs such as MDV3100 and abiraterone (an inhibitor 
of androgen synthesis) have provided encouraging 
results; however, resistance to these agents has recently 
emerged [26]. Androgen-induced lipogenesis is enhanced 
during the emergence of androgen independence and 
contributes to the growth of castration-resistant prostate 
cancer cells [19].

Lipogenesis is controlled by several proteins, 
and we demonstrated that metformin decreases the 

FASN, SREBP1c and ACC expression in LNCaP cells. 
This is in accordance with previous studies showing 
that the alteration of SREBP1c affects lipogenesis 
[27, 28]. Recently, Yecies et al. deciphered the 
molecular mechanism implicated in this regulation and 
demonstrated that Akt stimulates hepatic SREBP1c 
through mTOR dependent and independent pathways [29]. 
AMPK negatively regulates mTOR; it phosphorylates 
SREBP1c and inhibits its activity to diminish hepatic 
fatty acid accumulation [30]. Other studies in cancer 
cells demonstrated that targeting AMPK/mTOR inhibits 
lipogenesis. MT63–78, a novel selective activator of 
AMPK, decreases prostate tumor growth and inhibits 
FASN and SREBP1c expression, and the anti-growth 
effects of this activator are mediated by the inhibition of 
lipogenesis [31]. Metformin is an activator of AMPK and 
an inhibitor of mTOR, and it decreases the expression of 
FASN and SREBP1c in colonic tumors from mice fed a 
high-energy diet [32]. Similarly, metformin affected the 
expression of hepatic FASN and ACC in mice treated with 
the potent liver carcinogen diethylnitrosamine (DEN). 
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Figure 5: Metformin does not affect the malonyl-CoA and NADPH concentration. (A, B) LNCaP and DU145 were treated 
with 5 mM metformin, 5 mM AICAR (for malonyl-CoA), or 20 mM 2-DG (for NADPH) for 24 h. The concentrations of the malonyl-CoA 
and NADPH were determined as described in the Materials and Methods section. The graphs represent the results as the fold change versus 
CTL. **p < 0.01; ***p < 0.05.
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In the same study, the overexpression of a constitutively 
active form of SREBP1c induced the expression of 
lipogenic genes and reversed the antiproliferative effects 
of metformin in several hepatocellular carcinoma cell 
lines. However, there is no evidence in this study of 
the restoration of functional lipogenesis. Here, we 
demonstrated that despite the relatively high level of 
lipogenic proteins induced by the overexpression of 
SREBP1c or androgen treatment, the metformin was still 
able to hamper lipogenesis.

The major source of NADPH in animals is the 
pentose phosphate pathway, and an increase in glucose 
consumption stimulates this pathway. Metformin increases 
glucose uptake in cancer cells [17]; therefore, we were 
not expecting a decrease in the NADPH concentration. 
Instead, we showed that NADPH is not altered in DU145, 
and it is slightly decreased in LNCaP. Therefore, NADPH 
does not appear to be the limiting factor responsible for 
the inhibition of lipogenesis, at least in DU145. 

Another limiting factor of lipogenesis is the 
concentration of malonyl-CoA. Acetyl-CoA produces 
malonyl-CoA, which is converted to palmitic acid by 
FASN. ACC regulates the synthesis of malonyl-CoA 

from acetyl-CoA, and its activity is inhibited by AMPK 
through its phosphorylation at Ser79. We demonstrated 
that metformin does not affect the malonyl-CoA content. 
Although the activation of AMPK (inhibition of ACC) 
decreases the synthesis of malonyl-CoA, we can expect 
that the inhibition of the later stages of lipogenesis induces 
an accumulation of malonyl-CoA, as demonstrated by Fritz 
et al. [3]. In addition, in response to metformin, prostate 
cancer cells were shown to increase their dependence on 
reductive glutamine metabolism [33]. This pathway leads 
to the formation of acetyl-CoA, the substrate of ACC, 
suggesting that the net result of the metformin action is 
an equilibrium between the accumulation of malonyl-CoA 
and a partial inhibition of its synthesis.

Metformin inhibits complex 1 of the mitochondrial 
respiratory chain in intact hepatocytes and cancer cells 
[17, 34], resulting in a decrease in the ATP concentration 
and a state of energy deficiency in the cells. In response 
to this energetic stress, cells increase their glucose 
consumption and upregulate glycolysis to produce 
ATP [17, 35]. They also increase their dependence on 
reductive glutamine metabolism [33]. This pathway 
provides alpha-ketoglutarate to the TCA cycle to generate 
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Figure 6: Metformin induces a state of energy deficiency, which correlates with a decrease in lipogenesis. (A, B) LNCaP 
and DU145 were treated with increasing concentrations of metformin (0.25 to 5 mM). The ATP content (left panel), expressed as the % of 
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succinate, which is oxidized by complex 2, and therefore 
bypasses complex 1 of the mitochondrial respiratory 
chain. These compensatory mechanisms are essential to 
avoid the induction of apoptosis. We demonstrated that 
the combination of 2-deoxyglucose (2-DG), an inhibitor 
of glycolysis, and metformin leads to the depletion of 
ATP and cell death [17]. Similarly, the decrease in the 
glutamine flux sensitizes cells to the anti-proliferative 
action of metformin [33]. 

The exact mechanism involved in the inhibition of 
complex 1 by metformin is not well understood, but it is 
well established that the inhibition of gluconeogenesis 
in hepatocytes results from a disruption of the energy 
metabolism [36, 37]. This result is supported by the 
correlation observed between the reduction of the 
ATP/ADP level in the inhibition of gluconeogenesis in 
hepatocytes [36]. It is worth noting that the ATP level 
was significantly reduced in primary hepatocytes treated 
with 0.25 mM of metformin, and a higher concentration 
induced a stronger decrease. In accordance with 
these results, we showed that metformin induces a 
decrease in the ATP level in a dose-dependent manner, 
which significantly correlates with the inhibition of 
lipogenesis.

Our work highlights a new function for metformin in 
its anti-tumoral action. In addition, as a calorie-restricting 
agent, it unravels a direct relationship between the energy 
status of the cells and the fatty acid synthesis.

MATERIALS AND METHODS

Cell lines and culture conditions

The cell lines were purchased from the ATCC 
(Manassas, VA, USA). The LNCaP cells were cultured 
in RPMI 1640 medium, and the PC-3 and DU145 cells 
were cultured in DMEM (Invitrogen, Carlsbad, CA, USA) 
containing 25 mmol/L glucose supplemented with 10% 
fetal bovine serum (FBS) and 100 units/mL penicillin at 
37°C and 5% CO2.

Chemicals

The metformin and 2-deoxyglucose (Sigma 
Chemical Co., St. Louis, MO, USA) were dissolved in the 
culture media. Compound C and rotenone were purchased 
from Calbiochem (Merck, Darmstadt, Germany). R1881 
(Sigma Chemical Co., St. Louis, MO, USA) was dissolved 
in DMSO.

Cell infection

The cells were infected with an empty 
adenoviral vector or the adenoviral construct of a 
transcriptionally active form of SREBP-1c (a kind gift 
from Dr. F. Foufelle, INSERM U872, Paris) for 24 h. 

The medium was replaced and the cells were then 
treated and used for western analysis, lipogenesis and 
proliferation experiments.

Western blotting

The cell extracts were prepared using lysis buffer 
[15], and the immunoblotting was performed using 
antibodies against ACC (Cell Signaling Technology); 
Ser79 P-ACC (Millipore), FASN and HSP90 (Santa 
Cruz Biotechnology); SREBP1c (BD Biosciences); and 
α-tubulin (Sigma Chemical Co.).

Quantification of the lipogenesis

Subconfluent cell cultures were grown in 6-well 
plates and treated with 5 mM metformin for 24 h. The 
cultures were then incubated with [3H] acetate (0.2 μCi/ml) 
for 1 h. The incorporation of [3H] acetate into the lipids was 
measured at the end of the incubation after the addition of 
toluene-based scintillation fluid [16]. The counts per minute 
(cpm) were normalized to the protein content in the total 
cell lysate.

Malonyl-CoA quantification

The quantification of the malonyl-CoA 
concentration in the whole-cell lysates from the LNCaP 
and DU145 cells was performed via an enzyme-linked 
immunosorbent assay using a commercial kit according to 
the manufacturer’s instructions (Antibodies online.com). 
Briefly, subconfluent cell cultures grown in 6-well plates 
were treated, and the whole-cell lysates were subjected 
to several freeze-thaw cycles and then centrifuged. The 
malonyl-CoA in the supernatant was detected using 
a specific biotin-conjugated antibody on pre-coated 96-
well plates and was revealed with avidin-conjugated 
horseradish peroxidase. The values are expressed in 
nanomoles of malonyl-CoA and are normalized to the total 
protein content.

NADPH quantification

The cells were treated with 5 mM metformin or 
20 mM 2-deoxyglucose for 24 h. The quantification 
of the NADPH concentration in the whole-cell 
lysates  from the LNCaP and DU145 cells was 
performed using a commercial kit according to the 
manufacturer’s instructions (AAT Bioquest, Sunnyvale, 
CA, USA).

Measurement of the ATP concentration

The quantification of the ATP concentration 
from the LNCaP and DU145 cells treated with 
different concentrations of metformin or rotenone was 
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performed using a commercial kit according to the 
manufacturer’s instructions (Roche, Bale, Switzerland). The 
ATP concentration was normalized to the protein content.

Quantitative real-time PCR

For the gene expression analysis following the 
treatment of the cells with metformin for 24 h, an RNA 
isolation, reverse transcription (RT) and quantitative 
(q) real-time polymerase chain reaction (PCR) were 
carried out as described previously [10]. The qPCR 
was conducted using a Step-one Real Time PCR system 
(Applied Biosystems, Life Technologies SAS, Villebon sur 
Yvette, France) with SYBR Green Master Mix (Applied 
Biosystems, Life Technologies SAS) and oligonucleotides 
specific for human ACC1, ACC2, SREBP1c and FASN. 
The values are expressed as the relative mRNA level of 
the specific target gene normalized to the HPRT levels, 
which was obtained using the formula 2−(ΔΔCt).
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