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Abstract Amyotrophic lateral sclerosis (ALS) belongs to the ALS-frontotemporal dementia
(FTD) spectrum and is hallmarked by upper and lowermotor neuron degeneration. Here, we
present a patient with a cytoplasmic dynein 1 heavy chain 1 (DYNC1H1) pathogenic variant
who fulfilled the ALS El Escorial criteria, and we review relevant literature. Using whole-
exome sequencing, we identified a deleterious point variant in DYNC1H1 (c.4106A>G
(p. Q1369R)) as a likely contributor to the ALS phenotype. In silico structural analysis, mo-
lecular dynamics simulation, and protein stability analysis predicted that this variant may in-
crease DYNC1H1 protein stability. Moreover, this variant may disrupt binding of the
transcription factor TFAP4, thus potentially acting as duon. Because (a) DYNC1H1 forms
part of a ubiquitous eukaryotic motor protein complex, and (b) disruption of dynein function
by perturbation of the dynein–dynactin protein complex is implicated in othermotor neuron
degenerative conditions, this variant could disrupt processes like retrograde axonal trans-
port, neuronal migration, and protein recycling. Our findings expand the heterogenous
spectrum of the DYNC1H1 pathogenic variant−associated phenotype and prompt further
investigations of the role of this gene in ALS.

[Supplemental material is available for this article.]

INTRODUCTION

Amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD) spectrum disorders rep-
resent a group of rare and heterogeneous neurodegenerative diseases presenting with
symptoms such as frontotemporal dementia, primary lateral sclerosis, progressive muscular
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atrophy, and pseudobulbar palsy (de Vries et al. 2019; Abramzon et al. 2020). In Europe, the
incidence of ALS is around two to three cases per 100,000 individuals (Rooney et al. 2017),
whereas the prevalence is expected to increase by 2040, most likely because of an aging
population. Thus, the socioeconomic disease burden is expected to increase in the coming
decades (Arthur et al. 2016).

ALS is clinically hallmarked by the rapid deterioration of spasticity and muscle wasting,
leading to death due to insufficiency of respiratory muscles, and pathologically by the loss
of motor neurons in the central nervous system (Pampalakis et al. 2019). Heterogenous initial
clinical manifestation of the disease has been noted among afflicted patients (Hardiman
et al. 2017). Despite the initial descriptions of the disease in the nineteenth century, the com-
plete etiology of ALS is not yet fully deciphered (Connolly et al. 2015). Among ALS cases,
10% are familial, whereas the remaining are considered sporadic. Pathogenic variants of
around 20 genes explain most familial cases; however, they can only explain ∼10% of spora-
dic cases (Chen et al. 2013). In every case, the degree of genetic contribution seems to vary
from typical Mendelian patterns to epistatic associations of rare variants, along with the in-
fluence of environmental factors and cellular stochastic events (Talbot et al. 2018). In familial
types of ALS, most of the implicated genes are not entirely penetrant, and the phenotype is,
in general, not dependent on the genotype (Al-Chalabi et al. 2017). Several pieces of evi-
dence support an oligogenic basis for ALS (Keogh et al. 2018; Lattante et al. 2019).
However, the implications of genetic classification on diagnosis, treatment, and prognosis
of patient outcomes are still unexplored, with polygenic risk scores only recently developed
(Bandres-Ciga et al. 2019).

Among ALS-related genes, the genes encoding superoxide dismutase-1 (SOD1),
Chromosome 9 open reading frame 72 (C9orf72), and transactive response DNA binding
protein 43 kDa (TARDBP) are the most commonly mutated ones (Wegorzewska et al.
2009; Chia et al. 2018; Sokratous et al. 2020), whereas less common genes include those en-
coding RNA-binding proteins and expansions of oligonucleotide repeats (Corrado et al.
2011; Kapeli et al. 2017). Genes encoding cytoskeleton proteins, such as dynactin and tubu-
lin, have also been linked to ALS pathology (LaMonte et al. 2002; Helferich et al. 2018).
Pathogenic variants in the dynein/dynactin complex have been implicated in ALS pathology
in mouse models (LaMonte et al. 2002; Hafezparast et al. 2003; Courchesne et al. 2011).
Pathogenic variants in the human dynein cytoplasmic 1 heavy chain 1 gene (DYNC1H1),
which encodes a major subunit of the cytoplasmic dynein1 complex, have been associated
with several neurological, neurodevelopmental, andmotor neuron diseases (Al-Chalabi et al.
2014) but have yet to be implicated in ALS.

Herein, following similar studies assessing monogenic and polygenic traits in neurolog-
ical and neuropsychiatric conditions (Ayalew et al. 2012; Talkowski et al. 2012; Claussnitzer
et al. 2015) and building upon previous major studies (Amabile et al. 2020), we report on the
potential contribution of a deleterious DYNC1H1 variant to the ALS phenotype of a late
Caucasian patient who presented with respiratory insufficiency as the earliest manifestation
and with depression and benign prostatic hyperplasia as comorbidities. In addition, we re-
view the literature regarding phenotypes related to DYNC1H1 pathogenic variants.

RESULTS

Clinical Presentation and Family History
A 61-yr-old, Caucasian male (of Greek origin) with no known family history of ALS or other
neurological disorder presented initially with respiratory manifestations. He was ultimately
diagnosed with ALS and treated with riluzole. Past medical history, initial assessment for
the disease of interest, follow-up sequalae, and laboratory findings are presented in
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Supplemental Tables S1 and S2. Despite the initial improvement of his clinical manifesta-
tions, he progressively deteriorated and died in January 2018.

Several factors indicated the likelihood of amotor neuron disorder: the progressive course
of the disease (lasting 6 mo), episodes of respiratory failure, and compatible electromyogram
(EMG) results. No sign or evidence of a reversible motor neuron disorder was present follow-
ing full clinical and laboratory evaluation, leading to a diagnosis of definite ALS in alignment
with the El Escorial criteria (Carvalho and Swash 2009). No diagnostic challenge in terms of
financial, language, or cultural barriers existed. Although the diagnosis of ALS was supported
by the neurological and neurophysiological examination and by muscle biopsy showing mul-
tiple grouped round atrophic and regeneratingmuscle fibers (group atrophy), certain features
extended beyond the typical clinical presentation often observed in patients with motor neu-
ron disease. Despite the patient’s vague complaints of fatigue and dyspnea, no specific EMG
findings were reported by the neurologists who first examined him in the ambulatory setting.
At that point, the patient had no clinical signs of twitching or atrophy during physical exami-
nation. Perplexingly, after ∼2 mo from the initial examination, he presented with severe mus-
cle atrophy, respiratory insufficiency, frequent muscle twitching, and spontaneous activity in
the EMG. The patient’s ALS course, including respiratory failure to a degree severe enough
to require artificial ventilation in the intensive care unit, followed by the gradual improvement
of respiratory function, is a rare manifestation of the disease.

Clinical and laboratory findings excluded diagnoses differential to ALS such as non-ALS
neuromuscular mimic disorders, chronic inflammatory demyelinating neuropathy, acquired
neuromyotonia, myopathy, Kennedy disease, myasthenia gravis, axonal neuropathy, multifo-
cal motor neuropathy, spinal muscular atrophy, Hirayama disease, distal hereditary motor neu-
ronopathy with pyramidal features, facial onset sensory and motor neuropathy syndrome,
cervical radiculopathy, lead toxicity, post-polio syndrome, space-occupying lesions of the
esophagus, sarcoidosis, polymyositis, multifocalmotor neuropathy, flail arm syndrome, lesions
of the brachial plexus, cervical radiculopathies, and distal myopathies seeming like leg-onset
ALS (or neuropathies). Perry syndrome was also considered as a differential diagnostic option
because of the coexisting depression and respiratory insufficiency but was excluded because
(a) respiratory insufficiency can (although rarely) be the first manifestation of ALS, whereas
depression is a quite common disease, which can coexist with ALS exactly because of its com-
monality; and (b) in alignment with the established criteria for Perry syndrome’s diagnosis
(Mishima et al. 2018), amyotrophy contrasts Perry syndrome’s diagnosis, whereas clinical signs
or family history of parkinsonian features or respiratory insufficiency were absent fromour case.

Genomic Analysis
Based on the working diagnosis of ALS and the lack of a known familial ALS basis for this pa-
tient (as neither the deceased parent nor all living relatives suffered from ALS), we analyzed
14 genetic candidates including C9orf72, PRF1, TDP43, and DYNC1H1 (Supplemental
Materials and Methods). Of major interest was a heterozygous variant in DYNC1H1
(c.4106A>G (p.Q1369R), transcript ID NM_001376.5), ranked 48th among the top 100 var-
iants prioritized by eDiva (Table 1). Functionally, the p.Q1369R pathogenic variant was clas-
sified as a variant of unknown significance, suggesting its potential relevance to the clinical
phenotype of the patient. Moreover, the variant was not reported in healthy individuals ac-
cording to the major databases of genetic variation (ExAC, 1000 Genomes, Exome Variant
Server), which also include information on theGreek population. Considering the association
of other DYNC1H1 variants with other types of motor neuron disease (Hafezparast et al.
2003; Scoto et al. 2015), as well as the association of its sister protein dynactin with human
ALS (Moore et al. 2009), we further examined the potential contribution of this gene muta-
tion to our patient’s ALS genetic background.
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In Silico Analysis of the DYNC1H1 Variant
Two images depicting the genomic region surrounding the candidate variant at low (2.3-kb
window) and high (131-bp window) resolution are provided in Supplemental Figure S1.
Variant review in the Integrative Genomics Viewer (IGV) showed that the region surrounding
the variant was free from deletions and insertions, and there was no evidence of excessive
variation rate. The variant displayed a high sequencing depth of 135 reads, of which 59 sup-
ported the reference allele and 76 supported the alternate allele, with no evidence of strand
bias. Reads overlapping the variant displayed highmapping quality (MQ=60; >40 is accept-
able) and no bias in read MQ between the reads supporting reference and alternate alleles
(MQRankSum=1.305, >−12.5 is acceptable) (McKenna et al. 2010). Similarly, the base qual-
ity score for the variant bases was 37 for most reads (>30 is good quality) (Ewing and Green
1998). Finally, the variant did not show any bias toward read ends (ReadPosRankSum=
−0.909, >−8 is acceptable). Overall, the variant quality control indicated that the candidate
variant was a bona fide variant.

Table 2 lists the damage and conservation scores and their corresponding quantiles for
theDYNC1H1 variant. Caution was applied while interpreting these findings, as some of the
applied tools proposed a cutoff at which a variant was either benign or damaging. Quantiles
are provided to normalize for the different score thresholds used by different scoring meth-
ods (e.g., both PolyPhen-2 and CADD placed the p.Q1369R variant in the 98.9% quantile
despite differentially ranking the variant by score).

Multiple protein alignment of the affected DYNC1H1 locus across species revealed that
the locus is highly conserved (Fig. 1) in invertebrates but not in Dictyostelium discoideum
and Sacccharomyces cerevisiae (which harbors the same residue, R, as the variant).

Comparative Analysis of Reported DYNC1H1 Variants
The p.Q1369R variant maps to the dynein heavy chain, amino-terminal region 2 domain.
Although no specific function has been assigned to this domain (http://www.ebi.ac.uk/
interpro/entry/IPR013602), it forms part of the tail linking the amino-terminal region,

Table 1. DYNC1H1 variant information

Gene
Chromo-
some

HGVS DNA
reference

HGVS
protein

reference
Variant
type

Predicted
effect

dbSNP/
dbVar
ID Genotype

Parent of
origin Comments

Sequencing
coverage

DYNC1H1 14 NM_001376:
c.A4106G

p.Q1369R Missense Substitution NA Heterozygous Parental
genotypes are
not available.
Possible de
novo variant.

The variant
has not
been
reported
to date in
any major
databases
of genetic
variation
(e.g.,
gnomAD).

The variant
displayed a
high
sequencing
depth of 135
reads, of which
59 supported
the reference
allele and 76
supported the
alternate allele,
with no
evidence of
strand bias.

(HGVS) Human Genome Variation Society, (dbSNP) Single Nucleotide Polymorphism Database, (dbVar) Database of Structural Variation, (NA) not applicable,
(gnomAD) Genome Aggregation Database.
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responsible for dimerization and cargo binding, with the carboxy-terminal portion, respon-
sible for motor activity and microtubule binding (Oiwa and Sakakibara 2005). Figure 2 delin-
eates the major domains of DYNC1H1 and maps the p.Q1369R pathogenic variant, as well
as previously reported DYNC1H1 variants associated with various pathologies (Niu et al.
2015; Hoang et al. 2017). The figure also maps two pathogenic variants in mouse models,
p.F582Y and p.Y1057C (Hoang et al. 2017).

DYNC1H1 variants have been linked to several neurological and motor neuron patholo-
gies of differing severity levels—for example, they have been recently linked to upper and
lower motor neuron anomalies (Viollet et al. 2020), overlapping neurodevelopmental and
neuromuscular phenotypes (Becker et al. 2020), and other intermixed phenotypes
(Amabile et al. 2020) (for further review, see Supplemental Tables S5 and S6). Our patient
displayed a late-onset pathology. In this context, we compared the predicted functional im-
pact of the DYNC1H1 variant with that of previously reported variants (Hoang et al. 2017).
Based on damage and conservation scores, as well as multifeature ranking, the novel
p.Q1369R DYNC1H1 variant appeared to have a more moderate impact than that of previ-
ously reported DYNC1H1 variants (Table 3).

Effect of the DYNC1H1 Variant on miRNA Recognition Sequences, Splicing Sites, and
Transcription Factor Binding Motifs
To assess the possible effects of DYNC1H1 variant on miRNA recognition sites, we used the
miRcode database (Jeggari et al. 2012) to search for miRNA targets within the coding re-
gions of DYNC1H1. The closest miRNA target (miR-338/338-3p) was located 173 bp away
from the point pathogenic variant; therefore, the DYNC1H1 variant was considered unlikely
to affect annotated miRNA target sites.

Table 2. Damage and conservation scores and their quantiles for the p.Q1369R DYNC1H1 variant

Score Quantile

Damage scores

SIFT 0.28 96.25

PolyPhen-2 0.34 98.90

MutAss 1.32 98.71

Condel 0.49 97.60

CADD 22.1 98.89

Eigen 3.56 99.48

Conservation scores

GERP++ 5.85 99.76

PhyloP

Mammals 2.23 99.05

Primates 0.46 87.64

Vertebrates 5.17 99.83

PhastCons

Mammals 1 100

Primates 0.91 96.01

Vertebrates 0.91 96.01

(SIFT) Sorting Intolerant From Tolerant, (PolyPhen-2) Polymorphism Phenotyping v2, (MutAss) Mutation Assessor, (Condel)
Consensus Deleteriousness, (CADD) Combined Annotation Dependent Depletion, (GERP++) Genomic Evolutionary Rate
Profiling, (PhyloP) phylogenetic P-values, (PhastCons) Phylogenetic Analysis with Space/Time Models (PHAST).
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The nearest exon–intron junction edge is located 30 bp upstream of the point pathogen-
ic variant, whereas the downstream junction is 79 bp away. Thus, we postulated that the
DYNC1H1 variant is unlikely to interfere with splicing.

To evaluate whether the variant may affect any known transcription factor binding site
(TFBS), we searched the JASPAR database (Sandelin et al. 2004) and identified the TFBSmo-
tif of TFAP4 (JASPAR ID MA0691.1) overlapping the variant (Supplemental Table S7). The
variant position in TFAP4 motif had 100% frequency of reference allele, indicating a strong
disruption potential (Fig. 3; Supplemental Table S7). We also manually checked the TFAP4
motif in the HOCOMOCO database (version 11) (http://hocomoco11.autosome.ru/motif/
TFAP4_HUMAN.H11MO.0.A) (Kulakovskiy et al. 2016). We confirmed that only the refer-
ence, and not the alternate allele, matched the TFAP4 motif, corresponding to a maximum
binding disruption score, similar to that in the JASPAR database.

Predicted Structural Effects of the DYNC1H1 p.Q1369R Pathogenic Variant
To predict the effect of the p.Q1369R variant on DYNC1H1 protein stability, we used
I-Mutant2.0 (Capriotti et al. 2005) and MUpro (Cheng et al. 2006). MUpro results were
of low confidence (confidence score, 0.62) and, thus, were not considered further.
I-Mutant2.0 predicted an increased stability of the p.Q1369R DYNC1H1 protein (Sup-
plemental Fig. S2); the index equaled 0, which, in turn, means that the prediction is not re-
liable (considering that, in general, the reliability index ranges from 0 to 10, with 10 being the
highest reliability). We also used STRUM (Quan et al. 2016) to predict the effect of the
p.Q1369R change on the protein structure. STRUM predicted a ddG value of 2.93 for Q-
to-R transition, indicating increased protein stability. Figure 4A,B visualizes the affected res-
idue (yellow) in its immediate context (blue) in low and high resolution, respectively. Phyre2
was unable to model the area including the affected residue (Fig. 4C,D).

Following similar approaches in other settings (Vlachakis 2009; Dror et al. 2012; Lesgidou
et al. 2018; Goulielmos et al. 2019; Galdadas et al. 2020), we conductedmolecular dynamics
modeling to assess theDYNC1H1 variant’s effects on the corresponding protein. Dynein was
modeled initially with the wild-type sequence bearing a glutamine residue at position 1369.
The X-ray structure of the functional full-length dynein motor domain (Protein Data Bank ID:

Figure 2. DYNC1H1 protein domains andmapping of the novel Q1369R and previously reported pathogenic
variants. The previous variants were assayed for functionality based on an in vitro dynein–dynactin-BICD2N
motility assay measuring mechanochemical properties of the complex (Hoang et al. 2017). The R1962C and
H3822P variants associated with malformations in cortical development (MCDs) exhibited significantly defect-
ed processivity and microtubule gliding (Hoang et al. 2017). Seven other variants also associated with MCD,
K129I, K3336N, R3344Q, R3384Q, E1518K, R1567Q, and K3241T, demonstrated either reduced processivity
or both reduced processivity and travel distance of the complex (Hoang et al. 2017). Four variants associated
with spinal muscular atrophy with lower extremity predominance (SMALED) exhibited reduced complex travel
distance, with the exception of the last variant: H306R, I584L, Y970C, and K671E. The F582Y and Y1057C var-
iants identified in mice also showed reduced complex travel distance (Hoang et al. 2017). The G807S variant
was identified to be associatedwith SMALED in a case report (Niu et al. 2015). (DIC) Disseminated intravascular
coagulation, (MTBD) microtubule-binding domain.

A novel DYNC1H1 variant in a patient with ALS

C O L D S P R I N G H A R B O R

Molecular Case Studies

Mentis et al. 2022 Cold Spring Harb Mol Case Stud 8: a006096 7 of 20

http://www.molecularcasestudies.org/lookup/suppl/doi:10.1101/mcs.a006096/-/DC1
http://www.molecularcasestudies.org/lookup/suppl/doi:10.1101/mcs.a006096/-/DC1
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://hocomoco11.autosome.ru/motif/TFAP4_HUMAN.H11MO.0.A
http://www.molecularcasestudies.org/lookup/suppl/doi:10.1101/mcs.a006096/-/DC1
http://www.molecularcasestudies.org/lookup/suppl/doi:10.1101/mcs.a006096/-/DC1


Ta
b
le

3.
D
am

ag
e
an

d
co

ns
er
va
tio

n
sc
or
es

an
d
th
ei
r
q
ua

nt
ile

s
fo
r
th
e
no

ve
l(
p
.Q

13
69

R)
an

d
th
e
p
re
vi
ou

sl
y
re
po

rt
ed

D
YN

C
1H

1
va
ria

nt
s

V
ar
ia
nt

D
am

ag
e
sc
or
es

SI
FT

Po
ly
Ph

en
-2

M
ut
A
ss

C
on

d
el

C
A
D
D

E
ig
en

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

p
.H
38

22
P

0.
00

99
.3
4

0.
99

99
.7
8

2.
94

99
.8
5

0.
59

98
.6
4

26
.4
0

99
.7
4

11
.7
6

99
.9
7

p
.Y
10

57
C

0.
00

99
.3
4

0.
98

99
.6
7

3.
06

99
.8
7

0.
69

99
.1
1

28
.8
0

99
.8
5

11
.9
2

99
.9
8

p
.R
19

62
C

0.
00

99
.3
4

1.
00

10
0.
00

4.
61

2
10

0.
00

0.
64

3
98

.8
9

35
.0
0

99
.9
8

12
.6
3

99
.9
8

p
.E
15

18
K

0.
00

99
.3
4

0.
99

99
.8
8

2.
51

99
.7
3

0.
57

3
98

.5
1

34
.0
0

99
.9
6

10
.9
0

99
.9
7

p
.F
58

2Y
0.
00

99
.3
4

1.
00

10
0.
00

3.
49

99
.9
3

0.
68

99
.0
7

27
.3
0

99
.7
9

12
.3
4

99
.9
8

p
.R
15

67
Q

0.
01

99
.0
1

0.
99

99
.7
4

2.
99

99
.8
6

0.
63

98
.8
5

34
.0
0

99
.9
6

10
.9
40

99
.9
7

p
.K
32

41
T

0.
04

98
.5
0

0.
76

99
.3
1

2.
38

99
.6
7

0.
60

98
.7
0

29
.0
0

99
.8
6

6.
85

99
.8
6

p
.I5

84
L

0.
02

98
.8
1

0.
91

99
.5
0

3.
07

99
.8
7

0.
59

98
.6
4

25
.9
0

99
.7
0

6.
92

45
99

.8
7

p
.K
33

36
N

0.
01

99
.0
1

0.
95

99
.5
8

3.
18

99
.8
9

0.
69

99
.1
1

29
.1
0

99
.8
6

7.
68

99
.9
0

p
.R
33

84
Q

0.
01

99
.0
1

0.
74

99
.2
9

3.
42

99
.9
2

0.
68

99
.0
6

33
.0
0

99
.9
4

8.
04

99
.9
1

p
.Y
97

0C
0.
02

98
.8
1

0.
78

99
.3
3

2.
69

99
.7
9

0.
63

98
.8
4

25
.2
0

99
.6
2

4.
62

99
.6
8

p
.H
30

6R
0.
19

97
.0
1

0.
06

98
.2
2

1.
91

99
.3
3

0.
46

2
97

.0
7

17
.7
7

98
.0
7

2.
99

99
.3
1

p
.K
67

1E
0.
75

92
.7
5

0.
06

98
.2
2

1.
76

99
.1
7

0.
47

97
.2
4

12
.5
2

94
.4
9

2.
50

99
.1
3

p
.R
33

44
Q

0.
11

97
.7
6

0.
07

98
.2
6

2.
32

99
.6
4

0.
62

98
.7
6

24
.8
0

99
.5
7

5.
00

99
.7
2

p
.G

80
7S

0.
30

96
.0
5

0.
10

98
.4
1

1.
28

9
98

.6
7

0.
47

97
.2
9

21
.2
0

98
.7
6

3.
04

99
.3
3

p
.K
12

9I
0.
15

97
.4
0

0.
99

99
.7
8

1.
99

99
.4
1

0.
43

96
.2
9

14
.0
0

95
.9
7

6.
00

99
.8
1

p
.Q

13
69

R
0.
28

96
.2
4

0.
34

98
.9
0

1.
32

98
.7
0

0.
49

97
.6
0

22
.1
0

98
.8
9

3.
55

99
.4
8

(C
on

tin
ue

d
)

A novel DYNC1H1 variant in a patient with ALS

C O L D S P R I N G H A R B O R

Molecular Case Studies

Mentis et al. 2022 Cold Spring Harb Mol Case Stud 8: a006096 8 of 20



Ta
b
le

3.
C
on

tin
ue

d

C
on

se
rv
at
io
n
sc
or
es

Ph
yl
oP

Ph
as
tC

on
s

G
ER

P+
+

M
am

m
al
s

Pr
im

at
es

V
er
te
b
ra
te
s

M
am

m
al
s

Pr
im

at
es

V
er
te
b
ra
te
s

V
ar
ia
nt

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

Sc
or
e

Q
ua

nt
ile

p
.H
38

22
P

5.
82

99
.7
4

2.
23

99
.0
3

0.
53

93
.2
9

5.
16

99
.8
2

1.
00

0
10

0.
00

0.
87

95
.3
4

1.
0

10
0.
0

p
.Y
10

57
C

5.
73

99
.6
1

2.
19

98
.9
3

0.
46

86
.2
0

5.
12

99
.8
1

1.
00

0
10

0.
00

0.
99

99
.0
9

1.
0

10
0.
0

p
.R
19

62
C

4.
31

96
.7
5

2.
64

99
.6
9

0.
65

98
.0
0

2.
03

96
.3
5

1.
00

0
10

0.
00

0.
99

99
.5
5

1.
0

10
0.
0

p
.E
15

18
K

5.
70

99
.5
7

2.
70

99
.7
6

0.
66

10
0.
00

6.
07

99
.9
7

0.
99

97
.0
1

0.
99

99
.0
9

1.
0

10
0.
0

p
.F
58

2Y
5.
85

99
.7
6

2.
23

99
.0
3

0.
53

93
.2
9

5.
17

99
.8
3

0.
99

96
.5
1

0.
93

96
.5
4

1.
0

10
0.
0

p
.R
15

67
Q

4.
88

98
.2
1

1.
45

97
.4
2

0.
66

10
0.
00

4.
57

99
.6
7

0.
99

95
.7
7

0.
99

98
.9
9

1.
0

10
0.
0

p
.K
32

41
T

5.
63

99
.4
8

2.
14

98
.8
3

0.
53

91
.4
4

5.
08

99
.8
1

0.
99

97
.4
1

0.
99

99
.1
9

1.
0

10
0.
0

p
.I5

84
L

5.
85

99
.7
6

2.
23

99
.0
3

0.
53

93
.2
9

5.
17

99
.8
3

0.
99

96
.7
1

0.
88

95
.4
6

1.
0

10
0.
0

p
.K
33

36
N

4.
60

97
.5
4

2.
64

99
.6
9

0.
47

88
.6
5

2.
99

98
.3
9

1.
00

0
10

0.
00

0.
99

98
.9
9

1.
0

10
0.
0

p
.R
33

84
Q

4.
56

97
.4
4

1.
31

96
.8
1

0.
47

88
.6
5

4.
12

99
.4
8

0.
99

97
.0
1

0.
76

93
.9
0

1.
0

10
0.
0

p
.Y
97

0C
4.
71

97
.8
3

1.
03

95
.3
6

0.
30

39
.2
4

3.
30

98
.8
5

0.
80

92
.4
0

0.
85

95
.0
2

1.
0

10
0.
0

p
.H
30

6R
5.
24

98
.8
8

2.
10

98
.7
4

0.
50

89
.5
8

4.
99

99
.7
8

0.
97

94
.9
2

0.
99

98
.5
7

1.
0

10
0.
0

p
.K
67

1E
5.
61

99
.4
4

2.
14

98
.8
1

0.
53

93
.2
9

5.
07

99
.8
0

1.
00

0
10

0.
00

0.
78

94
.1
4

1.
0

10
0.
0

p
.R
33

44
Q

5.
36

99
.0
7

2.
53

99
.5
3

0.
47

88
.6
5

6.
02

99
.9
6

0.
86

92
.9
3

0.
99

99
.6
8

0.
99

91
.7

p
.G

80
7S

5.
52

99
.3
0

2.
77

99
.8
6

0.
66

10
0.
00

6.
18

99
.9
8

0.
95

94
.1
7

0.
76

93
.8
8

1.
0

10
0.
0

p
.K
12

9I
5.
68

99
.5
5

2.
17

98
.8
9

0.
40

84
.4
3

4.
77

99
.7
3

0.
99

95
.5
9

0.
02

3
65

.5
7

1.
0

10
0.
0

p
.Q

13
69

R
5.
85

99
.7
6

2.
23

99
.0
4

0.
46

87
.6
3

5.
17

99
.8
3

1.
00

10
0.
00

0.
91

96
.0
1

1.
0

10
0.
0

(S
IF
T)

So
rt
in
g

In
to
le
ra
nt

Fr
om

To
le
ra
nt
,
(P
ol
yP

he
n-
2)

Po
ly
m
or
p
hi
sm

Ph
en

ot
yp

in
g

v2
,
(M

ut
A
ss
)
M
ut
at
io
n

A
ss
es
so
r,

(C
on

d
el
)
C
on

se
ns
us

D
el
et
er
io
us
ne

ss
,
(C
A
D
D
)

C
om

b
in
ed

A
nn

ot
at
io
n
D
ep

en
d
en

t
D
ep

le
tio

n,
(G

ER
P+

+
)G

en
om

ic
Ev

ol
ut
io
na

ry
Ra

te
Pr
of
ili
ng

.

A novel DYNC1H1 variant in a patient with ALS

C O L D S P R I N G H A R B O R

Molecular Case Studies

Mentis et al. 2022 Cold Spring Harb Mol Case Stud 8: a006096 9 of 20



Figure 3. The DYNC1H1 variant is predicted to disrupt binding of the transcription factor TFAP4. Sequence
alignments with the TFAP4 motif are shown. (Top) Reference and alternate sequence alignments with the
TFAP4 motif shown in red (5′ to 3′). (Bottom) Consensus motif logo for TFAP4 obtained from the JASPAR
core vertebrate database.

BA

DC

Figure 4. Homology modeling using STRUM and Phyre2. (A) Visualization of the region surrounding the
DYNC1H1 variant at low resolution. (B) Region surrounding the DYNC1H1 variant at high resolution. (C )
Structure modeling with Phyre2 in normal mode for the first 3500 amino acids. Phyre2 was unable to model
the first 1443 amino acids. (D) Structure modeling with Phyre2 in intensive mode for the 1500 amino acids cen-
tered on the residue affected by the candidate variant. Phyre2 was unable tomodel themid region from amino
acid 301 to 659.
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3VKH) has not been fully crystalized, and the mutated amino acid is located in this noncrys-
talized part (Fig. 5A). Therefore, the X-ray structure of dynein was enhanced with its missing
part by applying conventional homology modeling techniques and ab initio calculations.
Molecular dynamics simulations were then applied to the full modeled dynein molecular sys-
tem to allow it to relax conformationally and, thus, to energetically optimize it. The position
of residue 1369 lies on an α-helix located in the outer part of themodel; more specifically, the
side chain of both the wild-type and mutant p.Q1369 residues seemed to protrude well into
the solvent (Fig. 5B). However, no further modeling-based estimations on potential interac-
tions with other proteins could bemade, thus allowing no further conclusions on whether the
stability is increased or decreased.

BA

C D

Figure 5. Molecular dynamics modeling. (A) The X-ray structure of the functional full-length dynein motor
domain from Protein Data Bank (ID: 3VKH). (B) Modeling on the functional full length of the dynein motor
domain to construct the noncrystalized part. (C ) (Top) The dynein X-ray structure with the modeled missing
part. (Bottom) Zoom-in of the modeled part. (D) Same as C but with electrostatic surface potential (red to
blue represents negative to positive).
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DISCUSSION

We reported on a patient with a unique profile of potential ALS-related gene variants.
Sporadic ALS caused by multigene variants is associated with a disease onset that is 10 yr
earlier than that of familiar ALS caused by a single-gene mutation (Kenna et al. 2013;
Cady et al. 2015; McCann et al. 2021). The rare DYNC1H1 variant in our study could be a
potential contributor to the genetic profile of this patient, possibly in combination with
the variants in CCDC88C, PRKCG, DMXL2, SPTLC1, and SH3TC2, as these variants have
not been empirically ruled out (Supplemental Materials and Methods).

The current evidence is only suggestive of the role of the p.Q1369R variant in ALS in our
patient, and further experiments are required to demonstrate whether it alters protein struc-
ture and/or function. Nonetheless, the contribution of this variant to the genetic etiology of
ALS is supported both by our in silico analysis and by a literature review.

a. DYNC1H1 is implicated in other types of motor neuron disease (e.g., spinal muscular at-
rophy; Supplemental Tables S5 and S6) and in ALS mouse models (although specific
pathogenic variants may be neuroprotective) (Fergani et al. 2011).

b. Our patient had concrete ALS symptoms and was heterozygous for p.Q1369R, which is
consistent with a dominant mode of action for the variant, similar to that of other
DYNC1H1 variants in other conditions (Supplemental Tables S5 and S6; Harms et al.
2012; Tsurusaki et al. 2012).

c. p.Q1369R is a novel variant (not previously reported in theGnomAD version 2.1.1, 3.1.1,
or TOPMed Bravo Freeze 8 databases).

d. There is evidence for (and, in no case, against) a potential important role of this
DYNC1H1 variant into ALS—that is, supporting evidence of pathogenicity based on (i)
the PP3 criterion, which refers to multiple lines of computational evidence support a del-
eterious effect on the gene or gene product (conservation, evolutionary, splicing impact,
etc.) and moderate evidence of pathogenicity based on the (ii) PM2 criterion, which re-
fers to a variant absent from controls (or at extremely low frequency if recessive) in Exome
Sequencing Project, 1000 Genomes, or ExAC considering that, in the above sources of
population frequency data, this variant’s frequency is <0.001% in terms of frequency, as
well as not reported in the GeneMatcher database (data not shown) (for the above cri-
teria, see Richards et al. 2015).

Of note, because the parents’ genotypes were not available, we cannot conclude wheth-
er this was an inherited or de novo variant.

Dynein/dynactin pathogenic variants in evolutionarily lower animal models, such as
Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio, are linked to dysfunc-
tional neuromuscular junction and locomotor defects (Koushika et al. 2004; Garrett et al.
2014; Bercier et al. 2019). In humans, DYNC1H1 pathogenic variants affect the interaction
between dynein-1, dynactin, and cargo adaptor complexes, the dysfunction of which may
lead to neurological disorders (Hoang et al. 2017). The extensive length of motor neuron ax-
ons (up to∼1m) is linked to the transport of multiple cargoes from the axons to the soma and
vice versa, implying that even minor loss- or gain-of-function variants can lead to reduced
motor neuron functions and diverse phenotypes from childhood to adulthood (Marzo
et al. 2019). Also, pathogenic variants in DYNC1H1-interacting proteins, such as BICD2
(Peeters et al. 2015) and dynein axonemal assembly factors (e.g., c11orf70, ZYYND10,
NADYX1C1), are implicated in ALS pathophysiology (Andres-Benito et al. 2019).

ALS pathogenic variants are divided in three categories: (a) those in cytoskeletal pro-
teins leading to alterations in axonal transport, (b) those in proteins involved in
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homeostasis, and (c) those in proteins involved in RNA homeostasis/trafficking (Tsai et al.
2017). Because DYNC1H1 is a microtubule-associated protein, the p.Q1369R variant prob-
ably belongs to the first category. Other pathogenic variants in DYNC1H1 have been as-
sociated with Charcot–Marie–Tooth disease, Alzheimer’s disease, and spinal muscular
atrophy, lower extremity-predominant 1 (Supplemental Tables S5 and S6). A previous re-
port suggested that DYNC1H1 was not associated with sporadic ALS based on a tagged
single-nucleotide polymorphism (SNP), case-control study (Shah et al. 2006). Although 16
SNPs were analyzed, the case and control sample size limited the detection of rare variants
and their association with the disease (Shah et al. 2006). Recently, three variants were iden-
tified, all of which are located in the motor domain of DYNC1H1, but their significance in
ALS disease progression remains uncertain (Tripolszki et al. 2019). Two novel variants, of
which the K1395Q variant was predicted as likely pathogenic, were also recently identified
(Scarlino et al. 2020). In addition, research in mice has shown variant effects on molecular
function of the dynein complex and neuronal degeneration (LaMonte et al. 2002;
Hafezparast et al. 2003; Koushika et al. 2004; Courchesne et al. 2011; Garrett et al.
2014; Bercier et al. 2019). These findings, together with our case study, further illustrate
that the role of DYNC1H1 in ALS cannot be overlooked.

Our in silico analysis suggested that theDYNC1H1 pathogenic variants may disrupt bind-
ing of the transcription factor TFAP4 to theDYNC1H1 gene (Stergachis et al. 2013); however,
our findings should be interpreted with caution (Ambrosini et al. 2020). The method used to
assess transcription factor binding does not estimate biological relevance because the
xxCAGCTGxx motif is found in many protein coding sequences and not every motif is ex-
pected to be regulated by TFAP4. Additional experiments are required to confirm whether
TFAP4 physiologically binds to DYNC1H1 and to determine duon function.

According to our structural model, the variant mapped to amino-terminal region 2
domain, which is structurally unsolved but thought to protrude away from other dynein sub-
unit binding sites (Lewis et al. 2018; Jordan et al. 2018; Toropova et al. 2019). The p.Q1369R
residue is likely surface-exposed ormediates dimerization via helix–helix interactions.We hy-
pothesize that mutation of the positively charged arginine residue could destabilize the in-
teraction, leading to disruption of functional dynein complexes; the mechanism by which
such disruption may affect protein function should be further investigated.

Our n-of-1 genetic approach supports further research of the involvement ofDYNCH1H1
in ALS, in alignment with previous directions (MacArthur et al. 2014). Nonetheless, several
limitations should be considered. First, the contribution of environmental factors affecting
the penetrance of disease phenotype and the potential for underdiagnosing or misdiagnos-
ing another disease with ALS cannot be excluded (Belbasis et al. 2016; Kuuluvainen et al.
2019). Second, our observations are limited to a single patient, which limits generalization
and statistically driven conclusions (Kaszkin-Bettag and Hildebrandt 2012; Kiene et al.
2013). Genetic association studies in ALS patients from broader populations would be re-
quired. Third, our analysis of the identified pathogenic variants was based on in silico meth-
ods and requires further validation in experimental models harboring this DYNC1H1
pathogenic variant; to our knowledge, none has been established to date. Fourth, our
gene-centric approach excluded variants with currently unknown association with ALS
(Supplemental Tables S3andS4).Moreover, in the absenceof information regardingparental
family history such as the age towhich the parents or earlier generations lived, ALS diagnoses
or predispositions in the extended family, or nonpaternity limitedour ability to distinguish be-
tween de novo and inherited modalities. As a result, no segregation data is presented that
would provide definite evidence of the pathogenicity of DYNC1H1 variant. Last, the identi-
fication of additional variants in the same patient is not necessarily indicative of an oligogenic
inheritance. Collectively, larger studies would be needed before establishing a causal role of
DYNC1H1 variants in ALS etiology.
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WES is also prone to certain limitations: (a) there are protein-coding regions (exome)
where coverage may be less than sufficient; (b) it is inherently difficult to study noncoding,
disease-causing variants (Claussnitzer et al. 2015); (c) large-scale structural variants (e.g.,
copy-number variations), more identifiable by long-read-base single-molecule sequencing
(Audano et al. 2019), may not have been identified in our experiments; and (d) the possibility
of false-positive results cannot be excluded. Another limitation is that, although we under-
took many computational calculations to verify the identified variant as a bona fide variant,
our results were not confirmed by Sanger sequencing. Nonetheless, the possibility for arti-
fact is low, because the variant displayed a high sequencing depth in WES; hence, we would
have otherwise detected some inconsistency among reads.

Despite the above limitations, our study prompts ALS specialists and researchers to fur-
ther examineDYNC1H1 p.Q1369R as a potential variant contributing to the genetic basis of
ALS. Our data could reflect a variant whose reduced penetrance may necessitate the pres-
ence of additional genetic factors as contributors to the yet heterogenous basis of nonfamil-
ial ALS.

METHODS

The patient was diagnosed and treated in the Neurology clinic of University Hospital of
Thessaly, Larissa. The study received ethical approval by the University of Thessaly
Hospital. Laboratory, neurophysiological, clinical, and other patient-related diagnostic as-
sessments were performed using standard protocols. Extraction of genomic DNAwas based
on EDTA-treated blood samples collected as previously described (Siokas et al. 2020) follow-
ing informed consent.

In Silico Analyses
Variant Quality Control, Damage Scores, and Conservation Scores

The bam file was indexed using SAMtools software (Li et al. 2009), and the candidate variant
was visualized by IGV version 2.4.3.

To assess whether theDYNC1H1variant, as well as previously reported variants, was like-
ly to cause any damage to protein function, we extracted the following damage scores:
(a) SIFT (Ng and Henikoff 2003), (b) PolyPhen-2 (Adzhubei et al. 2010), (c) MutAss
(Mutation Assessor score) (Reva et al. 2011), (d) Condel (González-Pérez and López-Bigas
2011), (e) CADD2 (Combined Annotation Dependent Depletion-2) (Kircher et al. 2014),
and (f) Eigen (Ionita-Laza et al. 2016). For all scores except SIFT, larger scores correspond
to a greater predicted damage.

To assess sequence conservation, we extracted conservation scores by three methods:
(a) PhastCons (Ramani et al. 2019), (b) PhyloP (Ramani et al. 2019), and (c) GERP++
(Davydov et al. 2010). Additionally, we retrieved PhastCons and PhyloP scores for three lev-
els of conservation—that is, vertebrates, placental mammals, and primates. For all conserva-
tion scores, the greater value corresponds to greater conservation.

For comparing DYNC1H1 variants, we first extracted a range of damage prediction
scores for each variant and ranked variants according to their expected functional impact
based on multiple features. Then, we extracted a range of conservation scores and ranked
variants from the most to the least conserved.

Assessment of Variant Effects on miRNA Recognition Sites and Transcription Factor Binding

To assess the possible effects of DYNC1H1 variant on miRNA recognition sites, we queried
the miRcode database (Jeggari et al. 2012), covering atypical transcript regions, such as the
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5′ UTR and coding sequence, and limited our search space to miRNA targets within the cod-
ing regions of DYNC1H1.

To evaluate whether the variant overlapped or/and disrupted a known TFBS, the sur-
rounding sequence was used to query the transcription factor motif database using the
FIMO tool from the MEME suite (Grant et al. 2011). The potential disruption to the motif
was estimated as a log2 ratio of reference and alternate allele frequencies in the motif posi-
tion frequency matrix.

Structural Assessments

WeappliedMUpro (Cheng et al. 2006) and I-Mutant2.0 tools (Capriotti et al. 2005) to predict
the effects of DYNC1H1 variant on protein stability. The protein sequence for DYNC1H1
used as input was obtained from the NCBI Protein database (accession number:
NP_001367.2). MUpro produces two sets of results: the first approach uses the Support
Vector Machine (SVM) algorithm on the full protein sequence to predict both value and
sign of energy change, and the second uses either the SVM or Neural Network on a smaller
sequence window to predict the direction (sign) of energy change. Mutant2.0 tool comple-
ments theMUpro analysis, as it applies an SVM algorithm to predict protein stability changes
by a single pathogenic variant. Similar to MUpro, I-Mutant runs in two modalities to either
predict the direction of the free energy change or the magnitude of free energy change val-
ue, with positive values reflecting increased protein stability and negative ones correspond-
ing to decreased stability.

We also used STRUM (Quan et al. 2016) for in silico determination of DYNC1H1 protein
structural changes. Given that the structure prediction step is limited to a maximum protein
length of 1500 amino acids, we used a 1500-amino acid window centered on the mutated
residue as input sequence.

To generate a homologymodel of themutant protein, we used Phyre2 (Kelley et al. 2015)
in both normal and intensive modes, using as input the first 3500 amino acids of DYNC1H1,
including the amino-terminal part and part of the motor domain.

We also performed molecular dynamics modeling using Molecular Operating
Environment (MOE). The template crystal structures for homology modeling were selected
based on amino acid sequence identity (56% PDB ID: 3VKH) and the structures’ resolution
cutoff (<3.8 Å). The MOE homology model method was used to model regions that were
structurally available (for a comparative description of relevant software, see Nayeem
et al. 2006). Ab initio modeling was also used for the part of the protein that could not be
captured by homology modeling. Energy minimization for all four models was performed
in MOE using the CHARMM27 force field, with root-mean-square deviation gradient set
to 0.0001 Kcal/mol/Å2 to remove the geometrical strain. Themodels were solvated with sim-
ple point charge (SPC) water using the truncated octahedron box extending 7 Å from each
model. Molecular dynamics simulation was performed using the NVT ensemble (number of
atoms, volume, and temperature remain constant) at 300 K, 1 atm, and 2-fsec step size for a
total of 10 nsec. The whole system was solvated in explicit SPC water periodic systems. The
results were analyzed in the MOE database.

ADDITIONAL INFORMATION

Data Deposition and Access
We note that a restriction has been imposed on genomic data deposition and release,
because of lack of patient consent for making the sequence data publicly deposited,
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available, and/or distributed. The variant was submitted to ClinVar (https://www.ncbi.nlm.nih
.gov/clinvar/) and can be found under accession number SCV001774874.1.

Ethics Statement
The present study was performed according to the Declaration of Helsinki (as amended in its
7th version, 2013). Written informed consent from the patient was obtained prior to perform-
ing these genomic studies. Ethics permission was obtained from the University of Thessaly
Hospital Ethic committee. Every effort was made to protect the identity of the patient.
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