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Huntington’s disease (HD) is a currently incurable and, ulti-
mately, fatal neurodegenerative disorder caused by a CAG
trinucleotide repeat expansion within exon 1 of the huntingtin
(HTT) gene, which results in the production of a mutant pro-
tein that forms inclusions and selectively destroys neurons in
the striatum and other adjacent structures. The RNA-guided
Cas9 endonuclease from CRISPR-Cas9 systems is a versatile
technology for inducing DNA double-strand breaks that can
stimulate the introduction of frameshift-inducing mutations
and permanently disable mutant gene function. Here, we
show that the Cas9 nuclease from Staphylococcus aureus, a
small Cas9 ortholog that can be packaged alongside a single
guide RNA into a single adeno-associated virus (AAV) vector,
can be used to disrupt the expression of the mutant HTT gene
in the R6/2 mouse model of HD following its in vivo delivery to
the striatum. Specifically, we found that CRISPR-Cas9-medi-
ated disruption of the mutant HTT gene resulted in a �50%
decrease in neuronal inclusions and significantly improved life-
span and certain motor deficits. These results thus illustrate the
potential for CRISPR-Cas9 technology to treat HD and other
autosomal dominant neurodegenerative disorders caused by a
trinucleotide repeat expansion via in vivo genome editing.
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INTRODUCTION
Huntington’s disease (HD) is an autosomal dominant neurodegener-
ative disorder characterized by a progressive decline in cognitive, mo-
tor, and psychiatric function.1 HD is the most common inherited
neurodegenerative disease, affecting �1 in 10,000 individuals, and
is caused by the expansion of a CAG trinucleotide repeat within
exon 1 of the huntingtin (HTT) gene.2 The presence of this expansion
leads to the production of a mutant protein that aggregates in the
brain and disrupts important cellular functions,3,4 such as nucleocy-
toplasmic transport,5 which primarily results in the loss of medium-
sized spiny neurons (MSNs) and certain cortical neurons that project
to the striatum.6–8 Most individuals with HD first experience disease-
associated abnormalities between 35 and 45 years of age and typically
perish from the disorder �20 years after its manifestation.9 There is
Molecular Therap
This is an open access article under the CC BY-NC-
no cure for HD, and currently approved therapies can only help to
manage certain physical and psychiatric symptoms.10

Although the exact mechanism by which the mutant HTT protein
destroys neurons remains unknown, multiple lines of evidence have
suggested that deleting or reducing mutant HTT gene expression
within affected areas of the brain can halt the progression of
HD.11,12 Accordingly, both antisense oligonucleotides (ASOs) and
RNAi have been used to reduce mutant HTT and improve behavioral
deficits in transgenic animal models of the disorder.13–19 In fact, a
phase I clinical trial designed to assess the safety and tolerability of
ASOs targeting SNPs associated with the mutant CAG repeat expan-
sion (ClinicalTrials.gov: NCT03225833 and NCT03225846) is under-
way. Additionally, a clinical trial involving an ASO targeting both
mutant and wild-type HTTmRNAs has yielded early encouraging re-
sults (ClinicalTrials.gov: NCT02519036), indicating that targeting
both the native and the mutant HTT proteins could be tolerated in
a clinical setting. Further, a microRNA-based gene therapy for
HD20–22 is in the final stages of pre-clincial development and could
soon be evaluated in patients. However, despite advances in chemistry
and design, ASOs can only transiently repress the production of the
HTT protein and may still require a lifetime of administrations to
patients, while RNAi is prone to off-target effects.23–25 Additionally,
both ASOs and RNAi are associated with incomplete knockdown
and lack the capacity to correct the underlying genetic defect respon-
sible for HD, which could ultimately limit their utility as therapeutics.

Genome editing—a method that enables the precise alteration of a
targeted DNA sequence—offers an alternative approach to treat
HD by providing a means to permanently disrupt the function of
y: Nucleic Acids Vol. 17 September 2019 ª 2019 The Authors. 829
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the HTT gene.26 CRISPR (clustered regularly interspaced short palin-
dromic repeats)-CRISPR-associated (Cas) systems,27–31 in particular,
have emerged as especially versatile and efficient gene-editing tech-
nologies that hold considerable potential as therapeutics.32 The
CRISPR-Cas9 DNA-editing system consists of two core components:
the Cas9 nuclease and a single guide RNA (sgRNA) that binds to Cas9
and directs it to a targeted genomic site via RNA-DNA base comple-
mentarity.27 Upon DNA binding, Cas9 introduces a DNA double-
strand break (DSB) that stimulates non-homologous end joining
(NHEJ), an error-prone DNA repair pathway that facilitates the
introduction of random base insertions and deletions (indels) that
can lead to a frameshift mutation33 and thereby disrupt gene expres-
sion via nonsense-mediated mRNA decay.34 As a result, CRISPR-
Cas9 technology could be used to disable the production of the
HTT protein and treat HD following its in vivo delivery to areas of
the brain most affected by the disorder.

In the present study, we demonstrate that CRISPR-Cas9 can be
deployed to the striatum via a single adeno-associated virus (AAV)
vector particle to disable the expression of the human mutant HTT
gene in an especially aggressive animal model of the disorder. Specif-
ically, we show that CRISPR-Cas9-mediated disruption of the mutant
HTT gene in R6/2 mice, which carry exon 1 of the human HTT gene
with�115–150 CAG repeats, reduces the formation of neurotoxic in-
clusions by 2-fold, increases lifespan, and improves certain motor def-
icits in these same mice. Our results illustrate the potential for
CRISPR-Cas9 technology to treat HD and reinforce its potential for
treating other autosomal dominant neurodegenerative disorders.

RESULTS
Using CRISPR-Cas9 to Disrupt HTT Gene Expression

Owing to its ability to induce targeted DSBs that can drive the forma-
tion of frameshift-inducing indels, we hypothesized that CRISPR-
Cas9 could be used to disrupt the expression of the HTT gene
following its in vivo delivery using an AAV vector, a clinically prom-
ising engineered gene delivery vehicle35,36 capable of transducing
various substructures within the brain,37 including the striatum.
AAV vectors, however, have a limited carrying capacity that
restricts single-particle delivery of the prototypical Cas9 nuclease
from Streptococcus pyogenes (SpCas9) alongside an sgRNA expres-
sion cassette.38 Thus, in order to more effectively deliver a CRISPR-
Cas9 gene-editing system in vivo, we used the Cas9 nuclease from
Staphylococcus aureus (SaCas9) to target the human HTT gene.39

SaCas9 is �1 kb smaller than SpCas9 and can fit into a single AAV
particle along with an sgRNA and a neuron-specific promoter to drive
its expression in vivo.

We designed several sgRNAs to target exon 1 of the humanHTT gene
either upstream or downstream of the CAG repeat expansion, with
the expectation that SaCas9-induced indels would reduce the produc-
tion of the human HTT protein (Figure 1A). Given that the CAG
trinucleotide repeat, as well as the large size of the full-length HTT
protein (�350 kDa) can confound quantitative analyses, we used
an established reporter that inducibly expresses exon 1 of the human
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HTT gene with 94 glutamines (94Q) fused to a cyan fluorescent
protein (CFP) variant (Figure 1B),40 thereby linking mutant HTT
gene expression to CFP fluorescence for facile evaluation of the de-
signed sgRNAs. Following transfection into HEK293T cells, we
observed that each sgRNA decreased CFP fluorescence intensity by
at least 50%, with the most effective sgRNA reducing fluorescence
by �75% (p < 0.007) (Figure 1B). These findings were corroborated
by western blot, which indicated a �65% decrease in mutant HTT-
CFP fusion protein for the most efficient sgRNA in comparison to
control cells (p < 0.0001) (Figure 1C). Sanger sequencing further
confirmed the presence of SaCas9-induced indels for this sgRNA
within the mutant HTT transgene, though we identified mutations
in only �10% of sequenced amplicons (Figure S1). Given the prox-
imity of the sgRNA target site to the 30 primer binding site used for
this PCR amplification, we anticipate that SaCas9 could have mutated
a fraction of these sites, thereby preventing efficient amplification of a
subset of the edited transgenes. Collectively, these results indicate that
SaCas9 can be used to target the humanHTT gene and reduce mutant
HTT protein in reporter cells.

CRISPR-Cas9 ReducesMutant HTT Protein Inclusions in the R6/

2 Mouse Model of HD

We next evaluated whether the SaCas9 nuclease could reduce mutant
HTT protein in vivo following its delivery to the R6/2 mouse model of
HD, a transgenic mouse strain that carries the 50 end of the human
HTT gene, which includes: (1)�1 kb of the 50 UTR sequence, (2) exon
1 of the HTT gene with �115–150 CAG repeats, (3) the first 262 bp of
intron 1, and (4) a 168-bp foreign segment from bacterial DNA41,42 (Fig-
ure 2A). R6/2 mice develop HTT protein inclusions in the striatum and,
eventually, the cortex and exhibit a progressive neurodegenerative
phenotype that mimics many features of HD in humans, including
weight loss, tremors, epileptic seizures, movement abnormalities, and
premature death.43,44 This strain is a well-characterized and a widely
used model for studying and evaluating potential treatments for HD.

We injected the striatum of 4-week-old R6/2 mice at three depths
with 2� 1010 viral genomes (vg) of an AAV1 vector encoding SaCas9
and either the most efficient sgRNA targeting the human HTT gene
(AAV1-SaCas9-HTT) or an sgRNA targeting the mouse Rosa26 locus
(AAV1-SaCas9-mRosa26), a safe harbor site that can support stable
transgene expression.45 Transgenic mice injected with AAV1-
SaCas9-mRosa26 previously showed no signs of toxicity and dis-
played no changes in disease progression compared to those injected
with an EGFP-encoding AAV,46 indicating the suitability of AAV1-
SaCas9-mRosa26 as a negative control. Additionally, AAV1 can effec-
tively transduce neurons in the striatum47 and has previously been
used to deliver neurotrophic factors48 and engineered RNAi sys-
tems49 to HD rodent models. To ensure that SaCas9 is specifically
expressed in neurons, we used the human synapsin (hSyn) promoter
to drive its expression from the AAV vector (Figure 2B).

Four weeks after AAV delivery (Figure 2C), we used immunohis-
tochemistry (IHC) to analyze brain sections from treated and
untreated animals for the expression of: (1) SaCas9 via its



Figure 1. Disruption of the Mutant HTT Gene in

Reporter Cells Using CRISPR-Cas9 Nucleases

(A) Schematic representation of the human HTT locus

located on chromosome 4 and the candidate sgRNA

target sites. Arrowheads indicate the approximate location

of the sgRNA binding site. aa, amino acids; PAM, proto-

spacer-adjacent motif. (B) Top: graphic of the mutant HTT-

CFP reporter. Bottom: the percentage of CFP-positive

HEK293T cells 72 h after transfection with reporter

plasmid, SaCas9, and the HTT-targeting sgRNAs or a non-

targeted sgRNA (Empty) (n = 3). (C) Top: western blot of

lysate from HEK293T cells 72 h after transfection with re-

porter plasmid, SaCas9, and the HTT-targeting sgRNAs or

a non-targeted sgRNA (Empty). Bottom: quantitation of

western blot results. CFP protein was normalized to

GAPDH protein in each lane (n = 3). Error bars indicate SD.

**p < 0.01; ***p < 0.001, unpaired t test.
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hemagglutinin (HA) epitope tag; (2) MSNs, the major neuronal
cell type of the striatum, using an antibody that targets the
MSN-specific marker DARPP-32; and (3) mutant HTT, using an
antibody that has been reported to efficiently recognize the mutant
form of the human protein50 (Figure 2D). We observed SaCas9
expression in the central striatum (Figure S2), with quantitative
analysis revealing that �85% of DARPP-32+ cells in the injected
area expressed SaCas9 (Figure S3). Importantly, we also found
that R6/2 mice infused with AAV1-SaCas9-HTT had �40% fewer
mutant HTT protein inclusions in dual SaCas9+ and DARPP-32+

cells compared to animals injected with AAV1-SaCas9-mRosa26
(p = 0.003) (Figure 2E). Western blot analysis further revealed
that mice treated by CRISPR-Cas9 had �50% less total mutant
HTT protein in whole striatal lysate compared to control animals
(p < 0.008) (Figure 2F; Figure S4).

To evaluate whether SaCas9 induced indels in vivo, we deep
sequenced the human HTT transgene from whole dissociated
striatal tissue, which consisted of a mixture of transduced and non-
Molecular Therap
transduced cells. According to CRISPResso,51

a computational pipeline for quantifying
genome-editing outcomes from sequencing
data, indels were present in�6% of the analyzed
human HTT transgenes from CRISPR-treated
animals, which corresponded to a �12-fold in-
crease in indels compared to that in control
mice, though we observed indel frequencies up
to 14% in some animals (Figure S5). To deter-
mine whether SaCas9 induced off-target effects,
we deep sequenced 10 candidate off-target sites
identified using the web-based tool Cas-OFF-
inder.52 CRISPResso analysis revealed no in-
crease in indel formation at any of the 10 sites,
including the mouse HTT gene, which deviates
from the human sgRNA target site by 1 bp (Fig-
ure S6). Taken together, these results indicate
that SaCas9-mediated disruption of the mutant HTT gene can reduce
mutant protein in the brain.

CRISPR-Cas9-Mediated Disruption of the Mutant HTT gene

Increases Survival in R6/2 Mice

We next sought to determine whether CRISPR-Cas9-mediated
disruption of the mutant HTT gene could provide therapeutic benefit
to R6/2 mice, which develop a particularly aggressive and rapid form
of neurodegeneration and have a shortened lifespan (typically,
16 weeks of age) compared to other transgenic models of the disorder.
Starting at 4 weeks after AAV injections, we measured motor func-
tion, hindlimb clasping (an established indicator of dystonia, a clinical
characteristic of HD), and weight on a weekly basis, with end-stage
determined as the point at which animals either were moribund,
lacked a righting reflex, or failed to respond to gentle stimulation.

R6/2 mice injected with AAV1-SaCas9-HTT displayed a �15% in-
crease in mean survival compared to control animals (HTT: 95.4 ±

2.5 days; mRosa26: 82.8 ± 3.7 days; p < 0.01) (Figure 3A) and had
y: Nucleic Acids Vol. 17 September 2019 831
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Figure 2. In Vivo Disruption of the Mutant HTT Gene in R6/2 Mice

(A) Cartoon of the human HTT transgene located in Gm12695 (predicted gene 12695) on chromosome 4 in R6/2 mice. Arrowhead indicates approximate location of sgRNA

binding site. (B) Schematic of the AAV vector. ITR, inverted terminal repeat; hSyn, human synapsin promoter; NLS, nuclear localization sequence; 3xHA, three tandem

repeats of the human influenza hemagglutinin (HA) epitope tag. (C) Timeline for in vivo studies. (D) Immunofluorescent staining of striatal sections 4 weeks after R6/2 mice

were injected with 6 � 1010 vector genomes of (left) AAV1-SaCas9-mRosa26 or (right) AAV1-SaCas9-HTT. Insets show high-magnification images. Arrowheads indicate

representative DARPP-32+ and SaCas9+ cells with (left) high or (right) reduced mutant HTT (mHTT) protein. Images were captured using identical exposure conditions. Scale

bars, 50 mm. (E) Quantitation of immunohistochemical results from R6/2 mice injected with AAV1-SaCas9-HTT (n = 3) or AAV1-SaCas9-mRosa26 (n = 3). (F) Normalized

mutant HTT protein in striatal lysate 4 weeks after R6/2 mice were injected with 6 � 1010 vg of AAV1-SaCas9-mRosa26 or AAV1-SaCas9-HTT (n = 5). **p < 0.01, unpaired

t test. Error bars indicate SD. All injections were performed on 28-day-old animals.
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lifespans that ranged from 80 to 106 days, compared to 66 to 98 days
for control mice (p = 0.01) (Figure 3B). We also observed that R6/2
mice treated by SaCas9 gene editing had improved motor function
(p < 0.01) (Figure 3C) and decreased hindlimb clasping at multiple
weeks, including week 12 (p < 0.05), week 13 (p < 0.01), and week
14 (p = 0.05) (Figure 3D). In fact, we observed that more than half
of all treated animals did not exhibit any signs of clasping until
week 11, whereas 80% of the AAV1-SaCas9-mRosa26-treated
animals had clasped by week 10. Interestingly, we observed no differ-
ence in weight (typically an indicator of disease onset) between
treated and untreated mice (Figure S7), which could be due to the
fact that, while HTT protein inclusions can develop as early as 2 weeks
of age in R6/2 mice,53,54 we injected AAV vector into 4-week-old
animals. Thus, earlier administration of the AAV vector to this strain
or delivery to a late-onset model of HD55 could shedmore light on the
ability of SaCas9 to slow the onset of the disease.

Finally, immunohistochemical analysis of striatal sections from both
treated and untreated animals at end-stage revealed that gene-edited
mice had �30% fewer mutant HTT protein inclusions in SaCas9+

cells compared to control animals (p < 0.05) (Figures 4A and 4B).
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Additionally, we found that end-stage mice had �10% more total
SaCas9+ cells than animals infused with AAV1-SaCas9-mRosa26
(Figure S8). Since we observed similar transduction efficiency in
animals injected with AAV1-SaCas9-HTT and AAV1-SaCas9-
mRosa26 (Figure S2), these results likely indicate that CRISPR-medi-
ated disruption of the mutant HTT gene can impart protection to
some neurons from mutant HTT-induced toxicity.

Collectively, these results establish that CRISPR-Cas9 can be used to
reduce mutant HTT protein in R6/2 mice and that SaCas9-mediated
disruption of the mutant HTT gene can significantly increase survival
and improve motor deficits.

DISCUSSION
HDis themost common inheritedneurodegenerativedisorder, affecting
over 30,000 people in the United States,56 with an estimated 200,000 in-
dividuals at risk of inheriting the disease in the United States alone.
There is no cure for HD, and current therapies only provide symptom-
atic relief. Thus, there is an urgent need for strategies that can reduce the
formation of toxic HTT protein inclusions and treat the underlying
cause of the disorder. Here, we show that CRISPR-Cas9—a versatile



Figure 3. CRISPR-Cas9-Mediated Disruption of the Mutant HTT Gene Provides Therapeutic Benefit to R6/2 Mice

(A–D) Mean survival (A), percent survival (B), normalized rotarod (C), and normalized clasping (D) scores for R6/2 mice bilaterally injected with 6 � 1010 vg of AAV1-SaCas9-

HTT (n = 10) and AAV1-SaCas9-mRosa26 (n = 10). Wild-type mice (n = 11) are litter-matching B6CBAF1 mice. Values are means, and error bars indicate SEM. *p < 0.05. In

(B), unpaired t test was used; in (C) and (D), a two-way ANOVA was used, followed by Tukey’s post hoc analysis.
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technology thatwe46,57 and others58–62 have established can be deployed
in the nervous system to facilitate genome editing—can be harnessed to
disrupt the expressionof themutantHTTgene in theR6/2mousemodel
of HD, one the most aggressive transgenic animal models of the disor-
der.63 Specifically, we demonstrate that CRISPR-Cas9 can be used to
reduce neuronal protein inclusions following its delivery to the striatum,
an outcome that resulted in increased lifespan and improved motor
function. Our study thus illustrates the potential for genome editing to
treat HD.

Since R6/2 mice harbor the 50 end of exon 1 of the human HTT gene
with an expansion of�115–150CAG trinucleotide repeats,we designed
sgRNAs to target exon 1 of the humanHTT allele. As a result, this ther-
apeutic genome-editing strategy is not allele specific and unable to
discriminate between the mutant and wild-type forms of the HTT
gene in an HD patient. However, while disrupting the wild-type HTT
gene can affect early neurological development and lead to embryonic
lethality or cause certain side effects in young mice,64–66 several studies
have suggested that reducing wild-type and mutant HTT protein in
adult mice18,66 and larger animals21 is well tolerated. In fact, a clinical
trial aimed at accessing the safety of an ASOs targeting both the
mutant and wild-type HTT mRNA is underway (ClinicalTrials.gov:
NCT02519036), with more in the pipeline,20–22 underscoring the ther-
apeutic feasibility of a non-allele-specific targeting approach, though
additional studies are still needed to firmly establish this. In the case
that specific disruption of the mutant HTT gene is required, CRISPR-
Cas9 could be deployed to target distinct heterozygous SNPs associated
with the CAG repeat, which was demonstrated as feasible in previous
studies.16,19,60 However, since many of these SNPs vary among the pa-
tient population, this approach would likely require using different
specialized CRISPR-Cas9 systems to target eachmutation, which could
make its implementation challenging.

To date, several genome-editing and targeted gene-regulating tech-
nologies have been used to reduce the expression of the mutant
HTT gene, including an engineered zinc-finger repressor protein
that targeted the CAG repeat expansion67 and also CRISPR-Cas9,
which has been used to excise an expanded CAG repeat59 and disrupt
the expression of the HTT gene.60,61 However, to our knowledge, no
other study has demonstrated that CRISPR-Cas9 technology can in-
crease survival in an HD animal model, an important benchmark for
a HD therapeutic. In particular, while Yang et al.59 used the SpCas9
nuclease to delete the CAG repeat expansion in HD140Q-knockin
mice (which express exon 1 of the human mutant HTT gene in place
of exon 1 of the mouse HTT gene), they did not analyze survival and
reported that only early neuropathology effects were attenuated by
gene editing. Similarly, while Monteys et al.60 reported that
CRISPR-Cas9 can be used to selectively target mutant HTT-associ-
ated SNPs, they also did not analyze whether gene editing could
rescue motor deficits in an animal model of the disorder. Importantly,
our results establish that CRISPR-Cas9-mediated disruption of the
mutant HTT gene can significantly increase lifespan in R6/2 mice,
which aggressively and rapidly manifest HD-like symptoms, and
that gene editing can confer protection to neurons from striatal
degeneration. Our results also demonstrate that CRISPR-Cas9 can
provide a therapeutic benefit that is on par with those previously
observed with an HTT-targeting ASO that was administered to the
cerebrospinal fluid of R6/2 mice.18 Finally, compared to synthetic
zinc-finger repressors, which were used to improve rotarod function
and reduce clasping in R6/2 mice at 5 and 7 weeks of age,67 we
observed improved motor performance in mice from 10 to 14 weeks
of age following Cas9-mediated gene editing.

Of note, past therapeutic gene-editing studies for HD have relied on
the SpCas9 nuclease to facilitate modification of the HTT gene.59–61

Due to its relatively large size, the SpCas9 nuclease typically requires
the use of two AAV particles for delivery with its sgRNA, a require-
ment that could reduce in vivo editing efficiency and limit therapeutic
effectiveness. Our results show that SaCas9, a smaller Cas9 ortholog
that can fit into a single AAV vector alongside an sgRNA and a
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 833
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Figure 4. CRISPR-Cas9 Enhances Neuronal Survival in R6/2 Mice

(A) Immunofluorescent staining of end-stage striatal sections from R6/2 mice bilaterally injected with 6 � 1010 vector genomes of (left) AAV1-SaCas9-mRosa26 or (right)

AAV1-SaCas9-HTT. Insets show high-magnification images. Arrowheads indicate representative DARPP-32+ and SaCas9+ cells with (left) high or (right) reducedmutant HTT

(mHTT) protein. Images were captured using identical exposure conditions. Scale bars, 50 mm. (B) Quantitation of immunohistochemical results from R6/2mice injected with

AAV1-SaCas9-HTT (n = 4) or AAV1-SaCas9-mRosa26 (n = 3). *p < 0.05, one-way unpaired t test.
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promoter to drive its expression, can facilitate efficient disruption of
the HTT gene, indicating that alternate CRISPR-Cas9 systems that
are more accommodating to AAV-mediated delivery could be used
to treat HD.

To effectively treat HD, CRISPR-Cas9 or any other gene-editing cargo
must be efficiently delivered to the cell types affected by the disorder.
Our immunohistochemical results indicated that �85% of DARPP-
32+ cells analyzed in the striatum expressed SaCas9 4 weeks after
AAV delivery, indicating efficient transduction to the targeted area.
However, other neuronal populations, including certain large pyra-
midal projection neurons,68 are also vulnerable to HD-associated
toxicity. Thus, directed evolution or other protein engineering strate-
gies could be used to create specialized AAV capsid variants69 that can
facilitate enhanced delivery to all or most of the cell populations sus-
ceptible to HD. AAV vectors, in particular, hold tremendous potential
as therapeutic gene delivery vehicles, as they have demonstrated effi-
cacy in several clinical trials.70–74 In fact, a retina-directed AAV-based
therapy earned regulatory approval by the U.S. Food and Drug
Administration in 2017, the first such endorsement for an AAV ther-
apy in the United States, with more potentially on the horizon. Addi-
tionally, while numerous advances have been made to help minimize
the frequency that CRISPR-Cas9 nucleases introduce off-target muta-
tions in cells,75–79 the continuous expression of Cas9 or any other
gene-editing nuclease from an AAV vector could, nonetheless, cause
off-target effects to accumulate. Self-inactivating gene-editing tech-
nologies61,80,81 such as the KamiCas9 system,61 which has been
used to target the HTT gene in an HD mouse model, could be har-
nessed to limit the duration that a nuclease is exposed within a cell,
though it remains to be seen whether such an approach can be inte-
grated into an AAV vector. Further, to assess the safety of this thera-
peutic gene-editing strategy in a genetic background relevant to HD,
unbiased methods for identifying Cas9-induced DSBs39,82,83 should
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be performed in neurons differentiated from human induced plurip-
otent stem cells derived fromHD patient cells in order to comprehen-
sively curate sgRNA specificity. Though our analysis revealed no
increase in indels at any analyzed candidate off-target cleavage site,
the use of Cas9 variants with enhanced targeting specificity84 could
be used to help minimize the potential for off-target effects.

Finally, we note that, while treatment with CRISPR-Cas9 increased
lifespan in R6/2 mice and protected some striatal neurons from death,
the therapeutic genome-editing strategy described here is unable to
restore lost cells. However, we85 and others86 have demonstrated
that transplanted neural progenitors can innervate within a host tis-
sue and form new synaptic connections with endogenous neurons.85

Thus, in the future, CRISPR-Cas9-mediated gene editing could be
used in combination with cell replacement therapy to treat HD via
a two-step process that first involves CRISPR-mediated disruption
of the endogenous mutant HTT gene to reduce its neurodegenerative
effect and then involves the integration of a functional striatal graft to
replace lost cells, thereby unifying the benefits of both approaches to
treat HD in a potentially more effective manner.

In conclusion, we show that CRISPR-Cas9-mediated gene editing can
reduce the formation of mutant HTT protein inclusions and provide
therapeutic benefit to a mouse model of HD. Our results lay a foun-
dation for using gene editing to treat HD and suggest that CRISPR-
Cas9 and other emerging gene-editing technologies87 have broad po-
tential to treat neurodegenerative disorders.

MATERIALS AND METHODS
Plasmid Construction

The hSyn promoter was PCR amplified from pAAV-hSyn-mCherry
(kindly provided by Dr. John Flannery) and cloned into the SpeI and
AgeI sites of pAAV-CMV-SaCas9-U6-sgRNA (Addgene, #61591).
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Exon 1 of the humanHTT gene was searched for the motif 50-(N)20–21-
NNGRRT-30 (where N = A, T, C, or G, and R = A or G) to identify
potential SaCas9 cleavage sites. Oligonucleotides encoding the identi-
fied sgRNA targeting sequences were synthesized (Elim Bio-
pharmaceuticals), phosphorylated by T4 polynucleotide kinase (New
England Biolabs), annealed, and then ligated into the BsaI restriction
sites of pAAV-hSyn-SaCas9-U6-sgRNA. Plasmid sequences were veri-
fied byDNA sequencing (UCBerkeley DNASequencing Facility) using
the oligonucleotides described in Table S1.

Cell Culture and Flow Cytometry

HEK293T cells were cultured in a 5% CO2 atmosphere at 37�C and
kept in DMEM (Corning) supplemented with 10% (v/v) fetal bovine
serum (FBS; Life Technologies) and 1% (v/v) Antibiotic-Antimycotic
(Anti-Anti; Life Technologies). For transfections, HEK293T cells
were seeded onto 24-well plates at a density of 3 � 105 cells per
well. At 16 h after seeding, cells were transfected with 100 ng
pTreTight-HTT94Q-CFP (Addgene, #23966), 100 ng tTA/TRE-
mCherry, and 800 ng pAAV-CMV-SaCas9-U6-sgRNA using 3 mL
polyethylenimine (1 mg/mL), as described elsewhere.88 At 72 h after
transfection, cells were washed once with PBS, and mCherry and
CFP fluorescence was evaluated by flow cytometry using a BD
LSRFortessa X-20 cytometer (UC Berkeley Flow Cytometry Core
Facility). For each sample, 50,000 live events were collected, and
data were analyzed using FlowJo v10 (Tree Star)

Western Blot

Homogenized HEK293T cells transfected with 100 ng pTreTight-
HTT94Q-CFP, 100 ng tTA/TRE-mCherry, and 800 ng pAAV-
CMV-SaCas9-U6-sgRNA were lysed using RIPA buffer (50 mM
Tris, 150 mM NaCl, 0.2% SDS, 0.5% deoxycholate, 1% NP-40,
1 mM EDTA [pH 8.0]) containing protease inhibitor cocktail
(Sigma-Aldrich) for 30 min on ice and then centrifuged at
14,000� g for 5 min at 4�C. Supernatants were collected, and protein
concentration was determined using the Pierce BCA Protein Assay
Kit (Thermo Fisher Scientific) before 15 mg protein was electrophor-
esed by SDS-PAGE and transferred onto a nitrocellulose membrane
in transfer buffer (20 mM Tris-HCl, 150 mM glycine, and 20%
[v/v] methanol) for 1 h at 160 V. Membranes were blocked with
5% (v/v) Blotting-Grade Blocker (Bio-Rad) in Tris-buffered saline
(TBS) (20 mM Tris-HCl, 150 mM NaCl, [pH 7.5]) with 0.05% (v/v)
Tween-20 (TBST) for 1 h and incubated overnight at 4�C with pri-
mary antibodies in blocking solution. The following antibodies
were used: rabbit anti-GFP (Abcam, #ab6556) and rabbit anti-
GAPDH, clone 14C10 (Cell Signaling, #2118). Membranes were
washed three times with TBST and incubated with goat anti-rabbit
secondary antibody horseradish peroxidase conjugate (Thermo
Fisher Scientific, #65-6120) in blocking solution for 1 h at room tem-
perature. After three washes with TBST, blots were developed using
the SuperSignal West Dura Extended Duration Substrate (Thermo
Fisher Scientific) and visualized by automated chemiluminescence
using the Gel Doc XR Imaging System (Bio-Rad). Band intensity
was quantitated using Image Lab (Bio-Rad). Total mutant HTT
protein was normalized to GAPDH protein in each lane.
Harvested striatal tissue was lysed using RIPA buffer with 2% SDS,
electrophoresed on a NuPAGE 4%–12% Bis-Tris Protein Gel
(Thermo-Fisher Scientific), and transferred onto an Odyssey Nitro-
cellulose Membrane (Li-COR Biosciences). Membranes were incu-
bated overnight at 4�C with the following primary antibodies: mouse
anti-HTT, clone mEM48 (Millipore-Sigma, #MAB5374); and rabbit
anti-GAPDH (Sigma-Aldrich). Membranes were washed three times
with TBST and incubated with either biotinylated goat anti-rabbit
immunoglobulin G (IgG) (Abcam, #ab64256) or biotinylated goat
anti-mouse IgG (Abcam, #ab64255) in blocking solution for 1 h at
room temperature. After three washes with TBST, blots were incu-
bated with a streptavidin-Alexa Fluor 700 conjugate (Thermo Fisher
Scientific, #S21383) for 1 h at room temperature and visualized using
an Odyssey Imaging System. Band intensity was quantitated using
Image Lab (Bio-Rad), and mutant HTT protein was normalized to
GAPDH control protein in each lane.

Sanger Sequencing

HEK293T cells were seeded onto 24-well plates at a density of 3� 105

cells per well and transfected with 100 ng tTA/TRE-mCherry and
800 ng pAAV-CMV-SaCas9-U6-sgRNA. At 72 h after transfection,
mCherry+ cells were isolated using fluorescence-activated cell sorting
(FACS) (BD FACSAria Fusion; UC Berkeley Flow Cytometry Core
Facility), and genomic DNA was isolated using QuickExtract DNA
Extraction Solution (Epicenter), according to the manufacturer’s in-
structions. The mutant HTT transgene was PCR amplified using
the primers EcoRI-HTT-Exon 1-Fwd and XbaI-HTT-Exon 1-Rev
and cloned into the EcoRI and XbaI restriction sites in pcDNA
3.1(+). Individual colonies were mini-prepped and sequenced using
the primers EcoRI-HTT-Exon 1-Fwd and XbaI-HTT-Exon 1-Rev.

AAV Vector Production

AAV was manufactured as described elsewhere.88 Briefly, HEK293T
cells were seeded onto 15-cm plates at a density of 4 � 107 cells per
plate in DMEM with 10% (v/v) FBS and 1% Anti-Anti. At 16 h after
seeding, cells were transfected with 15 mg pHelper, 15 mg AAV1,
and 15 mg either pAAV-hSyn-SaCas9-U6-sgRNA-HTT or pAAV-
hSyn-SaCas9-U6-sgRNA-mRosa25 using 135 mL polyethylamine
(1 mg/mL). At 48 h after transfection, cells were harvested and centri-
fuged at 4,000 � g for 5 min at room temperature and freeze-thawed
three times in lysis buffer (50 mM Tris-HCl, 150 mMNaCl [pH 8.0]).
Cell lysate was incubated with 10 U benzonase nuclease (Sigma-Al-
drich) for 30 min at 37�C and centrifuged at 10,000 � g for 10 min
at room temperature. Supernatant was collected and laid over an
iodixanol gradient and centrifuged at 42,000 � g for 2 h at 18�C.
AAVwas extracted from the iodixanol gradient and buffer exchanged
with PBS with 0.001% Tween-20 using an Ultra-15 Centrifugal Filter
Unit (Amicon) at 4,000 � g and concentrated to �200 mL. Virus was
stored at 4�C, and the genomic titer was determined by qRT-PCR
using SYBR Green (Sigma-Aldrich), as described elsewhere.88

Injections

Animal procedures were approved by the Office of Laboratory
Animal Care at UC Berkeley and conducted in accordance with the
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 835
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NIH Guide for the Care and Use of Laboratory Animals. Four-week-
old R6/2 mice bred from 8-week-old R6/2 mice (B6CBA-
Tg(HDexon1)62Gpb/3J; Jackson Laboratory, stock #006494) and
8-week-old female B6CBAF1 mice (Jackson Laboratory, stock
#100011) were bilaterally injected with 2 � 1010 vector genomes of
AAV1-hSyn-SaCas9-HTT or AAV1-hSyn-SaCas9-mRosa26 in 2 mL
PBS with 0.001% Tween-20 at stereotaxic coordinates anterior-poste-
rior (AP) = 0.50 mm; medial-lateral (ML) = ±1.75 mm; and dorsal-
ventral (DV) = �2.0 mm, �1.5 mm, and �1 mm using a 10-mL
syringe with a 22G Point Style 4 needle with a 30� angle (Hamilton).
Before injections, animals were genotyped by PCR using genomic
DNA purified from an ear clip.

Behavior

Starting 2 weeks after injections, treated and control R6/2 mice were
monitored weekly with the rotarod assay, clasping test, and weight
measurements. Treatment groups were gender balanced, and all mea-
surements were performed in a blindedmanner. For the rotarod, mice
were placed onto a Rotamex-5 rotarod (Columbus Instruments), and
the latency to fall (measured in seconds) was recorded for each ani-
mal. Each session consisted of three trials, with the rotarod pro-
grammed to accelerate from 4 to 40 rpm in 180 s. For the clasping
test, mice were suspended by the tail for 30 s and scored from 0 to
3: 0 = no clasping was observed; 1 = mice clasped hindlimbs within
30 s; 2 = mice clasped hindlimbs but recovered within 5 s when
released; and 3 = mice clasped hindlimbs but failed to recover within
5 s when released. All data were normalized to values determined at
week 8 (i.e., 4 weeks after injection). End-stage was defined as the
point at which animals were moribund, lacked a righting reflex, failed
to respond to gentle stimulation, or decreased to 80% of their peak
weight.

Striatal Tissue Harvesting

Mice were anesthetized by intraperitoneal injection of ketamine
(100 mg/kg) and xylazine (10 mg/kg) and transcardially perfused
with 0.9% saline. Brains were harvested, and the striatum was isolated
by manual dissection on a pre-chilled surface. Tissue was homoge-
nized by incubation in trypsin for 90 min at 37�C with constant
CO2 equilibration and gentle perturbation every 15 min. Cells were
centrifuged at 2,000 � g for 5 min at room temperature, washed
once with PBS, and then centrifuged for an additional 2,000 � g for
5 min at room temperature.

Deep Sequencing

Candidate OT sites were identified using Cas-OFFinder, as described
elsewhere.46 Briefly, the mm10mouse reference genome was searched
for sites with, at most, four mismatches (up to two nucleotide mis-
matches and up to two DNA or sgRNA bulges) from the sgRNA
target site in the human HTT gene. The 10 most similar sites were
chosen for analysis. Striatal tissue from R6/2 mice injected with
AAV1-SaCas9-HTT or AAV1-SaCas9-mRosa26 was harvested, and
genomic DNA was extracted using the DNeasy Blood & Tissue Kit
(QIAGEN). The sgRNA target site in the human HTT gene and the
candidate off-target cleavage site in the mouse HTT gene were
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amplified (Table S1) using a touchdown PCR with Taq DNA Poly-
merase (New England Biolabs). The remaining candidate off-target
sites were amplified (Table S1) using Phusion High-Fidelity DNA
Polymerase (New England Biolabs). Mouse-specific barcode se-
quences were then incorporated using an additional round of PCR.
All barcoded amplicons were quantified using PicoGreen (Thermo
Fisher Scientific) and purified using AMPure PCR purification
(Beckman) at the UC Berkeley Functional Genomics Laboratory.
Barcoded amplicons were pooled together, and 150-bp single-ended
reads were generated using the HiSeq 4000 System (Illumina; QB3
Vincent J. Coates Genomics Sequencing Laboratory). Samples were
demultiplexed based on their index, and adaptor sequences were
trimmed from the reads. Using CRISPResso, sequences were filtered
for >99% confidence (phred33 threshold > 20) and aligned using
EMBOSS Needle. Indel frequency was quantified within a 25-bp win-
dow of the cleavage site (substitutions were ignored). Samples with
fewer than 1,000 reads post-analysis were removed from statistical
analysis.

Immunofluorescence Staining

Mice were anesthetized by intraperitoneal injection of ketamine
(100 mg/kg) and xylazine (10 mg/kg) and transcardially perfused
with 0.9% saline followed by 4% paraformaldehyde. Brains were har-
vested and post-fixed in 4% paraformaldehyde for 48 h at 4�C and
then transferred to a 30% (w/v) sucrose solution. Brains were cut to
40-mm coronal sections and stored in cytoprotectant at �20�C. Sec-
tions were then washed three times with PBS, incubated with blocking
solution (PBS with 2% [v/v] BSA, 5% [v/v] donkey serum, and 0.2%
[v/v] Triton X-100) at room temperature for 2 h, and stained with pri-
mary antibodies in blocking solution for 48 h at 4�C. Sections were
washed four times with PBS and incubated with secondary antibodies
in blocking solution for 2 h followed by a 10-min incubation with
DAPI nuclear stain. After staining, sections were washed four times
with PBS, mounted onto slides, and visualized using a Zeiss LSM
710 AxioObserver confocal microscope (UC Berkeley Molecular Im-
aging Center). Image analysis was performed using ImageJ (https://
imagej.nih.gov/ij/).

The following antibodies were used for brain sections: mouse anti-
HTT, clone mEM48 (Millipore-Sigma, #MAB5374); goat anti-
DARPP-32 (R&D Systems, #AF6259); and rabbit anti-HA, clone
C29F4 (Cell Signaling Technology, #3724). The following secondary
antibodies were used: donkey anti-goat Alexa Fluor 488 (Jackson Im-
munoResearch Laboratories, #703-545-155), donkey anti-rabbit
Alexa Fluor 555 (Thermo-Fisher Scientific, #A-31572), and donkey
anti-mouse Alexa Fluor 647 (Thermo-Fisher Scientific, #A-31571).

Statistics

Statistical analysis was performed using Prism 7 (GraphPad Soft-
ware). Mutant HTT protein, mean lifespan, and neuron survival
were compared using an unpaired t test. Rotarod times, weight loss,
and clasping scores were compared using a one-way ANOVA fol-
lowed by Tukey’s post hoc analysis. Kaplan-Meier plots were
analyzed using the log-rank test.

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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